Arts, Manufactures and Machinery

(Continued from No. 36.)
The economy produced by Manufactures and Machinery.-Cutting glass with the diamond.-Production of valuable matter from worthless materials.-Distinction between a tool and a machine.-Long i tudinal arrangement of needles, arranging the points in the same way.-Manuffacture of hob nails.
The next use of Machinery and Manufactures is-the economy which they produce in human time. So extensive and important is this effect, that we might, if we nere in. clined to generalize, embrace almost all their advantages under this one head; but the elucidation of principles of less extent will contribute more readily to a knowledge of the subject, and as numerous examples will be presented to the reader in the ensuing Nos. we shall restrict our illustrations upon this point.
The art of using the diamond for cutting glass has undergone, vithin a few years, a very important improvement. A glaziers apprentice, when using a diamond set in a conical ferrule, as was always the practice about twelze years since, found great difficulty in the art of employing it with certainty, and at the end of a seven years' apprenticeship, many were found but indifferently skilled in its use. This arose from the difficulty of finding the precise angle at which the diamond cut, and of guiding it along the glass at the proper inclination when that angle was found. Almost the whole of the time consumed and. of the glass destroyed in acquiring the art of cutting glass may now be saved by the use of an improved tool. The gem is set in a small piece of squared brass, with its edge nearly parallel to one side. A person skilled in ts use, now files away one side of the brass, until, by trial, he finds that it will act well, when guided, by keeping this edge pressed against a ruler. The diamond and ity mounting are now attached to a stick similar to a pencil, by means of a swivel allowing a small angular motion. Thus the merest tyro, using it in this form, at once applies it at the proper angle, by presising tha side againat a ruler;
and even though the part he holds in his hand should deviate a little from its proper angle, yet it cormmunicates no irreg ularity to the position of the diamond, which but rarely fails to do its office when thus employ. ed.

As another example of the economy of time the use of gunpowdor in blasting rocks may be noticed. Several poundsof that substance may be purchased for a sum acquired by for the purpose alluded to, effects are fre quently produced which could not, even with the best tools be accomplished by other means in less than mary months
Instances of the production of valuable mat. ter from the most worthless materials are constantly occurring. The skins used by the gold-beater are produced from the offal of animals. The hoofs of horses and cattle, and other horny refuse, are employed in the production of the Prussiate of Potash, that beau-
tiful, yellow, crystallized salt, which is exhibited in the shops of some of our chemists. The worn-out sauce-pans and tin-ware which are beyond the tinker's art, are not utterly worthless, they are conveyed to the Manufacturing chemists who employ them in conjunction with a pyroligneous acid, in making a black dye for the consumption of calico printers.

