

For the Scientific American.
More about Cameos.
The ancients formed cameos by engraving figures, in low relief, on different kinds of si licious stones, generally selecting for their purpose those which had layers of different colors; so that the figures, or the different parts of the same figures, were of divers co lors. Such cameos were made in southern Europe, and also in France, where this ar has lately attempted to be revived; but the hardness of the materials requires so much labor to be employed that the tabricatior. is to expensive to come into general use. Many attempts have been made to introduce substitutes for the ancient cameos, such as different kindsof porcelain and gla3s. Their great inferiority, however, caused them to be neglected, and the best and now most usual substitutes are the shells of molluscuous animals; several kinds of which afford the necessary varieties of color, and are at the same time sufficiently soft to be worked on with ease, and bard enough to resist wear and to last for a long peried of time. It was formerly the custom, especially in Holland, to use for this purpose the pearly nautilus, and several kinds of turbines or wreath shells, which have an opaque white external coat over an internal pearly one. These have now almost entirely gone out of fashion, and are rarely to be met with, except in the cabinets of the curious, The shells now used are those of the Flesheating Univalve which are peculiar, all being formed of three layers of calcarous mat ter, each layer being composed of three perpendicular lamine, placed side by side; the laminæ composing the central layer being placed at right angles with one of the inner and outer ones; the inner and outer being placed longitudinally with regard to the axis of the line of the shells, whle the inner laminæ are placed across the axis, and concentrically with the edge of the mouth of the shell. This structure furnishes the cameo cutter with the means of giving a particular surface to his work; for a good workman always carefully puts his work on the shell in such a manner that the direction of the laminæ of the central coat is longitudinal to the axis of the figure, In cameos the central layer forms the body of the bas relief, the inner laminaa being the ground, and the outer one the third or superficial color, which is sometimes used to give a varied appearance to the surface of the bigures. The cameo cutter selects for his pur pose, first, the shells of this kind which have the three coats or layers composed of different colors, as these afford him the means of relieving his work; and, secondly, those which have the three layers strongly adherent together ; for if they separate his labor would be lost. The kinds now employed, and which experience has taught them are best for their purpose, are-the bull's mouth, which has a red inner coat, or what is called a sardonyx ground ; the black helmet, which has a black inne: ground, or what is called an onyx ground. The red color of the bull's mouth extends only a slight distance in the mouth of the shell, becoming paleras it proceeds backwards, as may ke observed by the pale side which is generally to be observed in each red grounded cameo. The dark color extends fur ther in the black and yellow kind; hence the oull's mouth affords only a single cameo large enough to make brooches, and several smal pieces for short studs; and the black helmet yields on an average about five brooches and several pieces for studs.
The manufacture of shell carreos has been carried on in Rome for upwards of forty years; it was confined to Italy until the last twenty years, at which period an Italian commenced the making of them in Paris. Little progres was, however, made until the last ten or twelve years; but, at the present time, a snach greater number are made in Paris than in Italy. About three hundred persons are
now employed in Paris in this branch oftrade earning wages which vary from three totwen ty five francs a day, accolding to their talen and skill. Thirty years ago, a very few cameos were made from any but black helmet and the number of shells then used amounted to about three hundred annually, nearly the whole of which were sent from England, be ing all that were then imported. To show the rapid increase of this trade, the number used in France last year was 100,500 shells of all kinds. Of the bull's mouth half are receied from the island of Bourbon, to which place they are b:ought from Madagascar ; and the ther half are the produce of the island of Ceylon, part of which are received from th English dealers, and some via Calcutta, are imported direc to Havre ; hence, though ori ginally from Ceylon, they are called by the French cameo cuttera, " Calcutta shells ;" no shell of the kind, is, however, found in the fresh water rivers of that city. The black helmets are supplied entirely from England berng the produce of Jamaica, and New Pro vidence. They are not found in Madagascar though naturalists have for a long period cal led them the Madagascar helmet, by which name they are known to the cutters. The ave rage value of the larger cameos made in Pa ris will be about five trancs each.

