

Artificial Cold
(Concluded from our last.)
Where saline substances are cheap, the more powerful mode of refrigeration has been the use of the frigorific mixtures. Some of these mixtures are capable of producing the most intense cold known to philosophy. Dissolving salt petre in water creates a very useful degree of cold; ard where the salt is plentiful, as in India, it has long been em ployed, for this purpose. It was the peculiar duty of one domestic to coul beverages for the table by this means, who received the mpregnated solution for his perquisite. Where, however, snow or ice is procurable the intensity of the freezing mixture rises to itshigher points. Snow and saltproduce a mix ture which was deemed by Fahreheit to be of the greatest possible degree of cold. This was the temperature of his zero. Our confectioners are in the habit of using for thei craft, pounded ice and salt. The substance known as chloride of calcium, mixed with now, produces a most severe cold, sufficient ly great to treeze mercury. Mr. Walker, to whose interesting experiments upon this sub ect, we stand much indebted, was on on occaqion able, by successive coolings, to at ain a depth of cold equal to 91 degrees below Fahrenheit's unhappy zero. In the laborato ry of the chemist, great degrees of cold are procurable by the use of highly volatile liquids for evaporation. Every juvenile chem st's ears have tinged with the startling enun ciation of the possibility of freezing a man to death in the height of summer, by wetting him constantly with ether-which is, howe er, a fact undemonstrated. The sulphure
carbon; and, more recently, liquid sulphu ous acid, both of them exceedingly volatile nuids, create intense cold by their evapora ion. The almost magical experiments of M Boutigny, in which water was frozen in red-hot crucible, were effected by the assis tance of sulphurous acid in the liquid form The remarkable substance, liquid carbonate acid, takes the highest rank as a refrigorific agent known. Mr. Addams of Kensirgton actually manufactures this curious liquid as an article of commerce, and has occasionally 28 much as nine gallons of it in store. In drawing it from its powerful reservoirs, it evaporates so rapidly, as to freeze itself, and it is then a light porous nass, like snow. If a small quantity of this is drenched with ether, the degree of cold produced is even more intolerable to the touch than boiling water; a drop or two of the mixture producing blisters, just as if the skin had been bur ned. Mr. Addams states, that, in eight minutes he has frozen in this way a mass of mercury weighing ten pounds.

There have been some mechanical contrivances for the manufacture of ice. Evaporation may be accelerated mechanically to a degree sogreat as to produce ice in considerable quantities, and this is the principle of Sir John Leslie's celebrated freezing apparatus. In conducting some experiments on the rarefaction of air, he was led to conceive the idea of manufacturing ice on a large scale from a little phenomena observed in the receiver of his air pump. Introducing a watchglass full of water, and in contact with sulphuric acid, into the receiver of his airpump, and or, making a few strokes with the piston, the water was converted into a mass of solia! With a body of parched oat meal, instead of the acid as the absorbent of moisture, he froze a pound and a quarter into ice. Experiments on the large scale followed, powerful machines were constructed, and various improvements were adopted in the apparatus, all tending to facilitate its ap plication to the wants or luxuries of mankind. Several of these machines have been exported into hot climate. Dr. Ure suggest ed steam as the vacuizing power, and the idea has been conceived, that wherever
steam engine is employed. there an ice apparatus might be erected and sustained at a trifling cost, with great prospect of productive ness.
The most recent ice-machine, is " Master's Apparatus," the princıple feature of which is, that a metallic cylinder is made to undergo rapid rotation in a freezing mixture, the motion appearing in a singular manner to expedite and facilitate the process.
Some account of the applications of artificial cold may, perhaps suitably conclude our paper. For some time the ingenuity of men in this particular developed itself no further han in simply cooling wine and other beverages, but a more refined and even elegant mode of doing so, was afterwards discovered. In Boyles "History of Cold," it is stated that he was accustomed to make wine-cups of ice, by means of tin moulds, for use in hot weather, pleasant trifles, as he calls them, which imparted a delicious coolness to the wine poured into them. In an old romance, named the "Argenis," a dinner in summer is described, at which fresh apples half-incrusted with ice, and a basin of ice filled with wine, were among the curiosities upon the table. Then came the invention of waterices, by one Procope, an Italian, who had an immense sale for them at Paris. Cream ices, and the iced juice of fruits, were then made and found a rapid consumption. More re. cently, the art of the confectioner has applied this process to imitate many kinds of fruit and peaches-apricots and nestarines of icecopying the originals with very curious fidel. ity.

For the Scientific American.

