PROTRACTING TRIGONOMETER.
The annexed engravings represent an improved instrument for protracting maps and for other uses of draughtsmen, recently invented and patented in the United States aud in Great Britain by Josiah Lyman, who may be addressed in relation to it at Lenox, Mass.
Fig. 1 shows the scale plate in its trne size and proportions, except in length. Accompanying the trigonometer is a draughting board with a metallic border, easily rendered, by its adjustments, exactly rectangular.
Fig. 2 gives a vertical view of the entire instrument, the parts being shown in their true proportions, exsept
each of them can be taken in two positions of its vernier: hence, an aximuth motion of 90° gives 180°; the bearing and reverse bearing of a line always having the same line of direction. Hence, also, by serersing the instrument, every angle may be tested. The scale plate is used on either side of the ruler, or separately, as occasion may require. In the common instruments, it has graduated upon it six decimal scales-the units being 10-8ths, $10-10$ ths, $10-12$ ths, $10-16$ ths, $10-20$ ths and 10-24ths of an inch.

On the scale plate of the best class of instruments
there are graduated nine scales instead of six. This is
places the use of logarithms, and, in all caser, the trarerse tables. It thus saves half the time and labor in the mensuration of all forms of triangles and trapeziums, areas of irregular fields, and of hights and distances. For all purposes of draughting the trigonometer is wholly unrivalled, and needs only to be known to render its use a necessity to every sarveyor, architec:, draughting machinist, map maker and teacher of these branches-in a word, to every draughtsman. And its cost is such as to place it within the reach of cvery practical map
These facts are fully substanfiated by the mathema-

Kigl 1

LYMAN'G IMPROVED PROTRACTING TRIGONOMETER

that the scale plate and rule are both represented as broken. The engraving is a little more than one-third the true size.
The metallic plate, E (Fig. 2j, has a lip projecting downward from its straight edge, to be placed against the edge of the draughting board in the usual manner of this class of protractors, when the angle is measured by the position of the index upon the graduated arc.
The principal fealure, however, in this invention is the arrangement for measnring the lengths of the lines. For this purpose, a graduated brass plate is fitted to slide upon the long arm or rule of the protractor, and upon this plate is a shorter one furnished with adjustable verniers called a "guide." Fig. 1 represents a section of the rule with a slide upon it. The slide is placed with the proper one of its zero points (marked 8, 10, 12, 16, 20 or 24) at one end of the line, and the guide, C, is slipped with its edge to the other end of the line, when the length Is indicated by the preper scale and vernier to the thousandths of an inch.
This beautiful instrument is a twofold achievement. While it is strictly a scientific combina-tion-uniting in one instrament the protractor, draughting rule and sliding rernier scale platethe accursey and skill apparent in the arrangement and construction of its mechanism are a triumph in art. For such are the peculiarities of its construction, though simple, that it enables the operator completely to eliminate the unaroidable errors of manufacture, and hence actually to lay down upon paper the data furnished by his field notes, and measure the varied parts of his work with mathematical precision.
The protractor and rule are connected by a common pivot, the divisions on the limb of the former being made to half degrees. To the attached end of the latter is fastened an adjustable, double, direct vernier, reading to minutes. The given angle and its complement are obtaiped at one setting of the instrument, and
done by merely bisecting the subdivisions of the three finer scales, changing the figuring and appending an additional vernier to each of the three corresponding vernier pieces. The units of the additional scales are $10-32 \mathrm{ds}, 10-40$ ths and $10-48$ ths of an inch. The 10-40th inch scalo furnishes an even ratio between the
ticiaus, surveyors, teachers, \&cc., in various parts of the country who have had an opportunity to examine the instrument, among whom are the following:-Edmund Blant, Esq., manufacturer of philosophical and astronomical instruments, and First Assistant in the United States Coast Survey; Professors Tatlock, Hopkins, Hubbard; Helsey, Snell and Curtis, of Massachusetts ; Messrs. O. C. Wright, Z. Ricliardsi C. H. Norton and Λ. C. Richards, of Wàshington, D. C.; Professor J. : S. Benedict, Civil Engineer New York Free Academy ; Professors H. A. Newton, W. H. Nórton, C. S. Lyman and Alex'r C. Twining, of Connecticnt ; J. H. French, Esq., Superintendent of the New York State Map; George P. Bond, Esq., Observer at the Cambridge Observatory; Professor O. M. Mitchell, Director of the Cincinuati Observatory ; mathematical instrument makers, delineators in the United States Coast Survey and Land Offices, as well as other practical surveyors, architects and distinguished teachers in various sections of the country.

Diffictity of Distinatishing a Plant from an Animal. -The more naturalisto know of the plants and animals of the globe, the more difficnit have they found it to distinguish one from the other. Among the little organisms which are invisible to the naked eye, there are large numbers about the characinch and mile; the inch in this case representing 4, ter of whieh there has long been a fierce dispute, they 40, 400, 4,000, 40,000, \&cc., chainy. The French scale, with 5,10 and 20 millimetres for the units, will be substituted for either of the systems above described whenever the demand shall require it. The same assurance is given in regard to any other scale which shall be largely demanded.
The trigonometor thus constructed is not only four tlmes more reliable than the chain and compass, but furnishes the best means yet discovered for detecting their errors. It lays down or measures, at the same time, both the angle and distance, rendering unnecessary in all trigonometrical calculations to five decimal
being claimed by the botanists as plantsand by the zoologists as adimals. Many of the plants. In certain stages of their growth, swim about in the water and look and act so nearly like animals that they would probably have always been classed as such had they not been observed to branch cut and grow up into perfect plants. There is no single character by wlich the animal or vegetable nature of an organiera.can be tested; but the safest guide in the doubtful cases is furnished by the mode in which the nourishment is taken. Animale are nourished by erganic matter, which they takc in some way into the interior of their bodies; while vegetables have the power of absorbing their food frcm inorganic elements on the exterior:

