

For the Scientific American.
Enamers.
White of modgrate mardness.-Fine lead 1 lb , pearlash and calx of tin $\frac{1}{2} \mathrm{a} \mathrm{lb}$, each ground together and melted not under too strong a heat nor too leng a period, but until well incorporated. After this it may be poured out and made into mould cakes, like the Venitian enamel. This does well for enamels that are to be painted and if two ounces of borax and common salt with one ounce of arsenic be added, but using less heat a softer enamel will be the result.
A whiter enamel than the previous one is made with flint glass one pound, calx of tin half a pound, pearlash and common salt each four ounces and borax one ounce. This enamel is very white and f roper for dial plates and other such uses. A softer enamel equally white will be made by adding to the abov more borax and not using so much heat.
For a very white enamel and very soft, proper for painting : take of pounded flint glass one pound, of antimony calcined to perfect whiteness, or of calcined tin, half a pound. of perlash and common salt three ounces, and of borax three ounces. This must not be fused until a liquid but heated until all are perfect ly incorporated with one another. This ena mel is very soft and extremely white, and by adding a little arsence it can be made softer still. It is used for the representation of white linen on enamels.

If arsenic is incorporated with common white glass, it produces a fine opaque white mixture, but care must be taken not to vitrify them, or they will become transparent and lose opacity. It is therefore difficult to use and is seldom employed.
colored substances used for painting
enamel, also the proper fluxes.
Purple of Gold.-Take of a flux of lead ore pound, pearlash six ounces and borax four ounces, with a little salt. Take of this flux six parts and precipitate of gold one part, mix them well together and paint with them.This will produce a fine crimson and the more gold used the richer or deeper will be the color. If the above composition be fluxed together with a strong fire until the whole appears a transparent deep red (when it should be poured on a clean ron plate and well levigated, it will be fit for paintırg, and answer in enamelling, as lake in oil painting, either for glazing or making dark shades of red. If this preparation be mixed after it has been levigated, with a sixth part more of gold precipitate and used without a second fluxing, a very fine and deep crimson is the result. Orange Enamel.-Take 2 parts of the same flux as for the last and the red precipitate of mercury 1 part, mix them well together and paint with them. This will not do to be subject afterwards to a very great heat as it is delicate to use. If ochre be used instead of the mercury, a dull orange will also be made. Pinks are made by using the fore going coloring substances in less quantities.
Bright Blue.-Take of fine Venitian glass 6 parts and of good ultramarine 1 part and mix them for painting, or if a very transparent blue be wanted, mix about one-eighth part ultramarine with the flux for red gold color, and fuse them together until all are vitrified and transparent, when it is poured out on clean iron, cooled and levigated for painting. More ultramarine is added for depth of color but a small poition of cobalt mixed with borax should always be used alung with it for cheapness, and it will not impair the brightness of the ultramarine. It should not be forgotten that much that is sold for ultramarine, instead of being made from the lapis laxuli, is nothing but a preparation of Prussian blue. If any copper is used in adulterating the ultramarine, it becomes greeuish on the enamel.
Cobalt is the best substance for blue enamels, it is cheap, can be used alone and makes a beautuful bright blue, deep in shade and bor .
dering on violet. With a small quantity of the gold precipitate and borax, it makes a rich parple, and by proportioning the quantities of these three substances and using some of the calx of tin, shades of hlac, lavender, in short, from the most delicate French white to the deepest blue and violet may be produced. A deep and transparent blue is made by using a flux of one pound of ground flint o white glass, six ounces of the calx of tin and the same aroount of borax with two ounces of common salt, mixing and fusing them until he mass is perfectly transparent or use enough of borax along with it to vitrify sufficiently eight ounces of coivalt. When it is fully vitrified, it is cooled and ground in a muller for painting. This makes a fine transparent blue. Any quantity can be made up in the above proportions. If a fine cobalt be used in the proportion of four times the weight of cobalt to that of calcined borax or fine pearl ashes a fine composition for a deep blue is the re sult. Light blues are made by using a small proportion of cobalt or ultramarine along with the white enamel before given.

Improvement in Aquatinta Engraving. The London Mechanic's Magazine gives he following improved process in this art :"After the intended figure is outlined, by etching or otherwise, the plate is all covered over with a ground of rosin, Burgundy pitch, or mastic dissolyed in rectified spirits of wine This is done by holding the plate in an inclined position and pouring the above composicon over it. The spinit of wine almost im mediately evaporates and leaves the resinous substance in a granulated state, especially dissolved over every part. The granulations thus produced, if examined through a magnifying lass, will be found extremely regular and beautiful. When the particles are extremely minute, and near to each other, the impres sion from the plate appears to the naked eye exactly like the wash of Indian ink ; but when they are larger, the granulations appear more distinct. The powder, or granulation, is called the aquatinta train. The plate is next heated to make the powder adhere ; and in those parts where a very strong shade is wanted, it is scraped away ; but where strong lights are wanted a varnish is applied. The quafortis, properly diluted with water is then put on with a piece of wax, as in common etching or engraving; and by repeated application of this process, scraping where darker hades are required, and covering the lights with varnish, the final effect is produced.
Engraving by aquatinta was invented by Le Prince, a Freuch artist, by whom the process was long kept a secret. It is even said that or a long time he sold his prints, (which are still reckoned excellent specimens,) for drawings."
Preservation of Books and Manuscripts. It is not perhaps so generally known as it oserfus to be, that a few drops of any MSS pomed oil will secure books and MSS rometeriorating effects of mould used by book-binders owes its power of withstanding the effects of these destructiveagents to the tar of the birch tree (betula alba.) The art of preserving books-written on papyrus and parthment, by means of perfomed oils, was kuown to the ancients. The Romans made use, for this purpose, of the oil of cedar ; hence, undoubtedly, the expression of Horace, "Digna Cedra,"-meaning any work deserving of being anointed with this oil. It is frequently the case that valuable collections of books are greatly damaged by the effects of damp, and MSS. to which grea mportance attaches, are often wholly spoiled The hint may ve worthy of attention.
Camphor is perhaps the best preservative from the ravages of the moth, of any thing known and it will frighten red ants from cupboards and pantries.
Mr. S. Weller, of Brinkleyville, N. C. made 2000 gallons of Scuppernong wine from an acre of vines, last season, and had a clear gain of $\$ 1500$, only $\$ 500$ being expended in producing this great yield.
Count Rumford, by holding a cannon within water, so heated itby the friction that he made it boil and actually boiled a piece of beefinit.

MeChanical movemgents. Universal Wind Ergine

This is a representation of Latour's wind
mill, which answered for a toy to amuse, not an engine to propel. The principle of its con struction was the power to change its face ev ery where by the peculiar shape of its sails which are not easy to describe in a single figure. The principle was that at the point to he left the arrangement of the stays was al ered and the sails were drawn or reefe close. As the spindle revolved and the weather point came exactly where the wind struck against it, the sails were reefed on that side until they came to where the wind acted to operate the shaft, when they were unfurled and exposed to the wind. The ar rangement of the stays and sails were so complex and difficult to manage for any practica uses, that it never was used.

Gransverse from Circuiar Motion.

By the eccentric which is connected with the wheel, it will readily be observed that as the wheel revolves the shaft will work trans versely. In regard to the observance of me chanical movements, it shouid never be for gotten that to trace them correctly the firs movement must be kept in mind, and then observe the connection with and trace the motion of it, as the first mover revolves, or traverses, or whatever motion it may be. This is what is called, "reading mechanival movements" This exercise is interesting for the young, to whose attention these articles ar princopally dirested, and we always wish the to have some little to study. This is bette exercise for our subscribers' sons than useles and vain conundrums.

