

NEW YORK, AUGUST 5. 18.18

Kentham's Planing Dachines. After the process of sawing there is no

 process more laborious to workers in wood than that of planing, and accordingly attempts were made long ago to perform this mechanical operation by machinery. The first account that we have of machinery for this purpose was invented in England in 1791 by Gen. Bentham, but it was not attended with all the advantages he expected. It was only to exonerate the workman from the change of his tool and render any laborer capable of performing the operationa great advantage, no doubt, in the planing art. Bentham's plane was made the full width of the board and on each side of it were fixed fillets which projected below the the face of the plane, just as much as it was intended to reduce the board in thickness, serving to guide the plane sideways and guage the thickness, because when the boards were reduced to this amount the fillets rested on the bench on which the board was placed The plane was kept down either by its own weight or by weight added to it, the latter being so continued as to shift their position during the time the plane was making its stroke-the pressure at first acting forwards and then on the hind part, to prevent the fore part dipping down when leaving the board. By another contrivance the plane was liited up on its return, so as to clear the cutting edge of the wood. This was done by a piece of wood that acted as a handle to the plane and to which the power was applied. It was placed upon an axle extending across the width of the plane, and carrying on each a short lever provided with rollers at their extremities. The handle projected upwards from the plane, which being forced forward by it assumed an inclined position, as also did the the short levers, so that their rollers then rose above the cheeks of the plane and raised it off the bench, the piane being supported by them on its return. The bench of Bentham was peculiar. In cazes where the boards were winding and irregular on the lower side so that they could not lie flat on the bench, it was provided 'with two cheeks which might be brought close ti the edyes of the buard, so as to hold the latter steadily between them, the cheeks having two or more rows of teeth to hold the wond is its place. These cheelss were made so as to rise and fall with the bench te accomo. date the whole to the different thirlknesses of wood. If a very thin board had to be planed it was liatle to spring up to the iron 30 as to be reduced after the plane came to reat with its cheeks upon the bench. To avoid this, the edses of the boad were held by the sides of the bench above mentioned, but as it was liable to spring up in the midde, heavy rolless, or rullers loaded with weights, were fitted in apertures made in the plane as near as pos. sible to the catting edge which answered the purpose of keeping the plane close down to the ivench. For plawing pieces of greater thickness at one end that the other, the thickness at one end thats the other, thecheeks of the plane were supported oa woodcheeks of the plane were supported o:2 wood-
en rollers laid on the bench on each side of the wood, as much thicker at one end as the board at the other, therefore when the plane had reduced the wood the cheeks came to their bearing on these rollers and cauzed the plane to ruove not parallel with the bench, but inchined according to degree in wlach it was thicker at one end than the other.In like manter, by using them of different thicknesses at the different sides, the boards were nade feather edyed. As ali the adjustments were made and regulared by machiner, n,
red. red.
Th The subject of Planing Machire Patent having created more heart burning litigation than any other patents, excepting for irregu
lar turning, we have been frequently requested, both verbally and by letter, to publish some information in which confidence could be placed respecting those patents granted for planing machines previous to Muir's in England, and Woodevorth's in the United Sta'es, as by fair inference, it may be said, that al. though these two are very similar, yet being invented a: such a distance from each other, and at nearly the same time, the one would not in strict justice invalidate the other in regard to priority. Many will be pleased to read old Bentham's plan of planing, and next week we shall publish, if not the whole, a least part of Bramah's specification, the only patent of much importance granted previous to those of Woodworth's and Muir's.

Inventor of the Last Machine.

Mr. Thomas Masscross, of Hartford, Conn. has sent us a letter stating that there is an inventor in that place who claims to have in vented the Last Machine some years before Mr. Blanchard and that he has proof of the same. He desires us to notice this fact, be cause he thinks " that among the many names of persons who have invented or improved Last Machines, the original inventor should receive some credit." He says that the invention was distinctly the turning of irregula forms by the working over the whole surface of the model to turn any given object. Mr Mascross also informs us that the person he speaks of can be found at all times to prove the priority of his invention. The original inventor should be protected, and that this has wot been done before, is something we canno explain and wantz clearing up.

