Braman's Planing Mabhinery.
Braman's Planing Waohinery.
The following is the specification of a patent granted to J. Bramah in 1802 for improvments in machinery to produce straight, smooth, parallel and cuvilinear surfaces on wood, scc. The description is very piain and was first reported for the Repertory of Arts. " The principal parts of my invention ar as follows : that is to say, to shorten and reduce manual labor, and the consequent ex penseswhich attend it, by producing the effects atated in my patent by the use of machinery, which may be worked by animal, elementary, or manual force; and which said effects are to produce straight, true smooth and parallel surfaces in the prepara tion of all the component parts of work, consisting of wood, ivory, horn, stone, metale, or any other sort of materials or composition usually prepared, and render them true and and fit for use by means of edge tools of every description. I do not rest the merits of this my said invention on any novelty in the gene ral principal of the Machinery I employ, be. cause the public benefit I propose will rather depend on new eflects, produced by a new application of principles already known, and Machinery already in use for other purposes in various branches of British Manufactory This Machinery, and the new manner of using it, with some improvements in the con struction together with sundry tools and appendages never in use before, are particu larly described and explained hereunder
"I mean to use and apply for the purpose above stated every kind of edge tool or cutter already known, either in present shape, or with such variations and improvement as the variety of operations I may encounter may severally call for. But the tools, instead of being applied by hand, as usual, I fix, as judgment may direct, on frames driven by Machinery, some of which trames I move in a rotary direction round an upright shaft, and others having their shaft lying in a horizontal position, like a commonlathe for turn ing wood, \&c. In other instances I fix these tools, cutters, \&c., on frames which slide in stationed groves or otherwise, and like the former, calculated for connexion with, and to be driven by Machinery, all of which are here after further esplatint: and particularized
'The principal points on which the merits of the invention rest are the following. First, I cause the materials meant to be brought true and perfect as above described, to slide into contact with the tool, instead of the tool being carried by the hand over the work, in the usual way.
Secondly, I make the tool, of whatsoever cutting kind it be, to traverse across the work ina syuare or oblique direction, except in some cases where it inay be necessary to fix the tool or cutter in an immovable station, and cause the work to tall in contact with it by a motion confining it so to do, similar to the operations performed on a drawiag bench.
Thirdly, in some cases I use, instead of common saws, axes, planes, chisels, and other such instruments usually applied by hand, cutters, knives, shaves, planes, and the like, variously, as the nature of the work may render necessary; some in form of bent knives, spoke shaves, or deep cutting gauges, similar to those used by turners for cutting off the roughest part. I also apply planes of various shapes and construction, as the work may require, to follow the former in succession, under the same operations; and which latter I call finishings.
Fourthly, these cutters, knives, \&c, I fix on frames of wood or metal properly contrived for their reception, and from which they may be easily detached for the purpose of sharpening and the like : thes. I call cutter frames. These cutter frames I move in cases like those on which the saws are fixed in a sawing mill, and sometimes to recipro. cate in a horizontal direction, confined and stationed by gronves or otherwist, as may be found best calculated to answer the several
works intended. In ther instances, and which, I aprebend will generally have the preference, I fix cutter frames on a rotary upright shaft, turning on a step and carrying the frame round in a direction similar to the upper millstone; and sonetimes I cause the trames to turn on a hurizontal shaft, just re
sembling the mandrel of a common turning lathe or those Machines used for cutting log. wood, \&c., for the dyer's uses. When these
frames are mounted in any of the for ϵ oing directions for cutting planes, \&-c, are fixed so as to fall successively in contact with the wood or other materials to be cut, so that the cutter or tool calculated to take the rough and hilly part operates the first, and those that follow must be so regulated as to reduce the material down to the line intended for the surface. These cutter frames must also have the property of being regulated by a screw o otherwise, so as to approach nearer the work or shallower cut may be taken at discretion, or that the Machine may repeat its action withoutraising or depressing the materials on which they act. The manner of thus regulating the cutter frames, when on an upright shaft, is particularly described below. Thes and dimensions the work requires, only ob serving to make the diameter of those on the rotary plane so as to exceed twice the width of the materials to be cut, as the said material must slide so as to pass the shaft on which he cutter frames revolve, when on the principle.

(To be continued.)

