

Practical Recelpts.

Prepared.by a German Chemist for the Scientific American.
chaning busts and plaster cornicia.
The following simole process for cleaning plaster busts, statues and cornices of stains and spots, is very effectual.
Boil a rather thick paste of starch and spread the same culd by means of a soft brush upon the soiled surface of the plaster and permit it to dry ir a sufficient airy place. After getting perfectly dry the paste will voluntarily drop off' in thin scales and with them the dirt. Thus treated a plaster bust of bas-relief will appear like new, and will not incur any danger of losing expression or beauty.
ARTIFICIAL GEMS

A new process for the artincial production of precious stcpes has been brought to light in one of the late sessions of the Academie at Paris, by M. Edelman, vice-director of the royal porcelain fabric at Sevres. He uses boracic acid as a medium to unite intimately the mineral bases constituting and composing the stones, and although a high temperature is required to evaporate the acid afterwards, it is still needed far below the melting heat. M. Edelman produced in this way by evaporating and heating a solution of magnesia and alum ina in boracic acid in a porcelain oven, seve ral minerals belonging to the family of rubi spinella. By a heat not reaching the melting point of iron, tiansparent crystals can be obtained in this manner, with vearly the properties and qualities of the diamond
tests for linen goods.
The adulteration of linen has reached such an extent that it must be quite a treasure to know the means of discovering without fail a spurious article from the genuine. An unfailing process is founded upon the well established fact that sulphuric acid exerts a destructive power more readily and quicker upon the cotton fibre than on flax. After depriving the sample to be tested by repeated washing and borling (without soap) of all starch and finish, lay the sarne for one or two minutes, (according to the thickness of the linen) in concentrated sulphuric acid. Remove the acid by repeated washing in water, and ary the piece by pressing it between blotting paper.
If there has been any cotton in it, it will have If there has been any cotton in it, it will h
disappeared, while the linen will be left.
to mark names or figures on pears and

apples

Cut a name, date, or figure on a piece of fine and thin paper, and wrap it arouzd an apple or a pear on the side of the tree which is most exposed to the rays of the sun, about three weeks before the ripening time, and a very neat impression will be produced. On red apples it is necessary to cut out the letters on dark paper and paste every one singly.

Nitrate of Silver.

Nitrate of silver is prepared by saturating pure nitric acid of specific gravity 1.25 with pure silver, evaporating the solution and crystalizing the nitrate. When the drained crystais are fused in a platina capsule, and cast into slender cylinders in silver moulds, they constitute the lunar caustic of the surgeon.This should be white, and unchangeable by light. It is deliquescent in moist air. The crystals are colorless, transparent 4 and 6 sided tables; they possess a bitter, acrid, and most disagreeable metallic taste; they diszolve in their own weight of cold, and in much less of hot water ; are soluble in four parts o borling alcohol, but not in nitric acid; they deflagrate on redhot coals, like all the ni rates, and detonate with phosphorus when the two are struck together on an anvil. They consist of 68.2 of oxyde, and 31.8 of acid. Nitrate of silver, when swalluwed, is a very euerge tic poison; but it may be readily counteracted, by the administration of a dose of sea-salt, which converts the corrosive nitrate into the inert chloride of silver. Animal matter, im
mersed in a weak solution of neutral nitrate of silver, will keep unchanged for any length of time; and so will polished iron or steel Nitrate of silver is such a delicate reagent of hydrochloric or muriatic acid, as to show by a sensible cloud, the presence of one $113 \mathrm{mil}-$ lionth part of it, or one 7 millionth part of sea-salt in distilled water. It is much used under the name of indelible ink, for writing upon linen with a pen ; for which purpose one drachm of the fused salt should be dissolved in three-quarters of an ounce of water, adding o the solution as much water of ammonia as will re-dissolve the precipitated oxyde, with sap green to color it, and gum-water to make he volume amount to one ounce. Traces written with this liquid shonld be first heated before a fire to expel the excess of ammonia, and ther exposed to the sunbeam to blacken. Another mode of using nitrate of silver as an indelible ink, is to imbue the linen first with solution of carbonate of soda, to dry the spot, and write upon it with a solution of nirate of silver thickened with gum, and tinted with sap-green. It is also used in Photography.

