Forthe Scientific American.
Argament for and agalnst the use of
Lickerins upon Cotton Cards. Having noticed in some of your last num bers pome articles by W. Montgomery, in re lation to Colton Factories, which were quite interesting to some of our manufacturers down this way-for the gentleman has written very sensibly upon the srbject-has induced me to send you this paper upon a mooted question, in the hope that Mr. M. or some others of your correspondents will give theis views upon the subject. If Mr. M. should no tice the thing will he-if ir. possession of the facts-tell us whether Lickerins are used fo single cording in England or Scotland.
Manufacturers in this country have been divided in opinion with regard to the utility of the Lickerin ; some stoutly contend that they are of no sort of advantage whatever ; and others admit perhaps a single point, viz. that they protect the main cylinder. There are various mills running, some with, and some without the Lickerin. A large mill at Salmon Falls, N. H. with 100 Cards without the Lickerin-also the Prescott Mill at Lowell Mass., with 144 Cards. In this city the Amoskeag Manufacturing Co are running 120 cards, single cardıng-and the Lickerin is used. The Amoskeag Co.'s goods speak for themselves all over the country. Let us en deavor to look into this subject in the stron light of common sense-the best kind of sense in these matters. In order that we may arrive at a just appreciation of the argument it may be well to look into the nature of the working ot the carding machine. The ob ject of running cotton through the card, is to separate the short fibres (waste) from the long ones, to lay them side by side and as free from dirt as possible. That is the whole it.
Those who condemn the Lickerin say " the fibres are laid straiter when the cotton is carried immediately from the feeding rollers to the cylinder, it s periphery speed being so much greater than that of the Lickerin it therefore teasels the cotton rrom the rollsbetter; but, when the Lickerin is used, the cot ton in being transferred from it to the cylin der, somehow or other gets shockingly turn ed topsy-turvy and is less pertect than with out the Lickerin." Part of this argumen may be true particularly soin factories where the Lickerin is driven at too great speedwhich is the case in many places. A cylinder 303.4 inches diameter, 115.45 inches in circumference, or 9.62 feet, driven at 112 turns per minute, gives a periphery velocity of 17.95 feet per second. A Lickerin driven (as it is in many mills) 4 turns to one of the cylinder, 71.2 in diameter, 23.53 inches circumference, has a periphery velocity of 14.65 feet per second. Here we have but about 3 feet per second difference in the two cylinders. No wonder then with such adjustment of the speed, it the machine should work better with no Lickerin at all. A still worse state of things would be obtained if there were less difference betiveen the speed of these two cylinders; the web as it comes from the doffer would look still more imperfect and cloudy, the fibresevery way but straight. The jumble would be complete if both cylinders were drıven the same speed. A better adjustment of the speed would be to drive the Lickerin 2.40 to one of the cylinder. Perhaps it will be said this is too slow for Lickerins. Let us look into this. Feed rolls for cards-in this coun-try-are generally 13.8 inch diameter-supposing they make 3 revolutions per minute, about 3-16 inch of the length of the lap is carried thiough per second: thus it appears more than 8 feet of Lickerin surface is ap propriated to teasel off $3-16 \mathrm{inch}$ of the lap, with only 268 revolutions of the Lickerin.If cylinders are well balanced they can be driven faster, say 120 or 130 and the Lickerin in proportion. But the objector may still urge that the Lickerin does not atrike the cotton with sufficient violence to throw the seeds and durt drawn out of the work. Very well, but we run the risk of throwing of good staple also. This is the last thing, however, that ought to be said by the stickler for " no lick. ers" when he is quite willing to have all the dirt carried up into the work, and none carried below hy a Lickerin. It is deemed iy logicians a specimen of unfair reasoning when
-merely for effect-one arrays against a posi-

This engraving shows another mode from that described in No. 34, of obtaining a body of threads or yarns into a box in order to allow of a succession of slices or surfaces being cut off to form nap fabrics. It consists in what may be called a folding machine, whereby a warp either of one color or intermixed colors, according to the will of the party, and depending on the description of napped fabrics it is designed to produce.
a, is a warp roller on to which the threada re beamed. $b b$, is a table, and C , part of a box or case in which it is desired to pack a quantity of threads or yarns, and C , to the eft, is the cover of the case. The warp is made fast to a rod which is at one end of the case C C, and is then drawn evenly to the opposite end o؛ a case and a rod is then laid across the top of the warp. The warp is then takenback to the other end of the case $\mathrm{C} C$ and another rod laid on till the warp is folded and the case is full, the rods being of such length as to protrude beyond the end of the case, and in order to pack the whoie closely the rods are pressed dr wn by a weighted in strument D. When a number of layers of the warp have been folded the lower rods may be successively removed to allow the layers a pack more close together, and by this means a body of threads will be packed in a box from which may be cut a succession of slices, each slice forming a napped fabric.
When an extensive surface is required to
tion an idea in which he does not believe himself. Another point of advantage in using the Lickerin is, that the cylinder does not fill so heavy with waste. Practical carders mus have noticed that the Finisher cylinderswithout Lickers-are loaded with waste much more than the Breakcrs. The cause is obvious. The periphery velocity of the cylinder being so great, the fibres are snatched from the rolls with such violence, that they are thrust down into the very roots of the teeth. Now then of course the cylinder would fill up very soon with clean cotton, malted in like felt-work and can actually be torn off in flakes. Of course it is not desirable to have the card fill up so, and with long staple and matted in so hard that no power can lift those fibres and bring them in contact with the top sheets or doffing cylinder. The very reverse of this state of things is true when a Lickerin is used. Here the fibres lie more upon the points of the teeth so by the circulation of the air between the sheets, and by the centrifugal torce the fibres are readily brought into contact with the top-cards and so the process of carding goes on.
Let us recapitulate the favorable points.

1. The Lickerin protects the main cylinder from injury and preserves the keen edge lon. ger ; a thing very desirable in good carding. 2 Less waste is made for obvious reasons above stated.
2. Throws off considerable dirt that would otherwise go into the work.
There is but one possible argument against the Lickerin, that is a supposition that the staple is lard straighter without it. But even this is not a fact when the Lickerin is driven at a proper velocity
There can be no question but-if the above
be napped, the cases may be made of such forms as will when combined together produce such shapes as required and place the patterns, or parts of the pattern, in the proper place, which arrangement will allow of tha patterns or ornamental designs (which require the most time in packing) being worked into separate boxes or cases, and the threads or yarns which are to form the ground may be in separate boxes or cases \mathbf{C}.
Whatever mas be the course pursued inobtaining bodies of yarns or threads in boxes or cases, as above explained, the fibres at the end of which may protrude, should be carefully shaved or cut off evenly, and India rubber or other suitable cement, is to be laid on to the surface of the fibres, and permitted to dry sufficiently before the ram or piston is caused to force a quantity equal to the length of the desired nap from the case C. When sufficiently dry, and on examination the cement appears to be complete over the whole surface, the piston or ram is to force out of the case or box C , a length equal to the length of the nap; when that quantity is to be cut off with a sharp knife, or other suitable instrument and the ends of the yarn which is in the case or box, are to be again coated with cement, and so on till the whole is cut up into slices, which may be afterwards applied by cement to other canvass surfaces of any shape or form desired.-Gilroy
reasoning be correct-it would be an object as a matter of actual economy, to use Lick erins on Finishers, for double carding.