For the Scientific America Yellow Color.

This is a color which our country people frequently dye their flannels. It is a color that washes very well and is the easiest dyed in the whole scale. It is one of the primary co ors-there being only three of them, viz.red blue and yellow. Sir Isaac Newton's theory placed seven colors in the primary scale, but his is now known to be incorrect.
To dye flannel yellow, a quantity of quer citron bark, which will be found at any drug gist's, is scalded in a clean vessel. The clear liquor is then put into the dye kettle, when a teacup iull of the sulpha muriate of tin is ad ded and the flannel entered loosely while the liquor is boiling. About three pounds of the quercitron bark will make a very dark yellow for ten pounds of flannel, or coarse woolen yarn. It is best to give the stuff or bark liquor, at three different times, taking the goods out after 20 minutes bolling and airing them well, when they are again to be entered with a little fresh liquor, and when dark enough washed and dried. This bark will not impart its color without boiling, but the same process will dye cotton. Silk never should be boiled for dyeing any color. This bark wa discovered as a dye drug by Bancroft, and was a source of great profit to America at one period, but the bichromate of potass has super seded it for many purposes, and in many colors not for the better, we think. Bancrof recommended the use of quercitron in the dyeing of scarlet wool, and he advocated the uselessness of tartar where the bark was used. In this respect, that great chemist was incor rect.

On white woolen goods, such as flannels and such like fabrics, a geod salmon color, or orange, may be dyed wfth equal quantities of cochineal and quercitron bark dyed as described in the foregoing, only a little cream of tartar should be acded along with the spirits (muriate of tin.) The orange is just a salmon in excess of color, only inclining to the yellow shade, therefore a greater quantity of the same stuffs that can dye a salmon color, will produce an orange. For a salmon color, it is positively necessary to have a clear white ground. There are other ways of dyeing yellow, salmon and orange colors, but no stuffs like those in this receipt can equal the color which they make either in richness or permanency. We speak of the salmon and orange only for woolen goods. The cochineal will not by the process described impart any color to cotton. By following the above, having the goods perfectly clean, no person need be afraid of not dyeing the color, we warrant that. Cochineal is more than two dollars per pound, but ais ounce ground up fine, will dye a good scarlet on one pound of wool, that is the best cochineal. Fine goods require less stufl than coarse ; the reason of this would be unprofitable to many to explain, the practica is only set forth, and then the operator can re-
flect from experience-a snuff of cochineal will dye a salmon on a pound of wool.

This cut represents a combination to pro duce two different amounts of traverse motion from the circular motion of the wheel. The larger traverse is produced at the bar above, and the less at the horizontal bar beneath. It will be observed that the bar or rocking shaft with a quadrant rack base, has a slot extending upwards for the purpose of a steadying pin to keep its motion regular during its vibrations. The crank knob on the wheel vibrates the upright shaft and when it is moved in one direction the weight is drawn over the pulley upwards, which weight acts like a spring and draws the shaft in the other direction. The horizontal bar beneath would haveno traverse motion at all only forthe quadrant rack which by gathering tooth after tooth, verse and verse, gives a short traverse to the bar.

This is just a series of leversto which con necting rods may be attached and whereby the spring of the lever is regulated in the same manner as the tip of a trip hammer A friction :oller is placed between the two levers for the purpose of giving as it were a double spring to the active one

Gems Altered by Ait.

