THE POLYTECHNIC ASSOCIATION OF THE AMERTCAN INSTITUTE.
[Reported expresely for the Scientific Americsa.]
The usual weekly meeting of this association was held at the Institute rooms, on Thnrsday evening, 11th inst ; Professor C. Mason presiding.

> MIBCELLANEOUS BUBINESS.

Social Pragress. - On taking the chair, Professor Mason said: Our reception, this day, of the Prince of Wales-the symbol of British nationality-is in strange contrast with the dismission my grandfather helped to give his great-grandfather, when they broke down the statue of George III, at the Bowling Green, and reviewed his last troops on Evacuation day. It is quite in contrast with a more reeent state of things, which led my youthful company, in Rensselaer county, to offer themselves to Governor Tompkins, for the defense of the harbor, in 1815. But that year closed the long period of the war. The attempts to mend the world by fighting ceased from sheer exhaustion, and left the poor nations of the earth to the ameliorating experiments of apphed scieace.

In 1819, Neilson invented the hot-blast furnace, which reduced the coal required to make a tun of iron from seven tuns to lese than two, and brought into use the neglected black band ore. Two jears later, the rolling mill appeared and produced a greater economy in the working of iron than the hot blast had made in its preduction.
But the great cost of conveying persons and property, except on navigable waters, was the stumbling block of social progress. This difficulty led the contrivers to explore the coal mines, where ingenuity had converted a steama pump into a nondescript machine for the carrying of coals on wooden trams, through long levels, to the moath of the pit. World-building had operated at first from beneath, in throwing up hills. The anderground contrivances seat np the locomotive to rebuild the world by a cheap and rapid conveyance of persons and property throagh the valleys which ran among the hills, or, if need be, under the hills, so that all lands might be inhabited, and all people enjoy all the products of the earth, by means of moderate, educated labor.

The whole work is done and has been done since I was the captain of a uniformed company; and the Prince of Wales has made the tour of North America in less time and with less discomfort than it would have cost George III. to explore the counties of Ireland.
"Look now at the social results. The men of science have had the field about as long as the fighting men had occupied it-say forty years. The results may be justly measured by the popnlation and its condition.
"Greatness may be attained by a nation of small numbers; Greece was an example. But greatness ranks far below welfare, and welfare is measured by happy numbers.

The men of science have mnltiplied the happy numbers of men, with a softened and diminished labor. They have more than doubled the entire population of Europe, and these large numbers are better taught, better fed, better clad, and better housed than the small population of 1815.
"In this conntry, since Evacuation Day, applied science has multiplied our whole popalation by eight. And if this welfare does not amount to greasness, it is safficiently like it for all useful purposes.
"The wild beasts rejoiced in the acquisition of this island, and lett it with relactance. When the Indians arrived here, they rejoiced in the leisure and safety derived trom its vast resources as a fishing ground, and they preferred doath at the hands of the Dutch than life elsewhere. The Dutch gloried in resources of which the Indians never dreamed, and extended their outlying settlements beyond Spaytenduyvil. And when they vielded to the English, they secnred the right to remain. When the English gielded to the Yankees, and retired, we wore surprised to find that our people acted and talked and \cdot legislated and worshipped and taught and traded like Engllshmen in everything but royalty and lordship. And this day proves that we like an occasional glimpere of these.

At this moment I recall what my paternal grandfather, who was a stannch tory, ased to say when I was a boy: "Remember that we were a race of Englishmen
long before we were Yankees, and we shall be a race of Englishmen long after demncracy has passed away."

The Reorganization.-The Committee on re-organization made their final report and were discharged with thanks for the faithful discharge of their laborious duties. A beginning of the new order oi things was made by the members subscribing to the rules of the clab.

Domestication of the Ootrich.- Lieutenant Bartlett gave a very interesting account of recent successful attempts, in France, of domesticating the ostrich. Late observations show that many of the popular notions regarding the ostrich are erroneous. It is commonly believed that the ostrich lays its eggs in the sand, and abandons them to be destroyed or to be hatched by the heat of the sun. The fact is, however, that the ostrich is peculiarly careful of its eggs, and is more faithful to them than the hen. The labor of sitting is divided between the male and female birds, each taking its turn. The male sits nineteen hours and the female five hours each day. The hens in good condition lay an egg every other day, and it is supposed that ostriches, if \cdot well taken care of, would be as prolific as ordinary fowl. Ostrich feathers always find a ready market, and it is said that the meat is delicious.
The President here called np the regnlar subject: "Cut-off Experiments."

discussion.