Youry, \&cc E. B
Manchester, Conn. May 15, 1848.
Talent always worth a Price.
No men are more justly entitled to tair prices, than truly qualified and competent teachers. And this, not barely because of the value they give in retnrn, but because of the great outlay of time and money necessary to prepare for their profession. Some teach ers have spent a dozen years in their prepa ration, and have lard out many thousand dol lars, a capital of time and money sufficien to have made them rich, in merchandize, or at any mechanical art. Few persons can es timate the value of things, where results are produced with ease, and in a moment. They must see the labor performed. Most can readily believe that a railroad, a canal, or a ship, is worth all the money asked for it, but they cannot understand why a painting or a statue should be held at many thousand dollars Nor can they be amazed that Pagamini shoul expect twenty guineas for a single tune on the violin? A plain, but frank-hearted and sensible farmer, once called at the office of a celebrated chiet justice in the South, and asked him a very important question, that could be answered in an instant, categorical ly-yes or no "No," was promptly return ed. The farmer was well satisfied. The de cision was worth to him many thousand dol lars. And now the client about to retire, asked the farmer the charge for the information. "Tendollars," replied he. "Ten dul lars!" ejaculated the astonished farmer, " ten dollars, for saying no!" Do you see these
ows of bonks, my friend? rejoined the Chief Justice; "I have spent many years in reading them, and studying their contents, to answer " No." "Right! Right !" responded the honest farmer, "right! I cheerfully pay the ten dollars."

Tricks upon Birds.

There is a singular bird they call "The Adjutant," in India. He performs the duty of a scavenger, devouring offal and puvishing the whole family ot snakes. He is a huge, grave, long-beaked fellow, with an air rather Dominie Sampsonish than military. Some of the English soldiers used to play sad tricks with him. He would gobble up large bones of beef, or a four-pound loaf; and when he had finished his huge meal, he would mount the highest pinnacle he could rind, and stand on one leg like a mutilated statue, while it digested. The soldiers used to cleanse out shank bones of mutton, stuff thein with gunpowder connected with a slow match, then throw them to the Acjutant, who swallowed them greedily; but while chuckling over his savory morsel, it would explode and blow him to atoms! Another trick upon the birds was to tie two legs of mutton together by a strong cord, leaving an interval of three or four yards and then toss the rich repast among them, which soon found their way into the stomachs of two of the most active. As long as they kept together it was all very well; but as soon as the cord tightened both became alarmed and took wing, mutually astonished at the phenomena, no doubt. A laughable tugging match then ensued in the air, each Adjutan striving to mount higher than the other, till at last they attained a great elevation. When at length the weaker bird was forced to dis. gorge his mutton, a new power came into play-the force of gravity-and the pendulum leg of mutton, after some ridiculous oscilla tions, brought the conqueror downto the earth a greatdeal faster than he wished.

Sting of a Bee.

The ingenious experiments of the celebra$t \in d$ Fostana, demonstrated exclusively, that the venom of the bee is strictly analagous in its nature and mode of operation, to that of the viper. The matter is a thin, diaphenous fluid, retained in vessicles so constructed that they can admit of a ready compression in the act of stinging-during which the poison liquid is forced through the hollow tube of the sting in the same way that the irritating sap of the nettle is ejected through the oculet, or stinging spines of that and other similar plants. The most efficacious remedy I have ever found for the sting of a kee, is simple chalk. As soon as you are stung, apply as much of this substance as you can take upun your thumb nail, in a moist state, and pernit it to remain as long as the pain subsides. After this application there will be no soreness, and no inflammation.

China Suk Market.

Mr. Walsh, in one of his letters to the Naional Intelligencer from France, states that in China the principal silk market is Sou Tchou, a city of the interior, the largest perhaps in the world; for Pekin has but four millions inhabitants, while, if we may credit Mr. Hedde, who visited it, Sou Tchou has a population of five millions within its walls, and ten millions within a radius of twelve miles around. Situated on the great imperial caual, it has ten thousand bridges. Since 1718 , when the missionaries quitted it no individual, until Mr. Hedde succeeded, could get ingress. He did so, disguised completely as a Chinese trader.

velocity of Water.

The velocity which liquids acquire when issuing from an orifice, whether sideways, upwards or downwards, is equal to that which they would heve acquired in falling perpendicularly from the level of the fluid to that of the orifice. When a liquid flows from a reservoir which is not replenished, but the level of which continually descends, the velocity is uniformly acceleraled; so that an unreplenished reservoir empties itselt through a given aperture in t'vice the time which would have been required for the same quantity of water to have fowed through the same aperure, had the level been kept up to the same point.