Puper hangings Prepared by means of
Nitrate of Sliver and other Salts.
Mr. Larocque presented a paper to the Academie des Šciences, Paris, explaining a new process tor colouring and designing paper hangings. He observes, that nearly all the alts are volatized under the influence it vapour from water or salme salutions and that the nitrate of silver, among other salts, on account of its easy reduction, would furnish a great variety of shades of color; and by means of reserves made in the paper, any designs in white may be obtained. The foilizsing is the process employed :-Take of pure niric acid, sp. gr. 1.50, two parts; and distilled water, one part. Place the mixture in a porcelain capsule and heatit, throw in about two ounces of silver, abd continue to apply heat until the action of the acid on the metal has ceased ; with, this quantity of silver 700 or 300 oheets of pape: may be colvied. in this operation but a very small loss of silver will be toutu, for the residue can be formed into nitrate of silver and sold; or, if calcined at a red heat in acrucible with carbonate of soda, the metallic silver may be obtainod and employed for a new operation. In order t_{0} obtain good designs, it is necessary to operate in a place well lighted and out of currents of air.
The plan ot M. Larocque is just a modifica. ion of common photographic paper.

Charconl.

Charcoal, graphite, and the diamond are well-known examples of the same element existing in different states. Each of these bodies are forms of carbon, yet how different in character! Charcoal is readily inflammable, graphite less so, and the diamond burns only at the highest temperatures. Graphite, like the diamond, is crystallizatle, but one crystalizes in forms which cannot be referred to the other. The specific gravity of the damond is much greater than that of either graphite or charcoal. Graphite and coke are conductors. There are no two distinct ele. ments which differ more from each other than these modifications of the same element. No doubt the peculiar conditions of the tompounds of carbon,-carbonic and oxalic acids, and also, in all probability, mellitic and croconic acids,-are dependent upon these allotropic condition of the same element.
Chromiurn, obtained from its oxide by fusion with charcoal at a very high temperature, is pale grey metal, which cannot be oxidized at red heat or by the action of boiling nitromuriatic acid; but the chromium obtained from its combination with chloride, by the action o! potassium, is a pulverulent mas which takes fre at a out 400° of Fahrenheit and is converted into green oxide of chromium, and it dissolves readily even its muriatic acid
The State of Massachusetts granted withir he past year $\$ 10,000$ for the establishment of agricultural schools.

tuls with varlous Substances.

M. Cyprian M. T. Dumotay, a French gentleman, has lately iavented and patented a new mode of inlaying and coating metals with various substances, which articles have when finished the appearance of being richly ornamented with inlaid work, and has been called by the French " Damasquererie."

He Grst covers thearticle, while in a heated state, with a varnish of bitumen and virgin wax, spreading the said varnish by means of a ball of silk or fine leather as is practiced for etching. When the varrush is dry, the parts which are to be acted upon are laid bare by a point, as in ordinary etching operations.

When the inlaying of one metal is required the metal is first cleansed and then immersed in a bath of the metal to be deposited by the galvanic current, and when the metal has been deposited to a thickness egual to the depth of the hollow parts of the design, it is withdrawn from the solution, washed in water and dried in saw dust. The damaskened surfaces are then laid bare by means of free stone, or emery, or by filing and scraping, so as to remove the superfluous deposited coating and show the inlaid work. In this manner successive layers of all kinds of figures may be deposited in metal. Incrustations silver may have fillets of copper, \&cc.

Tcis is a branch of electrotyping, and for riamental metullie workmanship, it opens up a wide field. We perceire in it a fine substitute tor the present mode of silvering, or chasing arms with gold. By the old mode silver and gold wire are driven into seams checkered at the bottom, and then all sraoothedoff, thus producing by much trouble and at much experise, the silver ornamented pistols and fue fowling pieces that we often see.

Wheat and Bxan.

According to Mr. John Donaldson " 100 lbs of wheat brac contains 48 lbs. of nutritive matter"-" 100 lbs . of wheat chaff contains 60 lbs. of nutritive matter"-" 100 lbs. of wheat contain 95 lbs . of nutritive matter ; so that $£ 00 \mathrm{lbs}$. of bran, 160 lbs . of wheat chaff, and 100 lbs . of wheat, must be of equal value a fios " The suar is ahnest as great in hatting the bran below the chaff as it is in putting the wheat itself so little above it. There are similar mistakes as regard the relative value of the green crops, and, in fact, it must be ob. vious that the theory is in error by which the merits of these different kinds offood have been estimated. It was all very well for the time of Sir H. Davg, or Mr. Siaclair, to suppose that all of (and none but) the dry substance of any vegetable which hot water would dissoive, and take with it through filter paper, was " nutritive matter ;" but practical men soon proved this idea erroneous, and scientific men have long since erec ted a better theory of nurrition.