Weights and Measures.
As all families are not provided with scales and measures referring to ingredients in general use by every housewife, Dr. Browne give the following list:
weicet and measure.
Wheat four 1 pound is 1 quart.
Indian meal, 1 pound 2 ounces is one quart. Butter, when soft, 1 pound 1 ounce is 1 quart. Loaf sugar, broken, 1 pound is 1 quart.
White sugar, powdered, I pound 1 oz . is one quart.
Best brown sugar, 1 pound 2 ounces is 1 quart. Eggs, average size, 10 eggs are 1 pound. iquid measure.
Sixteen large tablespoonsful are $1-2$ a pint, Eight tablespoonsfull are 1 gill.
Four large table-spoonsful are half a gill. A common sized tumbler holds 1.2 a pint. A common sized wine-glass holds 1.2 a gill.

Cancrete Shoal Blown $\boldsymbol{E}_{\mathrm{p}}$

A shoal of hard concrete was lately blown up in the River Thames, England, by the following most simple process. A pole was sunk in the concrete bed and a canister of thirtyfive pounds of powder was gently slid down on the pole and rested upon the bed close to the same. A copper wire was connected with the powder and one of Smee's galvanic batteries used in a boat at a safe distance. At the appointed signal the electric spark was transmitted to the powder and aoout nine feet deep and thirty feet in circumference around the canister of powder was completely raised up and fit to be lifted by the dredging machine. Although the canister of powder but rested on the concrete yel the water above acted as a fulcrum for the powder to produce the effect on the concrete bed below.

The Missoari wooden Dog.
In our daily rounds says the N . O. Delta in search of "ttems," we happened to stroll into the clothing stere of Messrs. John South well \& Co, No. 21 Canal street. Our atten tion was there directed to an extraordinary natural curiosity, formed by the growth of the limbs of a tree. The history of this fero cious looking "critter," as givea to us, is as follows:-About the year 1807, a French nat uralist was making a botanical and mineralogical excursion in the northern part of Mis souri. He took up his abode at a Shawne village for a few days, and in the wigwam of one of the Indian chiefs of the tribe, he found the curiosity in question. He purchased it put it on the back of a mule and carried it to Cauada, and finally brought it to New York, where it has been kept until purchased by Mr. Southwell. The body, the four legs and the tail, which, by the by, is the worst part of it, are all formed of one solid piece of wood, It is certainly one of the most singuar freaks of nature that we have ever seen.

To Destroy Cockroaches.
Take a sixpenny loaf of bread-the staler the better-reduce it to a crumb, (of course after paring off the crust,) then in a pint of water put two spoonfulls of cayenne pepper, one of puiverised orris seed, halr a drachm of saltpetre, the same quantity of white lead. and a vine glass full of extract of hops. Now throw in your crumbs of bread, dicest for six hours in a moderate heat; strain through cloth, add to the liquor 30 drops ef the tincture of quassia, and let it stand till next day; then bottle it and keep it in a pantry Some dozen lumps ot sugar saturated with this mixiure, and strewed about the kitchen will remove the pest in a ferv days."
The above can be easily tried, all we can say regarding it is that it appeared in one of our exchanges and it appears to be worthy of a trial.

New Coat.

A double coat has been in vented in England 30 arranged as to form a dress coat one side out, and a weather proof travelling coat the ther side.-Ex.
Truly, a two-sided habiliment.
By taking two wafers and sticking them on wall about 12 inches apart, and then stepping back a few feet with one eye shut, one of the wafers will disapuear.

This paper, the most popular weekly publication of the kind in the werld, is published At 123 Fulton Street, New Yor \dot{k}, and 13 Court Street, Boston,

BY MUNN \& COMPANY

The principaloffice being at New York.

The SCIENTIFIC AMERICAN is the Ad rocate of Industry in all its torms, and as a Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Fach number contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRA VINGS of the most important inventions; catalogue of AMERICAN PATENTS, as issued from the Patent Office each week; noti ces of the progress of all new MECHANI CAL and SCIENTIFIC iarentions; instruc tion in the various ARTS and TRAUEG, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the latest RAILROAD INTELLIGENCE in EUROPE and AMERICA ; all the different MECFHA NICAL MOVEMENTS, published in a series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c.
The Scientific American has already attain ed the largest circulation of any weekly mechanical journal in the world, and in this country its circulation is not suppassed by all the other mechanical papers combined.
Wror Form seeinside