Professor Hedrick, assisted by Mr. Rowell, described an apparatns used in the series of experiments on the expansion of steam. at Waterman's factory in Cherrystreet. The apparatus mainly consists of two chambers or vessels, each of 1 cubic foot capacity, and connected to each other by a 2 inch pipe provided with a cock of large port. By charging one of the vessels with steam at high pressure, and then exhausting it into the other, is was sapposed that the practical deviation, if any, from Mariotte's law would be shown. One of the vessels it connected directly with the boiler, while the other is furnished with a blow-off cock. In order to keep the vessels at any desired temperature, they are entirely im mersed, including the connection pipe, in an oil bath. The two vessels, when in the bath, are separated by a partition, so that the temperature of either may be va ried independently of the other. Finally, the vessels are provided with pressare gages. The manner of making an experiment is as follows: tho oil bath is heated to the temperature of the steam of the boiler; the blow-off cock being opened, steam is' passed through the vessels till the air has been replaced by steam. The cock of the connecting pipe is then closed, and the pressure of steam in the second vessel falls to the atmospheric pressure, when the blow-off cock is closed. The connection with the boiler is now cat off from the first vessel, and the cock of the connecting pipe is opened. The steam of the first vessel now.expands into the second, the pressure is equalized, and the gages show what variation, if any, there is from theoretical calculations. Mr. Rowell rcmarked that the conclusion from the many experiments made was that the actual expansion of steam varies about 10 per cent from the law of Mariotte. If theory is correct, 60 lbs. pressure in the first vcssel should become 30 lbs . on expansion. But it becomes less than 28.

Mr. Koch-The fignres by theory, are 28.6. I have made a careful examination of this subject, and am pre pared to demonstrate that $60-\mathrm{lb}$. steam on doubling its volume has a pressure of precisely 28.6.
Mr. Garvey-This apparatus is open to many objections. It cannot be relied on. The temperature cannot be uniformly maintained. Even the gages will convey away heat enough to vitiate a conclusion. The construction is grossly inaccurate.
Mr. Rowell-The gentleman's language is too severe. I shonld not object to his telling ns, if he thinks so, that the apparatus might lead us to entertain erroneous con clusions, bnt "grossly inacenrate" is offensive.
Mr. Garvey-I do not mean any less than I say.
Mr. Dibben-I was present at some of the experiments with the apparatis and was afforded every facility of examination. The resulte given by it are not anomalies whenreasonably considered, and do not in the least weaken my confidence in the utility of the steam expansively. At the time the experiments were made, I took notes of what was done, but inadvertently I have not brought them with me. I will, however, give the
figures approximately from memory, and be able to show how this apparatus operated in practice.
1st. Experiment.-Boiler pressure, 45 lbs.; lst vessel, 300°; 2d vessel, 175°; pressure after expansion, 5 lbs. Here it is evident that the steam was almost instantly condensed in the 2 d vessel.
2d. Boiler pressure, 45 lbs .; 1st vessel, 300°; 2 d vessel, 300°; final pressure, $6 \frac{1}{\frac{1}{2}} \mathrm{lbs}$.
3d. Boiler pressure, 45 lbs.; lst vessel, 300°; 2 d ressel, 210°; final pressure, 7 lbs.
4th. Boiler pressure, 45 lbs ; 1 ist vessel, 330°; 2 d vessel, 300°; final pressure, 22 lbs. In this experiment the steam was superheated before expansion. The vessels were now taken out of the oil baths, and the experiments were continued, no particular care being taken to regalate their temperature-

The experiments in the air are nearer the ordinary conditions of practically-working steam, and clearly show the gain by expansion. Mr. Dibben continued with comments ou the experiments and pointed out how the conducting power of the oil accounted for the apparent anomalies of the first set.
Mr. Seely-Mariotte's law, until recently, has been accepted as mathematically true. It has been shown, however, that no gas whatever conforms to it, some varying one way, some the other. The condensible gases and steam vary much more than the permanent gases, and with these the variation is always greater near the point of condensation to the fluid state. These facts have been demonstrated by the ablest experimentors of modern times, and the particulars as to steam and the most common gases may be found in almost any of our large treatises on chemistry. The variations from Mariotte's law are however so small that in ordinary discussion of steam and air we very properly neglect them; they would only complicate the subject unnecessarily. Now, if this apparatus is designed to show the fallacy of the Mariotte theory, it is clamsy and unreliable.
Professor Hedrick-The apparatus is designed to illustrate the practical working of steam, and for that parpose it is admirable.
Mr. Seely-I agree with Professor Hedrick as to the utility of Mr. Isherwood's experiments. I object to the apparatus only when it is proposed to determine by it a philosophical principle.
Professor Hedrick-I understand that these experiments are carried on only in view of aseful results. No one denies that steam under pressure will expand with power. The practical question is how much of this power can be realized, and the experiments will probably show that the advantage of expansion is commonly overstated.
Mr. Rowell-Mr. Stevens, of Hoboken, says he has ased all kinds of engines and applied many tests, and the result of all his observations is that there is no advantage in cutting off at less than one half.
It was ultimately agreed to defer the conclusion of the discussion for a future meeting, when the final report of the committee should be ready.
Subject for next week: "Recent Practical Applications of Magnetism.