Facts About Digestion.

Wheat is most nutritious of all substances except oil ; contaming ninety-five parts of nutriment to five of waste matter. Dry peas, nuts and barley are nearly as nutritious as wheat. Garden vegetables stand lowest on the list, inasmuch as they contain when fresh a large portion of water. The quantity of waste matter is more than eight-tenths of the whole. Veal is the most nutritious, then fowls, then beef, last pork. The most nutritious fruits are plums, grapes, apricots, peackes, gooseberries and melons. Of all the articles of food boiled rice is digested in the shortest time-one hour. As it also contains eight-tenths of nutritious matter, it is a valuable substance of diet. Tripe and pig's feet are digested almost as rapidly. Apples, if sweet and ripe, are next in order. Venison is digested almost as soon as apples. Roasted potatues are digested in half the time refuired by the same vegetable boiled, wihich occupy three hours and a hall-more than beef or mutton. Bread occupies three hours and a half-an hour more than is required by the same article raw. Turkey and goose are converted in two hours and a half-an hour and a half sooner than chicken. Roasted veal and roast pork, and salt beef occupy five hours and a halt-the longest of ali the articles

Mode of Preparing Tannate or Irom A very pure sulphate of iron is made by the action of dilute sulphuric acid on iron filings : from this sulphate, by means of carbonate of soda, a carbonate of iron is precipitated which is washed several times, and then dried on the stove. rt is now pulverized and thrown by small portions at a time into a boiling solution of very pure tannic acid is porcelain vessel-the proportions used being vers nearly five parts of the carbonate to one of the acid, or 440 parts of carbonate to ninety of the tannic acid. The fluid is to be stirred constantly till the effervescence ceases. It is afterwards exposed to a heat equal to the boiling point of water, till it acquires the consistence of thick soup. It is then with drawn from the fire and poured on proclain plates, and dried with the assistance of heat The tannet of iron thus obtained is of a crim son colour, insipid, insolvable, uncrystalized It may be administered either suspended in syrup, or still mure conveniently in the form of pills. The dose is from eight to thirty grains aday. It acts more rapidly in persons of sanguine temperament.

Tannate of Iron In the Treatment of

 Chloros1s.Dr. Benedetti asserts that the tannate of ron is the most efficacious of all remedies in the treatment of chlorosis. In evidence of this he cites cases trom his own practice and from that of Dr. Majocci, affirming that the reatment by the tannate of iron is successto in the severity of the case.

The Carrot.

The Carrot, says an eminent physician, " is a most wholesome culinary root; it strengthens and nourishes the body, and is very beneficial for consumptive persons." Carrots are generally served boiled, with meats, yet they make an excellent ingredient in soups, and form, we are told, a very agreeablepudding. As an agricultural root, they are not surpassed for feeding cattle; horses will do more work and look better on them than any other feed.
This vegetable is supposed to have een introduced into Europe from the Island of Crete, since ernfeth th thas metraty mproved Some half dozenieucius varieties are culti vated for supplying the kitchen regularily at all seasons of the year.

The Beet.

The Beet is a native of the sea-const of he soulh of Europe. It takes its name from the shape of its seed-vessel, which, when it swells with the seed, has the form of the letter Beta of the Greek Alphabet. There are several varioties in cultivation for culinary purposes, of which the most essential sorts are the Long Blood and the turnip Rooted. The last is the earliest variety, and takes its name from the form of the root, its quality being decided by the richness of color and closeness of the grain. There are several ther sorts which come more under the no tice of the agriculturist, such as Sugar Beet, Mangel-Wurzel, \&c.

Stockinge.

The first knit stocking sent to England was during the reign of Henry VIII. And Queen Elizabeth received a pair of knit silk stockings as a very valuable present. It is said that this stately queen pressed her royal feet on tresh hay (in her palace chamber) instead of carpets, which probably were not invented till about the time of her death; the stockingloom not having been invented till 1589, by William Lee, of England, then very imperfect and not in general use for a length of time.
Last year it was quite common to see a Not tingham stocking weaver plying his trade on his portable stocking loom, in some of the public streets of London. At first, it was novel and many was made bs it, but a lately paterited loom to be driven by steam will soon throw the hatd stocking loom out of the market.

New Dlamond

A new kind of diamond has been discovered in large quantities in Siberia. The stone resembles the diamond very much, but is lighter and not so hard, although harder than pranite. Specimens have been deposited in the

