

NEW YORK, APRIL 8, 1848.

Iron is the most valuable of all metals : and although it is not estimated to be of equal va lue with gold, yet our remark will not be in validated for incorrectness, any more than in we compared coflee or spirits with pure water by a just standard of intrinsic worth. Iron bas the remarkable property of being welded, in other words, two separate pieces of iron, like the fabled serpents of mythology, can be united together by heatand the action of the hammer. Platina alone of all other metals, has this same quality. This is one property in iron which makes it so valuable, because it can be forged into so many different shapes. It is therefore used for almost every purpose, such as house building, ship building, machinery of every description, in medicine and for coloring. Within the past ten jears irun has been applied to a greater variety of purposes than ever could have been anticipated by the most sanguine philosophers of old. To some of these applications, namely, bridge build ing and tunneling, we would desire to direc attention for a few moments.
Suspension bridges are no longer problematical, they have been " weighed in the ba lance and not found wanting." But although success has attended suspension bridges and genius and skill have triumphed over suppo. sed impossibilities, yet no sound practical man can doubt for a mor.ent that there is a limit to the extent of our powers-a line beyond Which man cannot extend the sceptre of me chauical dominion-a line beyond which the laws governing practical mechanics, so far as
we understand them yet, seem to be suxp endwe understand them yet, seem to be susp end-
ed. The fall of the Dee Bridge in England aroveed attention to the subject on both sides of the Atlantic, and there has been a wise set tling down of the Scientific to schemesof perfect practical utility, and not Icarus like, attempting flights to the sun on waxen wings. We would not, however, be supposed to speak word against experiment, but would onlycau tion against the supposition that experiment successful on a small scale will all be equally so on a large scale. Science and art have now been carried to such a state of perfection that it is almost impossible to define its limits -ts point out the line of demarcation which bounds the empire of mechanical genius. Tubular bridges are rising up on the other side of the Atlantic like the mighty works of the faoled Titans. A single iron tube has been thrown over the river Conway in England, which welghed 1300 tons-as heary as some of our largest packet ships. An iron bridge will soon span the gulf of Niagara, and coun tries that have been separated for ages by the
furious waters of the whirpool will then be furious waters of the whirpool will then be
linked together by a metal dug from beneath the dust upon which we tread This is truly the age o." iron-iron intellect and iron enter prise.

Method or Silvering Cast Iron

The combination of iron with carbon, cas iron, from the ease with which it melts, and the consequent possibility of taking the fines impressions of form, has come into very ex tensive application. The art of founding, con-
verts cast iron into enormous arches, colverts cast iron into enormous arches, col-
umns, cannons, and also into the most delicate bracelets. ear-rings, \&c. Unfortunatel the moist atmosphere very soon alters the surface of these objects, and it is found ne cessary to coat them with paint, which give the cast iron a color which is of itself not very attractive-the appearance of mourning In the present state of the art of founding east iron might easily be substituted fur bronze were it not for its sombre appiearance, which ontirely excludes tt . This disadvantage may however, be entirety overcome, from the possibility of plationg it with silver ; in fact cast in on may be readily silvered, and equally
as well as copper and bronze. The liquid for silvering is prepared in the following manner, viz. :-Cyanide of potassium is intro. duced into a stoppered vessel, and freshly prepared pure chloride of silver, still in a moist state, added, the whole being covered moist state, added, the whole betyg covered
with water, and shaken violently for some with water, and shaken violently for some
time at the ordinary temperature. An excess time at the ordinary temperature. An excess
of chloride of silver is taken, and should a of chloride of silver is taken, and should a
small quantity of it remain undissol ved, a few more of the cyanide are added after some time, taking care however, to avoid having an exzess of the latter salt, but always a small quantity of undissolved chloride at the bottom of the vessel. This last circumstance is important, because when the liquor contains too much tree cyanide of potassium it is easily decomposed, and moreover does not silver so well; before employing it, it is filtered, and is thus rendered perfectly clear, iron and a iittle chloride of silver remaining on the filter. The plating is effected by means of a galvanic pair of plates, consssting of zinc and a coke cylinder, which are separated from each other by means of an earthen diaphram. The pair are placed in a glass vessel containing dilute sulphurlc acid, and dilute nitric acid is conveyed into an earthen diaphram Experience has shown that the best mixture for the coke cylinder should consist of 5 parts by weight of finely pulverized coke, 6 parts pulverized coal, and 2 parts of common ye flour. When the cylinders are dry they are placed in earthen crucibles, in the lids of which there is an aperture for the escape of he gasses, and are then heated to sedness. Those cast iron objects may be most easily silvered which have not been panted, as the removal of the paint from the surface is somewhat difficult. The cleansed object is immersed in the silver solution, and connected with the zinc pole by means of a conducting wire, and a platinum plate immersed in the iquid at some distance from the object to be silvered, and connected with the coke cylin. der. A plate of cast iron, of 5 square inches surface is generally completely plated in 30 minutes.

