

For the Seientific American.
Curlosities of Mechanism.
Homer informs us that Vulcan fabricated tripods for the banquetting hall of the gods which advanred of their own accord to the table and again returned to their places moving on living wheels instinct with spirit. Ap. pollonius saw similar pieces of mechanism among the Indian Sages. Dedalus of Greece, next made statues that could move. Archytas of Tarentum, who lived about 400 years before Christ, constructed a wooden pigeon that could fly. Archimides, it is said, constructed similar automata, but the particular account of them is lost. The first great piece of ingenious mechanism that we have any particular account of, was made in the East. It was a curious clock presented to Charlemage by the celebrated Mohamedan Sultan Haroun Alraschid. In the dial plate there wereturelve small doors corresponding to the twelve hours, and at each hour a door opened and little balls of metal came out and struck the hours upon a bell. Each door when it opened remained so until twelve o'clock, when twelve little knights mounted on horse back came out at the same instant and paraded round the dial, returning each to his own door and shutting it behind him. In the thir teenth century Albert, Bishop of Ratisbon Germany, (a place singularly famous for novel inventions,) spent thirty yearsinconstruc ting a human figure, which advanced to the door when any one knocked, openedit and saluted the visiter. About the same time Friar Bacon was engaged in constructing his brazen head, so famous in story, but in the wonders of which we are very thick in the skull to admit the light of ancient faith to illuminate our modern urbelief. In the 14th century Regiomontanus alias John Muller, constructed a wooden eagle, which is reported to have flown to meet the Emperor Maximlian on the 7th of June, 1470, at Nuremburg, and
after saluting him it flew back to the gate of after saluting him it flew back to the gate of
the city and sat down unon it. This is a his torical fact. This same ingenious man is re ported to have made an iron Fly which could fly from the hand of its master round the room and again return. When Charles the 5th left his throne and retired to a secluded life, he was amused with automatons of various kinds. Figures of armed men and horses, some beat ing drums and others playing flutes and others going through military evolutions, were generally introduced to the retired monarch after dinner. Wooden birds also used to fly around the room and deposit themselves in their nests again. These were all made by the illustrious self exiled monarch, and he is also reported to havemade some corn mills so small that they could be concealed in a glove, yet so powerful that they could grind in one day as much as would teedeight nien. If all these things are true, the best of our millwrights will have to say mum on the subject of modera improvements. A celebrated mechanic in France, named Camus, constracted for Louis 14 th, a small coach drawn by two horses, having a fuotman and page behind and a driver in frontand a lady inside. The coachman smacked his whip, the horses paced off when placed upon the table and when the carriage stopped before the king, the page stepped down and opened the door, when the lady alighted and with a curtsey presented a petition to louis, and waiting for a short time she curtsied again, re-entered the carriage, the page closed the door, assumed his seat and the carriage drove on, and the footman, who had also alighted, was made to run after the carriage and jump on his seat.
Degennes, the celebrated French officer who defended St. Cbristopher against the Brtish, constructed a peacock thatcould walk about. wick grain and digest it, and it was probabiy thas peacock that suggested to Vaucanson the idea of his wonderful duck, already noticed in No. 33 of this vol. Scientific

American. Vaucanson also invented a flute player and a pipe and tambor player, which were exhibited in many places in Europe and produced a great sensation. The flute player was 5 feet 6 inches high and placed upon a piece of rock $4 \frac{1}{2}$ feet high by $3 \frac{1}{2}$ feet wide. The peoiestal contansed six pair of bellows and the machinery by which they were worked. The air passed into the body of the figure by three tubes and its passage out through the mouth was regulated by valves worked by levers so perfectly adjusted that the performances of the figure were generally allowed to surpass all living performers on the flute.The pipe and tabor player was always considered by Vaucanson to be a more ingenious piece of mechanism than his duck, and these automatons acquired the reputation of being he best flageolet and tabor players in Europe. The mechanism of these was so intricate and difficult that he was frequently on the point of abandoning the invention in despar, but his patience and inventive genius at last overcame every difficulty and made him the greatestautomaton mechanic that ever existed. In constructing the flageolet player Vaucanson found that this instrument must be the most difficult of all others to play in consequence of the different and changing efforts which the muscles of the chest have to make during the performance. The pressure for the highest notes required fifty six pounds while the lowest required only the pressure of a single unce
The famous chess player of Kempelen for a while overshadowed the fame of Vaucanson, but it is now well known that trickery more than mechanical invention were the characteristics of the automaton chess plaver The real chess player was a living one.
Krastien and Wills endeavored to make seaking automatons, but two German brothers of the name of Droz eclipsed them, in making a singing bird that poured forth a strain of the most rapturous music. The father of the brothers Droz, was also an ingerious mechanic and made a sheep that bleated perfectly, and a dog that watched a basket and barked when any one offered to take it away. About thirty vears ago one Maillar dett, an ingenious Swiss, constructed a humming bird which was exhibited in all the prıncipal cities of Europe. He also made a steel spider resembling a living one which would run, and also a musical lady that could perform eighteen tunes on the piano forte in the most natural way and with all the appearance of feeling the effect of her own music. This singular genius also made the celebrated automaton magician that astonished the world by its fortune telling. It was dressed in the costume of a Seer and held a wand in one hand and a book in the other. Twenty questions ready prepared were in cribed on oval medalliuns and any person seecting one it was placed in a dra:ver ready to eceive it. The drawer was then shut and the magician arose from his seat, bowed his head described a circle with his wand and remained in deep thought ; he then struck the wal with his wand which immediately fle \boldsymbol{N} open and displayed written upon the inside an ap propriate answer. We have already spoken of Professur Faber's automaton, and also that of Dr. Lube. We may at some other time d escribe that of Dr. Roth. At present we
close this article with the remark, that the passion for autumaton machinery soon wear off, more especially when it is known that the fine machinery in ourcotton factories almost rival those of the finest automaton. This i the utilitarian age of the world and what ex cited the wonder of past ages, though ingeni ous, if it is not useful, will be but little es teemed now The same combination of mechanical powers that made the spider crawl, or the finger of the automaton move are now adapted to nobler and more useful purposes. The present is the grand and majestic age of mechanical invention. The tiny wheels and pinions of the spider now move the spinning jenny and the loom in more large proportions The magician of Mailiardet has given way to the more mighty magician of Watt, and the miniature horse and carriage of Louis the motives, the other was minute and ekilfully small.