The Action of the Acetate of Morphia on

 children.Dr. Melion believes, from the results of his experience, that the acetate of morbhia pos. sesses more powerful anodyne, and anti-spasdomic properties in children, than opium He divides its effects, when internally admin istered, into three degrees. First: All the secretions and excretions of the internal or gans become diminished, but the cutaneous exhalations becomes increased; hence the skin becomes moist, and a copious perspiration cove's the head and upper parts of the body but becore this effect takes place, it show its influence on the nervous system, and pain and convulsions cease; its influence lasts from three to six hours, the children then pass a quantity of pale urine, and cutaneous transpiration becomes normal. Second: The nervous systemis the first part affected. The child becomes dull, drowsy, and gradually falls into a state of stupor; it lies with the eyes shut or half open, one more so than the other; the ball of the eye may be either fixed or may roll; the pupil is contracted and nactive; the heat of the head is increased and the scalp and face are covered with co pious perspiration; the child murmurs or speaks during its sleep, and moves its upper lip and lower jaw, as in the act of sucking if it awakens from sleep, it desires to drink, and again falis asleep. This state may last for eight or twelve hours. In the third de gree, venous congestion shows itself over the whole body, the child lies listless, the skin is purple, the temperature dimished, the pupil contracted and inactive, the pulsations weak and the regular courses suppressed. Convul sions are apt to ensue, and death the result. It may be used in chroric, diarrhœa, den tition for worms, and hooping cough, success fully, but it should be used cautiously, and many mothers, we are sorry to say, use it 'vith a frightful disregard of any thing, but to hush a child to sleep. Lunacy in mine cases out of ten, is the result of paregoric administered in childhood. There is a responsibility resting upon every mother which is weighty with the weal or woe of future generations.

Velocity of electricity.

The immense velocity of electricity makes it impossible to calculate it by direct observation; it would require to be many thousands of leagues long before the result could be expressed in the fractions of a second. Yet, Professor Wheatstone, of London, has devised apparatus for this purpose, among which is a double metallic mirror, to which he has given a velocity of eight hundred revolutions in a second of time. The professor calculates, from his experiments with this apparatus, that the velocity of electricity through a copper wire one fifteenth of an inch thick, exceeds the velocity of light across the planetary spaces, and that it is at least 288,000 miles per second. The protessor adds that the light of eiectricity, in a state of great intensity, does not last the millionth part of a second: but that the eye is capable of distinctly perceiving objects which presen

MEGCHANICAL MOVEMLENTS.

This figure shows that the perpendicula rod will be alternately traversed in a perpen dicular direction by the horizontal motion of the zigzag slot in which the pin is placed. This movement can be most beautifully exhi bited by having a hollow cylinder cut around with a slot, like that rep:esented above, and fixed upon an axle that will revolve in suitable bearings. On this axle fix a cord and weight attached to it and insert the end of the rod or pendulum fixed with a cross piece in bearings parallel with the centre of the dia mond slotted drum. Roll up the weight-cord on the axle and set the pendulum in motion when a regular and simple clock will be seen to have been set in operation-one which any person can construct who can cut a zigzag slot in a piece of tin and form it into a drum.

Dressing warps.

This is an arrangement of a brush movement of a machine for dressing warps, in which the revolution of the crank on the right combined with the incinned plane, on which the small roller to the left is supported, produces the brushing on the warp, which is represented at the dotted horizontal line.
The dressing machines at present in use are very different from those used some years go, and the brushes are not moved as represented above. Still as a mechanical movement, the idea of its action is well represen ted in the cut.

Mode of Preparing Tannate of Iron.