The russ Pavement.

Roman roads, Macada mised roads, Railroads and Plank roads have become "famous in stoy," but there is a nother kind of road destined to be as famous as any of them, namely, the Russ Pavement, the invention of Horace P. Russ, of this city. Cobble stone pavements block pavements and rosin pavements, have been weighed in the balance and found want ing, but the Russ pavement is just beginning to shine, and shine it must as there is "scarce any wear e^{\prime} t." This kind of pavement is now being laid down in front of our office, and we have a good opportunity to judge of its merits. We have no hestation in saying that if all the streets.in New York were paved with it, our city would possess more splendid paved streets than any city ever possessed, either ncient or modern
The Russ pavement is made by first laying foundation of dry concrete well beetled down, then a second substrata of wet concrete made with small split stones and plaster.This substrata is laid down in pannels to give access to pipes and conduits below. The frames of these paunels have an edge thinned upwards to allow the concrete to be lifted out If required to get at water, ipes and gas pipes below for repairing. Upon the top of this concrete is laid a strata of heavy granite blocks nearly square. These blocks are kaid down cross the causeway at rightangles with the sidewalks and are beetled down solidly upon the concrete strata, a little sand being used
for levelling. These blocks are about 15 for levelling. These blocks are about 15 inches long, 9 inches in breadth and 12 to 15 would make a good parement just embedded in sand, but being !aid down upon the concrete strata and the pavement rounded but very slightly for draining off water, it makes a most substantial and perfect causeway. The blocks
being laid down so that the abraiding action being laid down so that the abraiding action
of carriage wheels will traverse the blocks in of carriage wheels wiffering from the planes of clevage, is a good and scientific plan to make more permanent the most durable system of street par ing ever introduced into our city. Mr. Russ ecured a patent for his substrata on the 14th of last month.

Forthe Scientific American
Economy of Power in Cotton Factories
The rapid increase oi manufacturing estab lishments in our country during the last te years, has so enhanced the value of wate privileges, that a good mill site cannot be purchased so as to make water much cheapr as a motive power than steam.
Thus circumstance has led scientific men to investigate the best mode of applying wate to wheels to obtain from a given quantity its maximum effect. And no doubt many curious facts, and much useful information has been brought to light upon the subject, yetafter all that has been said and done, we are of opinion that, in the proper manner of communicating power from the first mover to the several ma chines, the manufacturer has a study mor worthy his attention in point of economy than is presented in determining whatkind of wate wheel shall be adopted. No practical man can visit our older manufacturing establishments without noticing the clumsy arrangement of their main shafting, the ponderous apparatus by which it is set in motion and the exceedingly small number of spindles and looms they can operate, compared with the capacity of their water wheel.
There are several particulars, which if duly considered by the manufacturer before erect ing his mill, would not only give it a much neater and more compact appearance, at a less expense, but also an advantage in the saving of power, of more than twenty per cent over one where they have been neglected. A few of these we shall briefly notice, hoping some of your correspondents, whose age and expe rience enable them to do so, will take up the subject and treat it with greater ability
The walls of a cotton mill ought to be constructed of brick or stone, and in no case of wood. The latter will always shrink and swell with changes of the weather, thereby throwing the main shafting " out of line," and causing an almost incalculable amount of friction in the bearings. This by the way is the occasion of as many wooden mills taking fire, and not, as some may suppose, the com bustible nature of the materials.
A warm sun after a rain storm striking one part of the building while the other is sha ded, the former will shrink first, and the shaft ing running the whole length must " bind" somewhere; if in a place not exposed to view the lubricating substance is dried up, and hea enough may be generated before it is discovered to set the mill in a blaze.
Whether built of brick or stone, a solid foundation is the first requisite, and should ne ver be compromised. If the site does not naturally furnish this, no expense ought to be spared in creating an artificial one. Having finished the building, the heating apparatus should be completed, so as to keep the seve ral apartments at the highest temperature during, at least, six weeks before the shafting i fitted up. The machinery should also be placed on the floors in the mean time. This will give opportunity for the timbers to shrink and the floors and walls to settle, (a circumstance which always takes place to a greater or less extent, according to the nalure and quality of the materials used,) without inter fering with the machinery and shafting, as these are to be levelled in their places afterards.
The means used for conveying power from the first mover to the line of shafting, if not in accordance with correct principles will very materially diminish its effective power.The superiority of belting over shafts and gears for this purpose is now generally conce-
ded. Indeed while nearly all the recently ded. Indeed while nearly all the recently
erected mills have adopted the former method, many of the older ones have substituted it for the latter.