Instead of producing inventions to amuse, the present age invents only to benefit man and increase the product of the earth. No piece of mechanism, however trivial, if ingenious, should be despised. It may be the germ of some mighty machine, as the wheel was that of the spinning jenny.

A vibrating lever having catches which ga ther tooth after tooth of a ratchet wheel, can be applied either to raise a weight or let it drop down gradually. The escapement of of clocks lets the weights drop down gradually and thus by the simple manner of regula ting the number of vibrations that will take place as a weight is falling a certain dis tance, do we measure our hours and days. The above cut shows a method of raising the weight by the vibratory motion of the oblique lever, by means of the catches (which are not exactly right represented in the engrav ing) catch the pins on the wheel. An antho siastic mechanic once combined this with the escapement and thought he had made a perpetual motion, but the loss by friction was not taken into consideration, and his clock soon ceased to operate.

This cut represents a method of coupling by which the revolution of the upper shat may be transferred to the shaft below by bring. ing the pin on the loose whee! in contact with the one on the shaft. This is done by means the small lever or handle. This method of coupling may be very useful in some cases where the clutch would be inconvenient. It shows at least the principle of coupling and uncoupling whereby a shaft to drive any machine may be under the perfect command of the operative by throwing it out and in gear as he chooses, but a secondary pulley of a maller diameter than that of the maindriver on the same shaft, is a more economical mehod of changing or stopping the motion, simply by throwing the band off the larger drum.

or the Scientific American.

Osive Green.

Olive green is a beautitul and agreeable coor. It is refreshing to the eye and chaste to the fancy. It looks always best upon fine cloth, in fact, it is singular in this property, and should never be dyed upon any kind of wool or woolen cloth but that of the finest quality. It is very easily dyed. Any person following the subjoined directions cannot go wrong :Put into a clean copper or tin kettle in which the cloth or woolen yarn is to be dyed, as much wateras will cover the whole cloth when put into the boiler and leaveit plenty of room tor stirring. (There is far less danger in having a large boiler than a too small one, Bring the water to boil and put into it for ten pounds of cloth, five pounds of fustic and one of \log wood, in a bag Boil these for fifteen minutes and then add sis ounces of the sulphate of copper and in a few minutes enter the cloth, with the liquor still boiling as strong
as possible. The cloth must not haveits folds pressed and squeezed together, but it must be ree and loose in the boiler and there is no need of any shifting of the cloth, except with a proper long smooth stick to ease up the cloth gently and frequently from the bottom of the boiler. One hour's boiling will suffice when the cloth may be taken out and washed. It will then be found to be a beautiful olive green color, but rather light. If it is wanted green color, but rather light. If it is wanted
to be very dark it will take seven pounds of fustic, three pounds of logwood and halt a pound of camwood boiled in the bag, and the cloth boiled one hour in this, then taken out and aired, and six ounces of the sulphate of copper and four ounces of the sulphate of iron (copperas) added, and the goodsthenentered again and boiled one hour longer, when they again and boiled one hour longer, when they are to be taken out, washed and finished. The
last process is the best for a fast and dark colast process is the best for a fast and dark co-
lor, and for home made cloth to be made into lor, and for home made cloth to be made
winter coats, it is certanly a much better looking color than the watery and snuff colored yellow greens that we often see. Walnut rinds will answer instead of the fustic and so will that of the butternut-but fustic ia the best and is not dear. This coior will spot with vinegar and other acids, but a little saleratus dissolved in water and applied to the spots will restore them unless the color is effectually destroyed.
The above receipts may be depended upon as thoroughly practical, but never let it be orgot that the liquor must be kept at the boil -a strong boil when the cloth is enteredand a more gentle boil afterwards. Yarn takes ne third more stuffs to dye a color than cloth and coarse cloth one third more than fine. This must also be kept in mind.

Coloring wood.
French cabinet makers can now make wood of any color they please, by letting the roots of the trees absorb the colored fluids the year before it is cut down. A solution of iron passed up one root, and ot prussiate of potash up the other will give the wood a permanent blue color.

Cleaning Trees.

Trees and vines which are kept the cleanest, bear the best; like the human body, the pores of their skin become clogged with dirt, and retaingases which should escape. Trees the bark of which has been scraped and scrub. bed, become more thriving, and more vigo rous.

This paper, the most popular publication of the kind in the wrrld, is published weekly At 128 Fulton Street, New York, and 13 Court Street, Boston,

BY MUNN \& COMPANY.

The principal office being at \mathcal{N} ew York.
The SCIENTIFIC AMERICAN is the Ad vocate of Industry in all its forms, and as a Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Each number contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRAVINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as issued from the Patent Office each week; noti ces of the progress of all new MECHANI CAL and SCIENTIFIC inventions; instruc tion in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the latest RAILROAD INTELLIGENCE in EUROPE and AMERICA ; all the different MECHANICAL MOVEMENTS, published in a series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c.
The Scientific American has already attain. ed the largest circulation of any weekly mechanycal juurnal in the world, and in this countryits circulation s not surpassed by all the other mechanical apers combined
0,3 -For terms see inside.