Art of Dyeing.--Drab Color.
This is a color that looks well on coarse goods, or rather makes coarse goods look well, and for country millers, or farmers that have no work among burnt and black logs, we cannot too strongly urge the propriety of having their home made clothes for many purposes uch as vest and pants, of this color. A drab color is just a light brown, but for a beautiful and fast color a very different stuff is selected to dye the drab, from those stuffs employed to ye brown. Crop madder, which is to be ound at all the druggists, is the principa tuff. For any quantity of cloth or yarn that the dye kettle may conveniently hold, a small quantity of the ground madder is scalded with boiling water in a clean vessel and set aside o settle. A small dipper full of this along with a little (very little) fustic liquor, and su mac liquor, is putinto the dye kettle and when at full boil, the goods are entered loosely (i loth,) and wel! handled, (if yarn,) well turned and quickly. In about twenty minutes the goods are taken out, and some more of the dye stuff liquors added, and the same process re peated. This is done until what is called ' full body," is acquired by the goods, when they are taken out and a small quantity of the sulphate of iron added to the boiler, when the top of the boiler is skimmed of its dirty froth and the goods entered and darkened, or sad dened, as it is technically termed, then taken out and washed. If the drab is wanted on the yellow shade, the greater is the quantity of fus tic used; if on the salmon, the greater the quantity of madder, and the sumac and iron according to their quantities so are the drab made dark. Madder alone upon a white ground makes a clear salmon color and it will wash most beautifully, in fact soap seems to hav a wonderful effect in beautifyng all madder colors. For carpet yarn, a small quantity of fustic and camwood makes a very good drab and also salmons. A little sulphuric acid is used in the boiler to redden or raise the color. We do not expatiate on the philoso phy or theory of dyeing, although we might, but we give the results of practice, a part in which few of the theorists dare indulge without some risk of scientific reputation. In some parts of our country, we know that there is.very fine wool raised and made into large twilled heary shawls by our farmers' daughters. We have seen some of them a good white and they looked well, others we have seen that were attempted to be dyed with the luck of the leopard's skir. To those who would dje their own woolen goods we say, be very careful to boil and handle well and do not have too great strength of stuffis in the
boiler, rather have the liquor weak and take longer time to dye, by often taking out the goods and adding a little at a time of thedy iquors.
Mac'der colors have sadly gone out of tashion much to the injury of permanent colors, both on cotton and woolen goods. As there are various tracts of land and a suitable climate to raise this dye stuff in the United States, it is to be hoped that it will become both cheaper and a greater favorite of a dye drug This we hope will je the case for many reasons, two of which are, that it dyes fast color and with various mordaunts, an endless num ber of shades from the red to the drab, and the deep purple.

MECHANICAL MOVERLENTS.
Rectilinear Motion and Circuiar.

This cut exhibits a modification of the method by which circular motion is produced from the rectilinear motion of the old piston rod. This is done by the manner of connect ing the rod with the beam and is the ingenious solution of a mechanical problem first applied by Watt. He first conceived the notion of two straight rocs moving on pivots connec ted with a third rod which could turn freely and connecting the other end of the beam with a crank shaft nearly as represented in the abovecut. It is needless to say how successful he was-that is now well known-and the improvements made since his day for the same purpose, may be well judged of by comparing the above with our present plans. The dotted lines describe the arcs, circular movements and motions of the crank and rods

This is a contrivance for regulating the ve ocity of machinery, proposed by Mr. Brequet, an ingenious Frenchman. The lower wheel being driven in the direction of the arrow carries those above in succession, but the axis of the centre whreel is supported in an elastic piece which is fixed at its lower extre mity and acts as a brake on the top whee whenever the speed or force of the lowes carries the axis of the centre wheel out of straight line through the three centres.

The Illuminated Vacurm.

Take a tall receiver that is very dry, and fix hrough the top of it, with cement, a blun wite; then exhaust the receiver and present the knob of the wire to the conductor, and every spark will pass through the vacuum in a broad stream of light, visible through the whole length of the receiver, let it be as tall as it will. This generally divides into a vari ety of beautiful rirulets, which are continu ally changing their course, uniting and divi ding again in the most pleasing manner. If a jar be discharged through this vacuum, it presents the appearance of a very dense bo-
dy of fire, darting directly through the centre of the vacuum without touching the sides; whereas, when a single spark passes through, it generally goes more or less to the side, and a anger placed on the outside of the glass will draw it wherever a person pleases. If the vessel begrasped by both hands, every spark is felt like the pulsation of a large artery; and ll the fire makes towards the hands. This pulsation is even felt at some distance from the receiver, and a light is seen between the and and the glass
All this while the pointed wire is supposed to be electrified positively ; if it be electrified negatively, the appearance is astonishingly different; instead of fire nothing is seen but ne luminous appearance, like a white cloud, or the "milky way" in a clear star-light night. It seldom reaches the whole length of the ves sel, but generally appears only at one end of the wire, like a lucid ball.
If a small phial be inserted in the neck of a small receiver, so that the external surface of the glass be exposed to the vacuum, it will produce a ver beautiful appearance. The phial must be coated on the outside; and while it is charging, at every spark taken from the conductor into the inside, a flash o light is seen to dart at the same time from ev ery part of the external surface of the phial so as to quite fill the receiver. Upon making the discharge, the light is seen to run in a much closer body, the whole coming out at once.

Glass and Milk.

Glass is very advantageous for milk pans, because it is a non-conductor of electricity It is well known that the effects of electricity upon milk in tin pans during thunder storm turn it to acid. Milk sealed up in glass bot tles will keep for a long time. This is done by filling the battles with warm milk, turning them upside down in the milk basin and then sealing quickly, so as to allow no air to be in the bottle.

Gaivanic fattery.
Alternate plates of zinc and cast iron have been discovered, by Dr. Allam of Maynooth to constitute a cheap and effective batiery A full grown turkey was killed in halt a se cond, on being touched with the wires, discs of iron, thick pieces of copper, and pieces o the hardest-tempered steel were ignited with the greatest ease.

This paper, the most popular publication of the kind in the world, is published weekly At 128 Fulton Street, New York, and 13 Court Street, Boston

BY MUNN \& COMPANY.
The principal office being at $\mathcal{N e w}$ York.
The SCIENTIFIC AMERICAN is the Ad ocate of Industry in all its forms, and as a Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Eachnumber contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRA. VINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as is. sued from the Patent Office each week; notices of the progress of all new MECHANICAL and SCIENTIFIC inventions; instruction in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the latest RAILROAD INTELLIGENCE in EUROPE and AMERICA ; all the different MECHA. NICAL MOVEMENTS, published in a series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c.
The Scientific American has already attained the largest circulation of any weekly mechanical journal in the world, and in this countryits circulation s not surpassed by all he other mechanical aper's combined.
解For terms see inside.