A very pure sulphate of iron is made by the action of dilute sulphuric acid on iron filings; from this sulphate, by means of car bonate of soda, a carbon of iron is precipitated, which is washed several times, and then dried on the stove. It is now pulverized and thrown by small portions at a time into a boil ing solution of very pure tannic acid in porcelain vessel-the proportions used being very n_{f} arly five parts of the carbonate to one of the acid, or 440 parts of the carbonate to ninety of the tannic acid. The fluid is to be stirred constantly till the effervescence cease It is afterwards exposed to a heat equal to the boiling point of water, till it acquires the consistence of thick soup. It is then with drawn from the fire, ad poured on porcelain plates, and dried with the assistance of heat The tannate of iron thus obtained is of a crim son color, insipid, insoluble, uncrystallized though before being dried, it appears in long needles. It may be administered either sus pended in syrup, or still more conveniently in the form of pills. The dose is from eight to thirty grains a day. It acts more rapidly in persons of sanguine temperament

Extract of Dandellon.

This is becoming a new article of domestic manufacture, but which might have been pro duced fifty years ago, just as conveniently as at the present time, since the stock has al ways been abundant throughout the northern States, even in the highways, and costs no thing but the labor of digging. A steady demand of the article, which meets the general approval of physicians, has induced persons to commence the manufacture, which is very easily managed, and it seems that it wil eventually putan end to the importation of the extract from England. The dandelion possesses a medicinal value far above the esimate ofted placed uponit. Were it a scarce
plant, and the expense attending the prepara tion far beyond what it ia, probahly no med icine would have more ardent admirers.

Nutmeg Tree.

The nutmeg tree flourishes in Singapore near the Equator. It is raised from the nut in nurseries, where it remains until the fifth year, when it puts forth its blossoms, and hows its sex. It is then set out permanent ly. The trees are placed thirty feet apart, in diamond order- a male tree in the centre. They begin to bear in the eighth year, increasing for many years, and they pay a large pro fit. There is no nutmeg season. Every day in the year shows buds, blossoms, and fruit, in the year shows buds, blossoms, and fruit,
in every stage of growth to maturity. The ripe fruit is singularly brilliant. The shell is glossy and black, and the mace it exposes when it bursts, is of bright scariet, making the tree one of the most beautiful objects of the vegetable world.

More Mineral Paint.

A new bed of mineral paint has been dis covered at Akron, Ohio, and said to be more valuable than the bed previously discovered and different in the chemical analysis. It is of a variety of beautiful shades from light grey to a purple. It makes a beautiful ce ment becoming very hard in a few days, and susceptible of a fine polish. It is incombus tible, and water proof.

Aduteration of Olive Oll

To so great an extent has olive oil been adulterated with lard oil, in England, that not long since, the Jewish Rabbis throughout the kingdom were requested to cause an exami nation to be made of the oil employed by their people for culinary purposes, lest they should be consuming the production of an unlcea animal.

Economy in Cooking Cranberries.
To each quart of berries, very shortly after the cooking of them is commenced, add a teaspoonful of salæratus. This will so neutralize the acidiferous juice which they contain, as to make it necessary to use only onefourth part as much sugar as would have been requisite had they been cooked without using salæratus.

Turpentine and alkanet root make a beautiful purple color for staining marble for fancy chimney pieces.

This paper, the most popular publication of the kind in the wsrld, is published weekly At 123 Fulton Street, New York, and 13 Court Street, Boston,

BY MUNN \& COMPANY.

The principal office being at \mathcal{N} es York
The SCIENTIFIC AMERICAN is the Ad rocate of Industry in all its forms, and as a Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world
Each number contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRA. VINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as issued from the Patent Office each week ; notices of the progress of all new MECHANI CAL and SCIENTIFIC inventions; instruc tion in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the latest RAILROAD INTELLIGENCE in EUROPE and AMERICA ; all the different MECHA NICAL MOVEMENTS, published ina series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c.
The Scientific American has already attained the largest circulation of any weekly me chanical journal in the world, and in this country its circulation $\mathbf{8}$ not surpassed by all the other mechanical apers combined.
gof For terms see inside.

