For the Scientific American. Steam Boller Explosions.

The subject of steam boiler explosions is one that has for a long time interested me, but more particularly of late, since my having had an occular demonstration of the importance of something being done to insure greater security in travelling. A person to be impressed with the importance of the subject, needs to be an eye witness to a scene similar to the one witnessed on the A. N. Johnson, which of itself appears to me to be sufficient to arouse the public en masse, to the importance of early action in the matter. But the A. N. Johnson is only one of the many cases that have occurred within the last four months. Our Western waters have been the scenes of almost perpetual accident and distress resulting from steam boat explosions, and yet the mass of the community seem apparently inditferent and secure. Steam boat proprietors take no measures to prevent these calamities. I have watched with a great degree of anxiety the proceedings of this Congress, hoping that something might be done to prevent the recurrence of such awful disasters as have been chronicled in our history the past few months While I am gratified to find that even slight measures have been taken of late for its accomplishment, yet I can but feel very much chagrined to see so much indifference manitested on this and like important subjects while matters of infinitely less importance are viewed with more enthusiasm than the subject demands. In reading your paper of Feb. 19, as I do every week with no small degree of pleasure and interest, I find you have examined the report of a Committee appointed by Congress in 1844, to investrgate the cause of steam boat explosions, and devising the best means of aiding the Engineer in the discharge of his duty; and farther, that the result of their deliberations placed the invention of Mr . Barnum of this city, upon the
ground of superiority to any presented to them ground of superiority to any presented to them
for examination. The interest that I have for examination. The interest that I have
felt in steam boat explosions, induced me to obtain the report referred to, and was very much surprised to find that such investigation had been instituted and such results obtained by Congress in 1844, and solittle done for the adoption of said invention. It appears almost criminal. Ought there not to be some measures taken to secure to steamboats an appa-
ratus which displace the possibility of explosions, from deficiency of water, (which I consider to be the true cause of explosions.) It would be very interesting to me, as I suppose it would to the rest of your subscribers, to know what disposition was made of the Wa ter Witch atter the failure of her engines, and whether Mr. Barnum's apparatus has been applied to any other vessel, and whether you know of any measures being taking by Congress for the adoption of any invention to prevent explosions.
In conclusion permit me to remark, that I consider it highly commendable in the "Scientific American" to have pursued the subject with that vigor and energ 3 which is calculated to seek out the cause of these disastrous occurrences and, if possible, remedy the rivid.
Jew York.

Rigging of Vessels.

The bowsprit should be long and strong; jib boom the same; flying jibboom in a separate piece, as in to berigged in ; too short bowsprits and jibbooms are common, and generally too much steve is given to them. Thus j :bs which are steve is given to them. Thus
lifting and driving sails, are too small ; $2 \frac{1}{\frac{1}{2}}$ to 3 incbes steve to foot, is enough for a vessel with a good body below furward, to keep her from pitching badly. Fore and mainmasts should be the same diameter, and foremasts only 3 or 4 feet shorter than the mainmastthat is, enough to keep All masts above lower masts, and all grds on fore and mainmast, to be of the same length, so that the sails may be easily shifted. Hasts should be stout and strong, so rigging may be light and slack. American vessels often beat in sailing, on account of stout masts, and light slack rigging, giving the maste some play. Many foreign vessels bave lisht, sprars overluaded with rigging, and tied up by 1 , so
masts have no play. Long lower masts, as
long courses, drive well ; all canvass drives' was re distilled from a profusion of water, or better in one piece than in two; topmasts a was well washed in some five or six waters, trife short in proportion, as topsails are par- when it had reached a specific gravity of ticularly storm sails; topgallant masts and 9.486. From 240 lbs . of ordinary chloride yards long, for India or South American pas- of lima, I obtained nearly 100 pounds of chlosages, for which studding sails and stay sails roform. hould be large and plenty ; a large topgallant sail is rarely objectionable, and may often be set to advantage in lulls during squally weather, over single reefed topsails; topgallant backstays, spread by whiskers from topmast cross-trees, enable topgallant sails to be carried long along lower and topsail yards, to spread as much low sail as possible; storm stay sails and storm spencers are good sails. Long mast heads give strength, and long yard arms look well, and support studding sail booms. Masts should never rake less than one inch to a foot, and never more than 13-4 inches. All masts should rake alike; if there must be a difference we prefer the foremast to rake most, as, on the wind, the rake to foremast does good in lifting the vessel over the head sea, and the rake to the mainmast then has Itttle effect.Before the wind, the mainmast does most good and then the rake, being more than $\frac{1}{2}$ inch to foot is an injury, particularly in light winds, when sails are apt to flap in to the mast and
throw the wind out of them; and great rake throw the wind out of them; and great rake are always an objection in very light winds. Topmasts, \&c., should rake the same pears to be fastest and best on the average.