HOW NEW YORK SELLS DRY GOODS.
The New York correspondent of the Boston Past furnishes the following statements in regard to the leading traders of this city:-
Claflin, Mellen \& Co. are the heaviest dealers in merchandise in New York-their yearly business exceeding that of Stewart by some three million dollars. Their aggregate sales swell up to the enormous figures of eleven millions annually. The per centage of net profits on this amount is, however, quite small ; bnt even at eight per cent, the sum of eight hundred and eighty thousand dollars must find its way into the private bank accounts of the several partners. Next, in amount of sales, comes the establishment of A. T. Stewart \& Co. They sell eight millions a year, of which two and a half millions are disposed of at retail, and the remainder at wholesale; $\$ 300,000$ worth of gloves alone are handled by this house. No paltry per centage is assessed upon the buyers at the Broadway marble palace. The class of goods sold is such as always bears a high price and a large profit. I happen to know of one instance where a
twentieth share netted one of the partners $\$ 60,000$ in a single year, which jroves the profits of that year to have been $\$ 1,200,000$. One million dollars a year will be about the margin of excess over all expenditure. Next in the same line come the houses of Lord \& Taylor, and Arnold, Constable \& Co., the former of which does a business, in several stores, of $\$ 6,000,000$ annually, at a profit of some $\$ 800,000$; while the latter firm enjoys a regular anchanging trade of about four and a half or five millions, which pays a yearly profit of not far from six handred thousand dollars. Of houses in the dry goods trade, whose yearly trade ranges from five to seven millions, there are several, as for instance, C. W. \& J. T. Moore \& Co., Phelps, Bliss \& Co., and S. B. Crittenden \& Co. Their profits foot ud variously from two to four hundred thousand dollars. J. R. Jaffray \& Sons, anir leading lace house, sell enough of that strictly female fabric to net them six hundred thousand dollars a year profit. Some of the Boston branches located here, exceed in their sales five millions yearly. Such are A. \& A. Lawrence \& Co., J. W. Paige \& Co., and A. F. Skinner \& Co. The first-named firm, as every one knows, place some ten million dollars worth of domestic fabrics per year. The profits of all these commission houses are only from one to two per cent upon the sales. Garner \& Co., a commission firm, sell between eight and nine millions per year at paying rates; while of those doing a dry goods commission business of from three to five millions may be named Hoyt, Spragnes \& Co., Low, Harriman \& Co., and Hnnt, Tillinghast \& Co. Their profits overleap a hundred thousand dollars a year. There are several French and English importing houses whose sales overrun into the millions, and whose profits are a fortune every year.

THE WAY JOULE'S EQUIVALENT WAS AS. CERRTADNED.
First, By observing the calorific effects of magneto electricity. He caused to revolve a small compound electro-magnet immersed in a glass vessel containing water between the poles of a powerful magnet; heat was proved to be excited by the machine by the change of temperature in the water surrounding it, and its mechanical effect was measured by the motion of such weights as by their descent were sufficient to keep the machine in motion at any asaigned velocity. Second, By observing the changes of temperature produced by the rarefaction and condensation of air. In this case, the mechanical force producing compression being known, the heat excited was measured by observing the changes of temperature of the water in which the condensing apparatus was immersed. Third, By obeervjing the heat evolved by the friction of fluids. A brass paddle-wheel, in a copper can containing the fluid, was made to revolve by descending weights. Sperm oil and water yielded the same results. Mr. Joule considered the third method the moat likely to afford accurate results; and he arrived at the conclusion that one unit of heat was capable of raising 772 pounds 1 foot in hight; or that the mechanical equivalent of heat was expressible by 772 foot-pounds for one unit of heat-known as "Joule's equivalent."

The following are the values of Joule's equivalent for different thermometric scales, and in English and French units:-

kilogramme of water...............................
423.65 kil'tre.

ROOM PLANTS.