Practical Vatue or science

Many ignorant despisers of systematic uatu ral history reproach us on wasting our time on nomenclature or in watching and descri bing the metamorphos and general economy of insects : and contend that it is only from what they call "practical" men-that is to say, farmers, and gardeners-that effective means of destroying noxious species-one of the main objects of etymology, taken in its widest scope-can be looked for. Such objectors shnuld be referred to a paper read by M. Guerin Meneville to the Royal Academy of Sciences at Paris in Jan., 1847, from which it appeared that vohile the cultivators of the luve oil in the south of France-who in two vears out of three lost oil to the amount of $6,000,000$ francs annually by the attacks on their olives of the grub of a little fly (Dacus
or emis)-were utterly unable with all their "practical" skill, to help themselves in any shape. M. Guerin Meneville though no cultivator, applying his antomological knowledge of the genius and species of the insect, and of its peculiar economy, to the case, advised that the ulives should be gathered and crushed much earlier than usual, and before the grubs had had time to eat the greater part of the pulp of the fruit: and by their adoption of this simple plan, the proprietors of olives in the years they are attacked by the Dacus, can now obtain an increased annual produce of vil, efual in value to $\$ 120,000$, which was formerly lost in consegquence of their aliowing the grubs to go un eating the olives til they are dropped from the tree.

Machinery for the City of Mexioo.

A short time ago there was shipped from Motile, from the foundry of Messre Gaty, diciare \& Glasby, a machine for rolling heet lead. This machine was built fur a citizen of the city of Mexico. It is propelled by a steam engine, attached to the unachine which is constructed so as to produce a reverse motion The lead in the pig is reduced by he rollers of the machire into shect日. It is then passed through rollers of exact surfaces to any dessred thickness and width. The moment the crushed sheet has passed through bet ween the rollers, the motion is reversed by a sliding valve attatched to the engine and the shee carried back. If it is desirable to reduce it stall more, the guage of the rol. lers is changed, and it goes throunh again. In the city of Mexico, the houses are in many instances covered with leat, and this machine has been built and will be used to supply this demand.

For the Scientific Americara

ont mannfactaring.

Clinton, Jones County, Geoi gia,

Jaly 10,184

William .Montgomery, Es

Dear $S_{i k}$:-I read a communication of ours to the Scientific American, giving the costof Cotton Machinery for a factory of 1000 spindles, necessary looms, \&c. The conmunity are under obligation to you for this information. But still, a new beginner is jet in the dark someshat as to the profits of the business, unless he knowsabout the quantity and cost of the labor required to keep his spindles and looms in operation. Will you please do me the further favor by giving me this information, and much oblige,

Your obd't servant, A. Griswold.

Messrs. Munn \& Co

Gentlemen :-Having received the above by mail, I beg to add the following to my article on the cost of a Cotion Mill
A " new beginner" mast expect to remain ir. a state of partial darkness in regard to the practical operations and results of a cotton factory, even when furnished with correct statements of the cost of labor and material for manufacturing a partic:ular style of cloth.
No general estimate can be given which will be of universal application, any more han a particular multiplier and divisor can be found tor the solution of all arithmetical problems.
In the Craigville Mills under my charge, the gonds manufactured are Print Cloths, 64 by 64 threads per inch. The number of hands in the whole establishment is equal to the number of looms; but in factories where coarse sheetings, or No. 8 to 16 yarns are made nearly two hands for each loom would be required to operate the mill.
From this it is evident that the style of goods intended to be made must in all cases be taken into consideration when estimating ' the quantity of labor required to keep a ertain number of spindles and looms in ope. ration.'
In order to answer more parficularly such nquirers as Mr. Griswold, I wiil suppose a mill of 4000 spindles with looms for manuacturing the style of goods most approrriate o a Southern manufactory, (say No. 8 to 16 arn,) and give the cost of machinery, \&c. acordingly.
Dimensions of a factory to contain 4000 mule and throstle spindles with looms on No 8 to 15 yarn: Width of building 50 feet, length 132 feet (in the clear, three stories high.
The usual cost of a brick factory of the dimensions above given, is the Nothern States, is
4000 spindles witb loons on No. 8
to 16 yarn,
W ater wheelt
\$12,224
39,720

| Stem engine to drive the same, $\quad: \quad 6,000$ |
| :--- | :--- |

This includes all expense of placing and starting the engine.
The cost of geering for the above machiney, which includes shatting, pullies, hangers, \&c., is

世 2,000
Beling,
1,0;0
The usual number of horse power allowed
o such a rill is sisty eight. The actual po.w. to such a rill is sisty eight. The actual po.v-
er consumed is 52 horse. The width of belt o transmit the pow from enine or water wheel when the belt runs 1800 feet per mi. sute, and the diameter of the smallest drum is 6 fect-should te 30 inches-which may be divided into belts of 15 inches or any convenient width.
Usual production of a factory of the above capacity, viz. 4000 spindles and 96 loomse, is of goods per week, suppose the of goo
14 s,
Number of operatives,
$6,600 \mathrm{lbs}$.
Ameunt paid out per week, inclu-
ding all expense except cost of
cutton,
$\$ 640$
Cost of jard wide goods, No. 14 y arn, 44 picks per iuch filline and warp, is 595 cents hen the colton is worth 6 cents.
Cost for different hiads of cotion, as follows:

do	7 do	do	do	do	645 cts.
do	$7 \frac{1}{2}$ do	do	do	do	670 cts.
do	8	do	do	do	do
6.95 cts.					

From this it may be perceived that half a
ent added to the price of cotton adds one uarter of a cent to the cost of the goods.
It enay not be out of place to remark here, hat the cotton used for making the above - loth may now he purehased at $5 \frac{1}{2}$ cents per b This would reduce the cost to 5.70 cents per y ard. Yet they only brins st and 6 cents in the market at present; hence many establishments are going behim, while the very best ruerely clear: themstlves. Unjess cotton can be had for $3 \frac{1}{2}$ cents, this state of thing cannot much longer contibue. The future prosuects for the cutton manufactures or thi country look gloomy enough, and it becomes all interested in saving this branch of our national industry from destruction to bestir them selves in arresting the desolating policy of our legislative authorities, into whose hands fortune has placed the balance of power for a period, short indeed, yet long enough, like the storms of an hour, to sweep away the fruits of ages of industry.

William Montcomery
Craigville, Grange Co., N: 5. July 22.

New Iron Manufactory.

On the 19th ult. the large iron establish ment of Mr. Wil!!arn Bushnell went inte op eration on the bank of the Hudson River, at the old Union Landing, near Poughkeepsie. The Poughkeepsie Journal says the works are very extensive, put up in the most substantial manner, and are calulated to use ten thousand tons of iron ore in a year. The operations are aided by at ergine of one hundred rations are aided by at engine of one hundred
and twenty horse power. Authracite coal and twenty horse power. Authracite coal
alone is used, and the same heat that melts the iron drives the engine. But large as the works now are, they are to be much extended as soon as possible by the construction of additional buildings to manufacture the iron into bars, scc. A large number of hands will be constantly employed, and such an establishment cannot fail to be of great and permanent benefit to the village.

Kyanixing.

We learn from the Kennebec Journal that this process of preparing timber to preserve it from decay is carried on to considerable extent in that quarter. A building 200 feet long has been erected for the purpose, where the timber is placed in enormous boilres, 50 feet lon's and 5 or i feet in diameter where steam is applied to it from azother boiler, which is then condensed, thus producing a vacuum and opening the pores of the wond; after which asolution of coal tar is let intu the boilers and a great force applied to it by means of a force pump, andatter six or eight hours the timber is drawn out. Timber thus prepared is used for railroad sleepers, and it is sail will withstand ren and the worins a long time.

Unprecedented Remand for Old Papers. At the conimencement of the present voIune of the Scuentilic American we had near ly one thousand complete setts of the prece ding volume on haid. Since that time we have had 500 copies of those setts bound, and the balance have been ordered by mall and sent in sheeis. We are now ubliged to inform war patrois that we are anable any longer to furnish complete sefts in sheets, ard that we have but fifty more copies leff, which are tisund. The price of the remaining fifly copies which are left will be hereatter $\$ 3$ per copy (neatly bouad,) or we can furnish a few more copies in sheets, minus Nos. 1, 10, 16, 17 and 46 , at $\$ 2$ per sett. All the numbers of the third volumecan be had yet, at the subscription price.

THE

SCDENTIEIC AMERICAN.
Persons wishing to subscribe for thas paper have only to enclose the ancunt in a letter di rected (post paid) to

MUNN \& COMPANY,
Publishere of the Scientific American, Nen York City
Terms.- ${ }^{2} 2$ year; ONE DOLLAR in ADVANCE-the remainder in 6 months Postmasters are respectfully requested to receive subscriptions for this Paper, to wh discount of 25 per cent will be allowed.
Any person sending us 4 subscribers for 6 Aonths, shall receive a copy of the paper for

