## For the Scientife Ameriean.

## (Continued from our last)

The succession of colors must be determined by means of a design paper, which represents the design or figured pattern intended to be produced by plain weaving of the par-ty-colored yarns. Design paper used by weavers for figured weaving, being ruled with squares, which are numbered across the top and down the length, and it must contain the entire figure of the pattern which it is intended to produce in the fabric, and which pattern is to be repeated thereon at regular intervals along the piece; and, supposirg that the ground whereon the pattern is to be represented, is to be all of one uniform tint, the whole of the threads may be dyed with that color previous to applying the party-col-ors,-the dye being chosen of such a nature that it will readily give place to the stronger party-colors which are to be applied. The size of the cylinder must be so chosen that its circumference will be equal to the length of yarn which the warp willtake up for weaing, from the commencement to the end of the pattern, where it will join to the preceding, and to the succeeding repetition of the pattern, taking into consideration the contraction of the length of the warp which will result from the gathering up of the yarn in weaving, and which contraction varies very greatly in different kinds of fabrics. Whatever number of squares the length of the design paper occupies, the circumference of the cylinder must be divided into a like number, or the double or the treble that number, if the cylinder is large in proportion to the pattern; which is easily done by applying a tape painted with suitable divisions upon it around the circumference of the cyliner, and fastening it with pins to the blanket cover. The design paper should be laid out in large squares, as the printer has to distinguish readily the succession and order of the different colors. It may either represent a Ggure to fill the breadth of the intended fabric, or one which is to be repeated several times side by side in the breadth, and each square may either represent a single thread or a number of threads according as the texture is to be fine or coarse. Pepetitions of the same figure in the breadth will admit of several threads being colored alike at one operation, and the trouble of separating threads may be avoided by keeping the coils of the different threads distinct from each other upon the cylnder. In applying the colors to each set of yarns, either the first or the last of these impressions, which is made when the cylinder stands at its division 1, must be of such a decided character, that its place on every thread can always be distinguished with certainty; or a narrow black impression may be made across every set of the threads when the cylinder stands at its division 1 , as a common starting place for all the threads. and for all the sets of threads; which decided im. pressions, or narrow black impression, in consequence of the circumconvulsions which the threads make around the cylinder, will ba repeated at every place along the length of each thread, when the repetitions of the pattern are intended to begin and to end. In short, when the party colored threads are afterwards formed into a warp, the marks will indicate the junctions of the successive repetitions of the pattern: and if the threads are all so adjusted that those marks on each thread will range in a straight line, square across the breadth of the warp, then a correct pattern will be formed by the party colors of the threads; and all the precaution that is sequired during the progress of the weaving is to keep all the threads so adjustedin length that all others of the marks at every succeeding repetition of the pattern, shall continue to range in straight lines and square across. To ensure this condition, a clamp is used, which is composed of two straight rulers, united by screws, which draw the edges of the two rulers together, and their adjacent edges are covered with cloth. This clamp is applied across the warp, with one of its rulers above the yarns and the other below them, near to the place where the marks must range in a straight line, square across the warp, and there the clamp is fastened by its screws, so
as to hold all the threads fast between the serves for feeding pigs or oxen; underneath edges of its two rulers, in order to confine them to their relative positions end-ways, in respect to each other. As the weaving proarn, the clamp advances along witer ha been woven, the weaving must be suspended while the screws of the clamp are loosened, to set it free on the yarns, and it is then taken back along with them, to the nextsucceeding marks; and, if those marks do not range in a straight line, and square across the warp as they ought to do, those yarns which are forward must be pulled back or stretched until the marks are made to range and then the clamp is to be again screwed fast on the yarns to confine them in their true relative positions, whilst another length of pattern is wo ven; after which the clamp is again shifted to the next succeeding set of marks and so on until the weaving of the whole piece is completed. This method of working with the clamp during the progress of the weaving is only requisite in case the yarns are drawn off at once from the bobbins to form the warp in the loom as the weaving goes on without using a yarn-beam:-but, if the warp is formed and gathered on a yarn-beam by a previous operation to the weaving, then the clamp must be used in the manner above described during the operation of beaming, but will no be afterwards required during the weaving. Giliox.