During the cold days of winter, when fields and gardens are stript of their foliage and coloring, it is pleasant to witness the care and the taste which some ladies bestow in the culture of flowers in their houses. The last number of the Horficulturise contains an intereating article on this topic, from which we select a fow extracts for our lady readers:-
We should be glad to do or say something to in crease the number of those who grow room plants. It is true that plants cannot be as well grown in rooms as in a well-constructed greenhonse; but, notwithstanding. there are some kinds that may be grown and flowered im a manner quite satisfactory, and with resalts highly gratifying. Certain conditions are necessary for the bsst snecess, and these it is our object to point out. The greatest obstacle to success is the dryness of the air: thls mig. in a measnre be orercome by a table suitahly constructed, and the selection of plants best adapted to a dry atmosphere. The table should be the length of
the window, and two or three feet wide, the boards being tongued and grooved. Around the edge nail a strip three inches wide, making the corners fit tight. white sand. With table with two inches of clean white sand. With a table of this kind, the foliage of the plants can be frequently syringed or sprinkled with water, which keeps them clean and promotes their health ; the drippings and surplus water are caught and absorbed by the sand, and the floor of the room is thus kept clean; the sand, indeed, onght to be kept constantly wet, and even watered for this parpose, if necessary. The evaporation from the sand will diffuse itself among the plants and through the room, and thas overcome, in a small degree, one of the chief obstacles to the successful calture of plants in rooms. The table should be fitted with rollers, to facilitate the operation of watering and cleaning the plants, and also for the purpose of moving it back from the window during very cold nights. The flower-stands in common nse are aitogether unfit for a room; the surplas water, dead leaves, \&c., fall to the floor, injuring the carpet, and giving the room an nntidy appearance. The table giving the room an nntidy appearance. The table above described is free from these objections, besides
having positive advantages for the successful growth of having positive advantages for the succersful growth
plants which no ordinary flower-stand can possess.
plants which no ordinary flower-stand can possess.
All rooms do not possess equal advantages for gro
All rooms do not possess equal advantanges for grow-
ing plants. A room with large, high windows, looking ing plants. A room with large, high windows, looking
to the sonth, is the best ; the next best is one with a to the sonth, is the best; the next best is one with a
southeast or southwest exposnre; next, east ; next, southeast or southwest exposnre; next, east; next,
west ; and the least desirable of all, one looking to west; and the least desirable of all, ane looking to
any point north. A large bay window witha sonthern any point north. A large bay window witha southern
exposure possesses many advantages for growing plants, quite equal in many cascs, and superior in some, to these stractures absurdly called "plant cabinetr," nnless the latter be intended for the preservation of dried specimens, the only parpose for which most of them are fit. A basement window with a southern exposnre will sometimes answer tolerably well, bnt a room in the upper part of the house is always to be preferred.
Plants cannot be well grown anywhere, or under any circumsiances, when crowded together; it is always more satisfactory to grow a few well than to grow many indifferently. During very cold nights the table may be moved to the middle of the rom ; and if the mants be moved 0 the midale of the room, and if the plants should unfortunately get frozen, darken the room and
throw water over them repeatedly till the frost is drawn out, and then expose them gradually to the light. drawn out, and then expose them gradually to the light.
In this way we have saved plants when the ball of earth In this way we have saved plants when the ball of earth
has been frozen as hard as a brick. Room plants should not be brought into the house till the nights get frosty, and while ont of doors they should have a sunny expo sure. Insects should be looked after, and destroyed on their first appearance; a little attention in this way will keep them free from such pests.

Ormamenting Room Windows.-The following very simple method of decorating windows, when it is desirn ble to shat off a portion of light, and subdue its charac ter, is described in the Loodon Photographic Nesc:The glass mast be thoroughly cleaned and freed from every sign of grease. Then mix on a slab of groundglass, palette, or what not, a little of the tube oil color, sold for the purposes of the artist, dilnted slightly with a little pale drying oil. Lay this thinly over the glass with a large, soft brush, and then taking a large hog hair tool, the hairs of which are of a perfectly uniform length, hold it perpendicularlyto the glass, and commence dabing the ends of the hairs, gently, and with an equal amount of pressure over the whole surface, until a uniform degree of opacity is secured, and the glass has all the appearance of being ground. Now, if you desire to give this a very decorative character, closely resembling that of what is termed embossed glass, you may do so with mach ense. Draw out, first, on a piece of paper the required size, some pattern of an elegant character, a design for which may easily be discovered in any work on ornamental art, making the lines sufficiently strong to be seen through the semiopaque glass; and then, with wooden points of various degrees of thickness, some finely pointed, and others wider and flat (like the edgeof a chisel) trace ont on the painted surface of the glass the drawing laid under it. The points will remove the wet paint. A piece of wash cather is sometimes fastened to the ends of the sticks for the better clearing off of the paint, but in this case you mast carefnlly prevent the leather becoming charged with paint, by repeatedly cleansing or changing it. This pattern being clearly defined and pertectly transparent, the glass is then pat aside to dry, and fixed in its place the painted side inwards. To crean it use simply a little pure warm water vithout saap.