Lapidaries are accustomed to improve and change the colors of gems by exposing them o heat, and other chemical agents.
In India, yellow cornelians are put into an earthen pot, coyered with dry goats' cung, and heated for twelve hours, by which they re changed into a fine red. Instead of goats dung, sand may be usel.
Black rock crystal is rendered colorless by heat, if continued for some hours, otherwise will te only yellow.
Bucquet made a chemical distinction be ween rock crystal and quartz; the latte cracking by heat, probably on account of containing water.
The amethyst by a moderate heat becomes colorless; but if the heat is violent, white and shotten like an opal ; it is more liable to rack than rock crystal.
Beryl is changed by a moderate heat to a light blue, if the heat is greater, it becomes like mother of pearl.
The emerald acquires the same pearly lustre by heat.
The color of the chrysoberyl is not altered by heat.
Blue flour spar $1 s$ changed to red, and if the heat is strong, is often rendered colorless. Agates absorb oil, either by being immersed or boiled in it for a sufficient time, or even during the process of catting them, and on boiling them in oil of vitriol, the parts which have absorbed the oil are rendered black, while the other parts retain their natural color, or even become whiter than they were before.

Agates and cornelians having carbonate of sodaapplied to them, and then applied to the heat of a furnace under a muffe, an opake white enamel is thus made to cover the stone which cannot easily be distinguished from natural white flake. By this means are produced the cornelian beads brought from India,
which are ormamented with a net work of a white color, penetrating to a small depth and equally as hard as the stone itself.

For the Screntific American.

To Paint the Silders of Nagic Lanterns. To Paint the shatiders of Magic Lanterns.
Provide a small muller and a piece of thick ground glass five or six inches square to grind ground glass five or six inches square to grind
the colors on, also a smail pallet knife and a the colors on, also a smail pallet knife and a
few bottles to put the colors in. For a red few bottles to put the colors in. For a red
color get a little scarlet lake, and for blue a little Prussian blue. For green use purified verdigris ground with a quarter of its bulk of gamboge, and for brown use burnt umber, and for black, burnt sienna black. These are the only colors that are truly transparent and fit for painting sliders. Having all these colors ready, grind them in the balsam of fir mixed with half its bulk of turpentine ; mastic var nish will do very well, but the balsam is the most beautiful. To paint the glass black round the painting, dissolve asphaltum in turpentine and mix with lampblack. When the colors are all ground they must be put in separate bottles and sealed, and when they ar to be used, a little bit is taken out at once on a piece of glass, just as much as is needed at once, as it quickly dries. If the color is too thick it must be diluted with turpentine. To paint the sliders, the subject must be designed on paper and the paper put under the glass and the glass painted above it according to the design on the paper underneath.

Cure for Lockjaw.
A correspondent of the Baltimore Sun says that when any one runs a nail or any sharp iron in any part of their frame, take a common smoke pipe, fill it with tobacco, light it well, then take a thin cloth or silk handker chief, place it over the bowl of the pipe and blow the smoke through the stem into the wound-hold the stem close, to carry the hot smoke into the wound. Two or three pipes. full will be sufficient to set the wound discharging. He has tried it on himself and five others, and found it to give immediate relief. If the wound has jeen some days standing it will open it again, if the tobacco is good.

Gold In the Violet.

Mr. R. Hunt, of the Royal Institution, Lon. don, states that a friend of his has succeeded in obtaining a minute though weighable portion of gold, from a quantity of the petals of the blue violet.-Ex:
Mr. Hunt's friend was undoubtedly mista ken, or else gold is not a simple substance.

This paper, the most popular publication of the kind in the werld, is published weekly At 128 Fulton Street, New York, and 13 Court Street, Boston,

BY MUNN \& COMPANY.

The principal office being at New York.
The SCIENTIFIC AMERICAN is the Ad vocate of Industry in all its torms, and as a Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Each number contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRAVINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as issued from the Patent Office each week; notices of the progress of all new MECHANICAL and SCIENTIFIC inventions ; instruc tion in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the latest RAILROAD INTELLIGENCE in EUROPE and AMERICA ; all the different MECHANICAL MOVEMENTS, published in a series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c.
The Scientific American has already attained the largest circulation of any weekly mechanical journal in the world, and in this country its circulation s not surpassed by al the other mechanical apers combined.
约-For terms see inside.