The difference between a Tool and a Machine is not capable of very precise distinc tion, nor is it necessary in our popular expla nation of them, to limit very strictly their popular sense. A tool is usually more simple than a machine: it is generally used with the hand, whilst a machine is trequentwith the hand, whilst a mackime or steam power. The simpler Machines are often merely one or more toois place 1 in a frame, and acted on by any moving power. In pointing out the advantages of tools, we shall commence with some of the simplest.
To arrange twenty thousand needles thrown promiscuously into a box, mised and entang led with each other in every possible direc
tion, in such a torm that they shall be all almost off, bends it nearly at right angles. parallel to each other, would, at first sight, He puts this into a hole in a small stake-iron appear a very tedious occupation; in fact, if each were to be separated individually, many hours must be consumed in the process. Yet this is an operation which must be performed many times in the Manufacture of needles; and it is accomplished in a few minutes by a very simple tool, which is, in fact, nothing more than a small fld tray of sheet iron, slightly concave at the bottom. The needles sre placed in it and shaken in a peculiar manner, by throwing them up a very little, and giving at the same time a sligh longitudinal motion. The shape of the need les assists their arrangement; for if the need les cross each other, (unless which is exceed ingly improbable, they happen to be precisely the same,) they will, when they fall on the bottom of the tray, tend to place themselves side by side, and the hollow form of the tray projection in any part to impede this tunden c , or to entangle each other, they are by continually shaking, arranged lengthwise, in three or four minutes. The direction of the shake is now changed, the needles are but little, but the tray is shaken endways; the result of which is, that in a minute or two the noedles which were previously arranged endways become heaped up in a wall, with their ends against the extremity of the tray They are now removed by hundreds at a time by raising them with a broad iron spatula on which they are retained by the fore-finger the left hand
Another process in the same manufacture furnishes an example of one of the simplest contrivances which can come under the denomination of a tool. After the needles have been arranged in the manner just described, it is necessary to separate them into two par cels, in order that their points may be all in one direction. This is usually done by wo-
men and children. Their needles are placed ideways in a heap, on a table, in front of each operator just as arranged by the processatove described. From five to ten are olled towards the person by the fore-finger of the left hand; this separates them a very short space froustach other, whd each in its
turn is pushed lengthwise to the right or left according as its eye is on the right or the left hand. This is the usual process, and in it every needle passes individually under the finger of the operator. A small alteration expedites the process considerably; the child puts on the fore-finger of its right hand a small cloth cap or finger stall, and rolling from the heap from six to twelve needles, it keeps them down by the Sore finger of the left hand; whilst it presses the tore-finger of the right hand gently against the ends of the needles, those which have their points to. wards the right hand stick into the fingerstall: and the child, removing the finger of the left hand, allows the needles sticking into the cloth to be slightly 1 aised, and then pushes them towards the left side. Those needles which had their eyes on the right hand do not stick into the finger cover, and are pushed to the heap on the right side pre vious to the repetition of this process By means of this simple contrivance each move.
ment of the finger from one side to the other carries five or six needles to their proper heap whereas, in the former method, frequently only one was moved, and rarely more than wo or three were transported at one move. ment to their place.
There occur operations in the arts in which the assistance of an extra hand would be a great convenience to the workmen, and in these cases tools or machines of the simplest kind come to our aid. Vices of different forms, in which the material to be wrought is firmly grasped by screws, are used in almost every workshop: but a more strikiog exam. ple mas be found in the trade of a nail-maer.
Some kinds of nails, such as those used for defending the soles of coarse shoes, called hob-nails, require a particular form of the head, whici is made by the stroke of a die
The workman holds the red-hot rod ot iron The workman holds the red-hot rod ot iron out of which he forms them in his left hand, with his right hand he hammers the end of it into a point, and cutting a proper lengt
immediately under a hammer connected with a treadle, and which has sunk in its surface a die corresponding to the intended form of the head; and having given one part of the form to the head by the small hammer in his hand, he noves the treadle with his foot which disengages the other hammer, and completes the figure of the head; the returning stroke of this hammer strikes the finished nail out of the hole in which it was retained. Without this substitution of his foot for another hand, the workmen, would, probably, be bliged to heat the nails twice over

(To be continued.)

Woodworth's Patent.