## (To be Continued.)

## starch.

Starch is a white pulverulent substance composed of microscopic spheroids. Ordina ry starch may be extracted from the following grains:-wheat, rye, barley, oats, backwheat, rice, maize, millet, spelt; from the silioquose seeds, as beans, peas, lentiles, \& c. : from tu berous and tap roots, as those of the potato the manioc, arrowroot, bastata, \&c. Differen kinds of corn yield very variable quantities of starch. Wheat differs in this respect, according to the varieties of the plant, as well a the soil, manure, season and climate. Wheat partly damaged by long keeping in granaries may be employed for the manutacture of starch, as this constituent suffers less injury than the gluten, and it may be used either: in the ground or unground state.
Starch with unground wheat. - The wheat being sifted clean, is to be put into casterns, covered with soft water, and left to steep till it becomes swollen and so soft as to be easily crushed between the fingers. It is now to be taken cut and immersed in clear
water of a temperature equal to that of malting barley, whence it is to be transferred into bag which are placed in a wooden chest contain. ing some water, and exposed to strong pressure. The water being rendered milky by the starch being drawn off by a tap, fresh wate is poured in, and the pressure is repeated. In stead of putting the swollen grain into bags some prefer to grind it under vertical edge stones, or between a parr of horizontal roller and then to lay it in a cistern, and then separate the starchy liquor by elutriation with successive quantities of water well stirred up with it. The residuary matters in the sacks or cisterus contains much vegetable albumen and gluten, along with the husks, when exposed to fermentation, it affords a small quan tity of starch of rather inferior quality.
The above milky liquor, obtained by ex pressien or elutriation is run into large cisterns, where it deposites its starch in layer successively less and less dense; the upper most containing a considerable proportion of glutea. The supernatant liquor being drawn off, and fresh water poured on it, the whol must be well stirred up, allowed again to set tle, and the surface liquor again withdrawn
This washing should be repeated as long as the water takes any perceptible color. A the first turbid liquor contains a mixture o gluten, sugar, gum, albumen, \&c., it ferments readily, and produces a certain portion of vin egar, which helps to dissolve out the rest of the mingled gluten, and thus to bleach the starch It is, in fact, by the action of this fermented or soured water, and repeated
washing that it is purified. After the last deposition and decantation, there appears on the tarch a thin layer of a slimy mixture of gla en and abbumen, which, being scraped off
will be found a starch of good quality. The layers of different sorts should be then taken up with a wooden shovel, transferred into se parate cisterns, where they are agitated with water, and passed through fine sieves. After this pap is once more well settled, the clear vater is drawn off, the starchy mass is taken out, and laid on cotton cloths in wicker baskets, to drain and become partially dry When sufficiently firm, it is cut into pieces which are spread upen nther cloths, and thooughly dessiccated in a proper drying room which in winter is heated by stoves. The upper surface of the starch is generally scraed, to remove any dusty matter, and the re sulting powder is sold in that state. Wheat yields upon an average, only from 35 to forty per cent of good starch. It should afford mor by skilful management.
Another plan is to crush wheat between ron rollers, and then laid to steep in as much water as will wet it thoroughly, in four or five days tho mixture ferments, soon after wards settles, and is ready to be washed out with a quantity of water in the proper fermen ing vats. The proper time allowed for the steep. is from 14 to 20 days. The next pro cess consists in removing the stuff from the ats, into a stout round basket set across back below a pump. One or two men keep going round the basket, stirring up the stuff with strong wooden shovels, while anothet keeps pumping water, till all the farina is washed from the bran. Whenever the subjacent back is filled, the liquor is taken out and strained through hair sieves into square frames or cisterns, where it is allowed to set tle for 24 hours: after which the water is run off from the deposited starch by plug taps a different levels in the side. The thin stuf cailed slimes, upon the surface of the starch, is removed by a tray of a peculiar form Fresh water is now introduced, and the whole being well mixed by proper agitation, is then poured upon fine silk sieves. What passes through is allowed to settle for 24 hours the liquor being withdrawn, and then the slimes, as before, more water is again poured n , with agitation, when the mixture is again hrown upon the silk sieve. The milky li quor is now suffered to rest tor several days, 4 or 5, till the starch becomes settled pretty frmly at the bottom of the square cistern. If the starch is to have the blue tint, called Poland, fine salt must be mixed in the liquor of the last seive, in the proportion of two or three pounds to the cwt. A considerable portion of these slimes may, by good engagement be worked up into starch by elutriation and straning.
The starch is now fit tor boxing, by shovelling the cleansed deporite inte wooden about 4 feet long, 12 hroughout and lined with thin canvass. When it is drained and dried into a compact mass, it is tureed out by inverting the chests upon a clean table where it is broken into pieces four or five nches square, but laying a ruler under the cake, and giving its surface a cut with a knife, after which the slightest psessure with the band will make the fracture. These pieces are set upon half burned bricks, which by their porous capilliary imbibe the moisture of the starch, so that its under surface may not become hard and horny. When sutficiently dried upon the bricks, it is put into stove, (which resembles that of a sugar renery,) and left there till tolerably dry. It is now removed to a table, when all the sides are carefully scraped with a knite; it is next packed up in the papers, in which it is sold; hese packages are returned back into the stove, and subjected to a gentle heat during soms days, a point which requires to be skilully regulated.
A patent was obtained for bleaching starch by chloride of lime in 1821. Chlorine water would probably be preterable, and might prove usefulin operating on damaged wheat. During the drying, starch splits into small rismatic columns of considerabie regularity. When kept dry it re mains unaltered for a vey long period.
Mr. Ames, an American artist, has been mmissioned to take a portrait of Pone Pius