Chiorororm and Is Discoverer.
The following account of the discovery of from Samuel Guthrie, Esq, of Sackett's Har bor. N. Y.
In making experiments, some eighteen years ago, with chlorine and alcohol, I obtain ed a new product. having the properties of the chlorine of ether of the Dutch chemists, with which I supposed it to be Identical. As I first obtained it, it was in solution in alcohol. In consequence of its pleasant flavor and the delightful sensation it produced when taken into the stomach, it was greatly sought fur in my neighborhood as an exhilarating
drink. Atter seeing its effects in producing a drink. Atter seeing its effects in producing a
higher degree of jollification and mirth, than higher degree of jollification and mirth, than had ever seen from intoxicating drinks, and
finding that I was introducing a dangerous auxilliary to the cause of intemperance, $1 \mathrm{re}-$ fused peremptorily ever to sell another drop to be used as an exciting beverage.
From seeing its surprising powers in restoring a daughter, nearly dead from the effects of burning charcoal ir. a close room, and other known qualities, I thought it might prove of much value in Asiatıc cholera, and while sent it into Canada Nersing this con Have \&c., in the hope that it might be tested in that frightful disease.
When first I obtained it, it was in solution in alcohol, and my first object was to separate it from all foreign matters and to present it in a state of absolute purity. This I effected on to a th of January, 1832, by concentrating it to a specific gravity of 9,486 . An account of the discovery and improvements in constructing it, up to that time, was published in the American Journal of Science and Art, by Prof. Silliman.
It was important to find a more simple mode of concentration than any I had used, and finding it was very sparingly soluble in water, I concluded that low proof spirits be used instead of alcohol in generating it, and that the product might be washed freely with water and thus freed from alcohol. The trial was made and resulted in complete suc cess.
To gi
Togive an idea how easily aud rapidly chloroform may be made, and of great purity and strength, I will detail one operation made
in 1832 , irom which course I have never in 1832, from which course I have neve since had occasion to deviate.
Into a 500 gallon copper still I poured 100 gallons of common whiskey, and then plunged in 240 pounds of chloride of lime. The still became instantly hot, and betore I had luted on the head, I had a full steam of chlo-
roform from the still worm. It continued to run freely for some time without fuel. When the product ceased to come over sweet I re- An enterprising Yankee, now in Russia, of the the receiver and rain off the remainder ; has obtained the exclusive privilege of cut-

Ancient Astronomy.
The honor of priority iiu observing the ceestial sphere had been claimed for the ancient Hindoos, the Chinese, and the Egyptians and to the two former, a knowledge of its mechanism at a very distant period had very properly been assigned. The preponderance of evidence, however, was in favor of the Chaldeans, The Hindoo tables showed a date of upwards of 3,000 years before Christ; but of upwards of 3,000 years before Christ; but
from modern calculations based upon their from modern calculations based upon their
theory, some doubts had been entertained as to its accuracy.
In Egypt, attention to the celestial phenomena commenced with the era of its early inhabitants. The exactness with which some of the pyramids were made to face the four cardinal points had given rise to the supposition that they were designed for astronomical uses. And authorities might be cited to cal uses. And authorities might be cited to
prove that they terminated at the top in a prove that they terminated at the top in a
platform which the priests occupied as an ob servatory of the heavens. But it the Greek philosopher taught his pupils how to find the height of a pyramid by its shadow, (one of the most simple examples of practical geometry,) no very high estimate cou!d be formed of the accomplishments of the Egyptians. In of the accomplishments of the Egyptians. In
Fact, Ptolemy, who lived in the country, and might be presumed to have been acquainted with its records, derived none of his materiais trom that source, but only quoted the observations of the Chaldeans.
The age of astronomy in Greece commenced in the seventh century previous to our era, but, in the writings of the oldest poets, Hesiod and Homer, some centuries earlier, passages occurred which proved that the appearance of stars and groups of stars,, had been carefully noted. Hesiod mentions that the Pleiades were invisible for forty days, and also that when they rose from the dark rolling sea, sailing was dangerous.
Thales, the Milesian, was the founder of the Ionic school, to him were the Greeks indebted for the proficiency they attained in as tronomical science; for, as a people, they were never distinguished for their study of physical nature. it was on record, though without much foundation in truth, that Thales when a boy, fell into a ditch, whilst contemplating the stars, upon which his conductress exclaimed, "Why, o Thales, du you seek to comprehend the things which are in the hea vens, when you are not able to see those on the earth?" Had Thales been discouraged and relinquished the soul-absurbing study of astronom, what the world at large, would have lost by it, is a question, which we have lost by it, is a question, which we
would leave for reflection; but, surely, it would make us pause, ere we condemned those, who, in seeking for discoveries in the intermediate paths of science, at times appeared blind to passing objects and events.
Passing over the names of some of the successors of Thales we arrived in about two centuries to that of Pythagoras, who, appeared to have reached the sublime conception of to have reached the sublime conception of
the earth's motion round the sun. The Py. thagoreans taught, that not only the planets, but the comets themselves, moved round the sun. But these views of the science, though not universally received by all enlightened minds, met with nothing but discredit and ridicule, because they were opposed to the evidences, and it appeared that so strong was the party of those ciever sticklers for "the evidence of the senses," that for 1800 years they had their own way.
Early in this period of opposition to the Pythagorean system, Egypt became the chief seat of astronomical science. The first of the Ptolemies laid the foundation of the celebrated library at Alexandria, perhaps the most extensive collection of books ever brought to. gether, before the art of printing was known. gether, before the art of printing was known.
His successor established in connexion with His successor establıshed in connexion with
it, a college for the cultivation of the pure sciences; invited the Greeks to repair to it supplied them with the best instruments of the times, necessary to their pursuits and thus arose the Alexandrian School, in which was learned those Greeks, who after the captuse of Conetantinuple by the Turks, spread ture of Constantinuple by the Turks, spread
therse'ves over Euirope and broke up the therse.ves over Exitope and
darkness of the middle ages.
Four steamboats were burned in Cincinnati on the 28th ult.