The Woodworth Patent has been the subect of more litigation than any other in the United States. The original schedule is not exactly a correct data for decision as regards the full claim of patent held by the executors of Woodworth. The first patent was granted in 1828, butafterwards it was re-issued owing to the first specification being defective. Some ay that the re-issue was obtained by fraud, and that the original was not an original invention. That Hale and Bentham and Muir's patents for the same thing were older. Malcom Muir's invention for planing, tnnguing and grooving, was older undoubtedly. The Woodworth patent was exteinded by the Pa Woodworth patent was exteinded by the Pa -
tent Office in 1842, and it was farther extended by special act of Congress on the 26th of ed by special act of Congress on the 26 th of
Feb. 1846. The act of Congress was not granted to Mr. Woodworth, nor for his benefit, because he had then gone to that " bourne from whence no traveller returns." It was a special law for the benefit of a monopoly, whose selish schemes will be more fully developed at some other time.
"The schedule referred to in these letters pa ent, and making part of the same, contaituing a description in the words of the said William Woodworth himself, of his improvement in the method of planing, tonguing, grooving and cutting into mouldings, or either, plank, boards, or any ether material, and for redu cing the same to an equal width and thickness; and also fur facing and deseing brich and cutting mouldings on, or facmy metallic mineral and other substances.
The plank, boards or other material, being reduced to a width by circular saws, or fric tion wheels, as the case may be, is then placed on a carriage, resting on a platform with a rotary cutting wheel in the centre, either horizontal or vertical. The heads or circa. lar plates fixed to an axis, may have one of the heads moveable, to accomodate any length of knife required. The knife fitted to the heads with screws or.bolts; or the knives or cutters for moulding fitted by screws or bolts to logs, connecting the heads of the cylinder, and forming with the knives or cutters a cy linder. The knives may be placed in a line with the axis of the cylinder, or diagonally The plank or other material resting on th carriage, may be set so as to reduce it to any thickness required; and the carriage, moving by a rack and pinion, or rollers, or any later. al motion to the edge of the knives or cutter on the periphery of the cylinder or wheel, reduces it to any given thickness. Atter pas sing the planing and reducing wheel, it then approaches, it required, two revolving cutter wheels, one for cutting the groove, and the other for cutting the rabbits that form the tongue; one wheel is placed directly over the other, and the lateral motion moving the plank or other material between the grooving and rabbiting wheels, so that one
edge has a groove cut the whole length, and the other edge a rabbit cut on each side leaving a tongue to match the groove. The grooving wheel is a circular plate, fixed on an axis with a number of cutters attached to it, to project beyond the periphery of the plate, so that when put in motion, will per furm deep cut or groove parallel with the
face of the plank or other material. The rabbiting wheel, also of similar form, having a number of cutters on each side of the plate, projecting like those on the grooving wheel, cuts the rabbit on each side of the edge of the plank, and leaves the tongle a
ning wheel, axis, and cutter knives vertical, the same wlieel will plane two planks of other material in the same time of one, by moving the plank or other material opposite ways, and parallel with each other against the periphery of the planing or moulding wheel. The groove and tongue may be cut in the plank or other material at the same time, by adding a grooving and rabbiting wheel.
Said William Woodworth does not claim the invention of the circular saws, or cutter wheels, knowing they have long been in use, but he claims as his invention, the improvement and application of cutter or planing wheels to planing boards, plank, timber, or other material; also his improved method of cutters for grooving and tonguing, and cutting mouldings on wood, stone, iron, metal, or other material, and also for facing and dressing brick: as all the wheels may be used separately and singly for moulding, or any other purposes before indicated. He al. so clairns as hisimproved method the application of circular saws for reducing floor plank, and other materials to a width. Dated Troy, December 4th, 1828.

William Woonworth.
Withesses: Henry Everts: L. S. Glea-
扬- I certify the above is a true copy of the Schedule altached to my patent.

William Woodworth.
 kondon.

London in length is eight miles, in breadth three, and in circumference, twenty-six. It contains 8,000 streetg, lanes, and alleys, and courts, and sixty-five squares It has 246 churches and chapels, 307 meeting louses for dissenters, forty-three chapels for foreign. ers, and six synagogues tor Jews-making 602 places of public worship. The number of inhabitants is at present estimated at about $2,000,000$. In this vast city thereare 4,000 seminaries for education, 10 institutions for promoting the arts and sciences, 122 a sylums for the indigent, 17 for the sick and lame, 13 dispensaries, 704 charitable institutions, 59 courts of justice, 4,040 protessional men connected with the law. There are 13,300 vesetis tading un the river thanes ia the year, and 40,000 wagons going and returning to the metropolis in the same period. The exports and imports, to and from the Thames is estimated at $£ 65,711,222$ annually, and he pruperty floating in the vast city every year is $£ 170,000,000$ sterling.

A Gem.
The sunlight that follows a shij,wreck is not less beautiful though it shines upon the remnants of the broken bark-that which is saved is so much more precious than that which has been lost. The domestic circle is always too precious to make excusable, any neglect to prevent or to heal disturbance, There are enough to minister, by hints and reports, to domestic unkindness; and, unforunately, the best, under such circumstances are much prone to mistake, and thus misrepresent motives and trifles, with no direct object, are magnified into mountains of unintentional offence. It is the same in social ife. Let us guard against it. Delicate relaions are like the polish of costly cutlery; dampness corrodes, and the rust, though re. moved, leaves a spot

Advice to Parents.

My father liked to have, as often as he could, some sensible friend or neighbor to converse with him, and always took care to start some ingenious or useful topic for discourse, which might tend to iniprove the minds of his children. By this means he urned our attention to what was just and prudent in the conduct of life, and little or no notice was ever taken of what related to the victuals on the fable, so that I was brought up in such a perfect inattention to those matters, as to be quite indifferent to what kind of food way set before me. In after life this has been a great convenience to me, or my companious are often very unhappy or want of a suitable gratification of their very much more delicate tastes and appetites. -Frantilin.
Somebody suggests that birch rods make the best baby jumpers.