Biore abont Stalte's wiectric Light.
At a recent lecture at New Castle upon Tyne, Mr. Staite observed that the experiment of the charcoal points, and the phenomena of the voitaic arc, with piowerful batteries were well known. The difficulties hitherto experienced had been-1. The economical production and application of the electric cur-rents.-2. The discovery of a suitable material for the developement of the light.-3. The rendering of the light permanent (the greatest difficulty of all.) By what means, and to what extent, he had overcome these difficulties, Mr. Staite informed his audience. He produced, under a glass receiver, a brilliant light before which the gas jets of the lecture-room turned, not pale, but yellow. The peculiar characteristics of the electric light were its purity and volume. The most delicate shades of color might be detected, while the eye was not distressed by its effects. The same quantity of light, developed by gas, or any other known means, would be absolutely unendurable. That the light was not the resull of combustion, strictly speaking, was evident.There could be ra combustion without the presence of oxygen; and, as the light was developed to the best advantage uader a closed glass, from which supplies of atmospherie air were excluded, it was quite certain that combustion had rothing to do with the matter The light in fact, the lecturer remarked, could be produced as readily in water as out of it.He showed its peculiar applicability to coalmining, for it could not explede the foulest atmosphere. He then came to the comparative cost of the electric and other lights.With a battery consisting of four sinall cells, a light was developed equal to 350 mould candles (sixes,) or 64 cubic feet of the best gas burnt in the standard burner.
This was effected by a consumption of zinc equal to 77 -100ths of a pound, being little more than $3-4 \mathrm{lb}$. of zinc per hour. When the light, however, was brought to it maxim um, by increasing the distance of the electroids to their limit, the light was increased nearly threetold, while the current itself was reduced to about three-fifths in quantity. This curious fact (continued Mr. Staite) I have frequently observed before. So that the light, when consistent with its permanence, was produc ed by a consumption of a seventh part only of a pound of zinc per hour-and the light equal to 380 tallow candles. Assuming that the zinc so consumed was worth one half penny, and that the cost of the working solution, de ducting the value of the products (sulphate of zinc sc, was as much more, we have the following comparative result:-Electric light, 1d per hour; gas light, equal thereto 6 d to 8 d ; tallow candles, 7 s 6 d . In conclu. sion, M. S observed, " By a careful compai son of all modes of effecting artificial illumination, I think I am justified in saying that there is no light so cheap as that evolred by voltaic currents of electricity; and there is certainly none which exhibits such pure and brilliant results. The absence of all smoke and flame, and noxious gases-the non-con sumption of oxygen-the impossibility of its igniting surrounding substances, - and the simplicity of the apparatus are powertul rec commendations for the adoption of the light in all places where purity, and brilliance, and safety, and ecomomy are sought for."

## Leather.

In consequence of the unfavorable accounts rom the tanners respecting the scarcity of bark to tan the stock of hides now out, and the consequent delay which is likely to oc cur in bringing the spring stock of leather to market, and also the great reduction of the stock on hand, caused by the heavy auction sales, through the summer, months. Prices have improved and may now be quoted at one cent higher than the last year's sales.

## Diamonals in North Carolina

The Raleigh Register, says:-"We have been presented by Beaumont, the intelligent correspondent of the Southerner, printed a Richmond, Va., with a piece of flexible sand stone, found at the Linville mountain, in Burke county, the presence of whioh is said to be an unarring test that there are diamonds to bout."