Ir is stated, in a late foreign paper, that bathing ha been found to be a certain cure for plenro-pnermonia; that a gentleman in Ireland, who tried the experiment on eight cattle who wero infertod, saved seven of them by driving them into a bath.

A COLUMN OF VARIETIES.

The Spaniards of South America nse twisted rav hide for ropes and as substitates for log chams in workmg their cattle. Raw hide is very strongand lasts quite number of years, even when considerably exposed.
Shingled roofs, whitewashed with lime, las: nearly twice as long as roofs which receive no treatment to render them dnrnble.
The total amount of wheat received at Chicago, since the 1 st of Janunry last, is $\mathbf{2 6 , 8 6 0 , 9 7 3}$ bushels, against 12,428.478 bushels received in the corresponding period last year.

The Pacific Mill at Lawrence, Mass., is the largest actory, in a single building, im the world. It is 800 feet long and 80 wide, and contains 108,000 spindles, with all the attendant machinery to manufacture delaine and muslin goods, from the raw material up to the finishing toach ready for market.
The Magnetic Telegraph Company in England, which has lines extending throngh the whole United Kingdom, issnes stamps for franking messages. This is similar to the postage stamp system, and is found very convenient to merchants and others.
The last number of the North British Reviec eontaine an article on meteorology, in which severe winters are stated to be eonnected with the appearance of spots on the sun. If the writer's theory be correct, the next winter shonld be a very cold one.
It is stated by Mr. Nicholas Longworth, of Cincinnati, the great vine cultivator, that wine made from the best native American grapes surpasses in anality the best wines of Enrope.
The tobacco crop inspected at Richmond, Va., for the yoar ending October 1, 1860, amounted to 46,633 hhlls., which is an increase of $\mathbf{4 , 8 3 5}$ hhds. over last year's crop.
On the 16th of Augast last, a flash of lightning strnck a windmill at Lappion, in France, in which there was a female who was killed by the electric flaid, and on whose body there was left the picture of a neighboring trec, with all its branches and leaves complete. This singular tatooing by the lightning was seen and attested by medical examiners and the manicipal authorities of the place.
The Philadelphia Engineer advooates the employment of single cylinder locomotives, as their adoption would mark a revolution in locomotive constraction, and resal in great economy. A number of locomotives with single cylinders are stated to have been made br Neilson \& Co., of Glaggow.
Mr. Holley, in a commanication to the Nerv York Times, states that " the cost of hauling a passenger or a tnn of goods a mile on an English railroad is about one-half only of what it is in America." The reason of this is that English roads are better constracted and equire less power to do the work.
Two years agn, a Canadinn, near Acton, C. E., while engaged in digging potatoes, found some fragmentn of copper ore. On the 15th of September, 185\%, Mr Lewis Sleeper, a school teacher at Montreal, having obtained a lease of the grounds, commenced the development of a mine with great success, having, since March last, taken out $\$ 200,000$ worth of ore, some of the blocks weighing 15 tuns. A few days ngo this mine was sold for $\$ 500,000$, of which Mr. Sleeper received $\$ 200,000$.
From the census of Australia, taken on the 1st of April last, it appears that the total popalation was 117,727 . Of this total of 117,727 , no less than 43,349 were born in the colony, 49,788 in England and Wales, 7,172 in Scotland, 12,128 in Ireland, 2,201 in other British possessions, 7,864 in Germany, 1,093 in foreign countries, leaving 122 not specified.
The numerous cases of poisoning resulting from the employment of the pigment known as Brunswick green, or arsenite of copper, has induced the French sanitary hoard to take measures to suppress its ase in variots arts, an those of the dyer, calico printer, paper stainer, \&c. Many articles of ladies clothing dyed with this pirment, artificial flowers, \&c., have caused dangerons illness to their wearers. In light materials, ns gruze, inrlatan, \&c., this pigment is shaken out in considerable quantities daring dancing, or rapid mation necompanied by friction, and finds its way into the fuess and nostrits of the wearers, producing the most alarming aymptoms.