The principal advantage of belting, results from the greater speed at which the line shafting can be driven with much less weight on the bearings than when shafts are usedfor example, if 60 horse power is to be conveyed from the first mover to the third story of a building, say 36 feet, by east iron shafting performing 100 revolutions per minute, something over four tons of metal would have to be employed, while six hundred pounds of belting would answer the same purpose.-
This of course saves extra weight on the first
mover equal to the friction caused by $3 \frac{3}{2}$ tons It is ascertained by experience that a belt 1 ; inches wide, moving at the rate of 3000 feet per minute, will convey 50 horse power. If however the belt should be 17 inches wide, it could be run much slacker, and make no more fiction on the bearings that if 15 inches. The etror of making the belte too narrow has been made in every mill with which I am acquainted. As a general remark, machine ma sers should mike all pullies for belts about one third wider than has been done hitherto. This would nut only economise leather, bu riction to an amount which would not be cre dited without actual demonstration. The mooth side of leather should be turned to wards the pullies or drums, which should al so be covered with leather.
W. Montgomery.
(To be continued.)
Mode I of the Steamship United Stateg. This steamship built for Mr. Marshall of this city, and intended to ply between this port and Liverpool, has somepeculiarityin he model which from her successful trial trip has led many to believe that she will beat any tbing afloat. She certainly gives fair promise but "let not him that putteth on his armor boast," is an old and a very prudent rule of guidance. Wewill content ourselves to abide the results of a fair voyage. New York beats the world for shijs and for marine steamer she will not be behind.

nother or Hos's Presses

The Boston Times has been compelled by its large circulation to procure "Hoe's fas press." There are only five of these presses yet in use, but they will soon engross all others. The first and second of them were used to print the Pbiladelphia Ledger, the third and fourth were made for the New York Sun The fifth is that now in possession of the Boston Times. The sixth and seventh are being made and nearly completed, to be put up in the office of the New York Herald, and the eighth and ninth are ordered for Paris.

A Rich Man Gone.

Jobnjacab Astor, but a fere days since the ichest man in America is now rich no more in this world's goods. He is laid with the clods of the valley. He died on Wednesday, of last week. Concentrated wealth is dange rous in a Republic, but by our no-law of pri mogeniture inheritance, Mr. Astor's great wealth will soon spread in a thousand channels Standing beside the grave of the rich, how forcibly cometh to our hearte, the thrilling warning, "lay not up for yourself treasures upon earth, but treasures in heaven."

Mission of Education.
The British Government have resolved upon sending out pioperly qualified schoolmasters and schoolmistresses to the colonies in different parts of the world, to conduct the public schools established there for the in struction of the natives.

Sclentific American--Bound Volumes. The second volume of the Scientific American, bound in a superb manner, containing 416 pages choice reading matter, a list of ald the patents granted at the United States Patent Office during the year, and illustrated with over 300 beautiful descriptive engravings of new and improved machines, for sale at this office-Price $\$ 2,75$. The volume may also be had in sheets, in suitable form for mailing t $\$ 2$.
The back Nos. of the present volume may also be had upon application at the office.

SCIENTIFIC AMERICAN.

Persons wishing to subscribe for this paper have only to enclose the amount in a letter ected (post paid) to.

MUNN \& COMPANY,

Publishers of the Scientific American, Ner York City
Terms.-\$2 a year; ONE DOLLAR IIN ADVANCE-the remainder in 6 months
Postmasters are respectfully requested to receive subscriptions for this Paper, to wto discount of 25 per cent will be allowed.
Any person sending us 4 subscribers for 6 months, shall receive a copy of the paper for

