

For the Scientific American Japanning.

Concluded from our last.)
The finishing part of Japanning lies in lay ing on and polishing the outer coats of var nish, which is necessarv in all painted or sim ply ground colored japan work. When bright ness and clearness are wanted, the white kind of varnish is necessary, for seed lac varnish which is the hardest and most tenacious, im parts a yellow tinge. A mixed varnish we be lieve, is the best for this purpose, that is, for combining hardness and purity. Take then thre ounces of seed lac picked very care fully from all sticks and dirt and washing it well with cold water, stirring it up and pour ing it off, and continuing the process until the water runs off perfectly pure. Dry it then and reduce it to powder and put it with a pint of pure alcohol into a bottle, of which it must occupy only two-thirds of its space. This mixture must be shaken well together and the bottle kept at a gentle heat (being corked,) unil the lac be dissolved. When this is the case, the clear must be poured off, and the re mainder strained through a cloth and all the clear, straned and poured, must be kept in a well stopyed bottle. The manner of using this seed lac varnish, is the same as that of using the other, and a fine polishing varnish is made by mixing this with the pure white varnish described in a previous article. The pieces of work to be varnished for finishing should be piaced near a stove, or in a warm, dry room, and one coat should be perfectly dry be fore the other is applied. The varnish is ap plied by proper brushes, begipning at the mid dle passing the stroke to one end and with the ther stroke from the middle to the other end Great skill is displayed \cdot in laying on these coats of varnish. If possible the shill of hand should never cross, or twice pass swer in giv ing one coat. When one coat is dry anothe must be laid over it, and so on successively for a nu mber of coats, so that the coating should be sufficiently thick to stand fully all the polishing, so as not to bare the surface of the colored work. When a sufficient numbe of coats are thus laid on, the work is fit to be polished, which in common cases is commen ced with a rag dipped in finely powdered rot ten stone, and towards the end of the rubbing a little oil should be used along with the pow der, and when the work appears fine and glos sy, a little oil should be used alone to cleanoff the powder and give the work a still brighter hue. In very fine work, French whiting should be used, which should be wash ed in water to remove any sand that might be in it. Pumice stone ground to a very fine powder is used for the first part of polishing and the finishing done with whiting. It is always best to dry the varnish of all japan work by heat. For wood work, heat must be sparingly used, but for metals, the varnis should be dried in an oven, also for papier mache and leather. The metal will stand the greatest heat and care must be taken not to darken by too high a temperature.
When gold size is used in gilding for japan work, where it 18 desired not to have the gold shine, or appear burnished, the gold size should be used with a little of the spirits of turpentine and a little oil, but when a considerable degree of lustre is wanted without burnishing, and the preparation necessary for it, a little of the size along with oil alone, should be used
I now conclude these artucles on Japaining and Varnishing. A great deal more might be said, but this may be sufficient for the present. There ace ot her mixtures that can be used, and there are some variety of opinions among practical men. What I have said may be olil to some, but presume that much may oe new to many and be of some benefit to not a few. At some other period I may again present some more information on the same or other branches in connection with this subject and
shall endeavor to be as condensed, plain and practical, as I trust I have been. My honest ndeavor at least, being a desire to bring out in public print, something relative to an important art which winds itself round a great number of different trades, and for which I have ever sought in vain for information in any work published in my own lifetime.

M. K

Floating Beda

Some curious and interesting experiments have recently been tried in London, on the Serpentine River, to test the powers and buoyancy of of a novel hammock bed, of simple construction, intended for the preservation of ives at sea in cases of shipwreck. Captain Stevens and his son, and several gentlemen connected with naval matters, threw themeves into the water, into which the hammock mattresses were thrown. They gol hold of hem and found no difficulty in placing themelves upon them, and floating comparatively high and dry for a considerable time. The experiments took place early in the morning, and witnessed by many scientific persons.

Apple Tree Posts.

Friend Buckminster of the Massachusetts Ploughman, suggests that apple trees be set out on a line, where you wish to have a permanent fence, about ten feet apart.-In the course of ten years they would be large enugh to mortise in to put cedar or chesnut rails. These, he thinks would last more than half a century. In the mean time the fence posts would occasionally bear apples, and hus they would become proftable in "divers ways.

The Velocipede or Warer Walker is an ap paratus used as here represeited, a, b, c, are hree hollow tin cases of the form of an obong hemispheroid, connected together by three iron bars, at the meeting of which is a seat for the exhibitor. These cases, filled with air, are of such a magnitude that they can easily support his weight, and as a, b, and a, c are about ten feet, and b, c. about eight eet, he floats very steadily upon the water. The exhibitors' feet rest on stirrups, and he ttaches to his shoes, by leather belts, two paddles, d, e. which turn on a joint when he brings his foot forward to take the stroke, and keep a vertical position when he draws it back against the resisting water. By the alter nate action of his feet, he is enabled to ad vance at the rate of five miles an hour. W have witnessed the above novel experiment.

Concrete for Cellar Floors The mortar is to be made of one part sand to one half part hydraulic cement, measured in rather stiff paste. Then one part mortar thoroughly mixed, is to be united with two and a half parts broken stone, or brick-the largest pieces not exceeding 4 oz . in weight, or of gravel of similar sizes, or of oyster shells or of either of these mixed together. These corse materials must 'je very free from sand or dirt.
The concrete thus made, must be put down in a layer of not more than six inches thick, which will be about the proper thickness for the floor; rammed very hard, and until out or sight: care being taken to bring the top of the mass into the proper place of the floor by the first process; no subsequent addition of plaster being admissable P_{y} the help of a straight edge, drawn over guide-pieces, the surface may be made smooth and even by th first operation

Fires in chimneys in France have been pre vented by placing three frames of wire-wort the chimnoy each other, near the b

MECHANICAL MOUEMENTS. Friction Polisher.

This arrangement has bee used for polish ing mirrors, where it is essential that the fric tion should not be reperted in the same line The ropes which go round the central pulley are fast to the perpendicular shafts, and the square mirror is fixed to a pulley. Thus by the back and forward motion of one of the shafts, the mirror is caused to describe irregu ar curve, on every part of its surface

The small centre on the left being the point of vibration of the balance, and the horizontal spring that which holds the ratchet wheel, when the small point on the balance centre is vibrating downwards, it passes a small spring which is held at its opposite extremity near the screw head on the right hand, at the same time the indented part of the circle round the balance centre holds a tooth of the ratehet but on the return of the balance the same point again comes in contact with the small spring, which resting against a stop at the extremity of the spring, which presses on the two top teeth of the ratchet, relievas and then allows a tooth to escape at the same time thd the indented part of the balance is on the return to receive it. This is called the free es capement.

For the Scientific America

To Dye Wool with animal Substances. lac red.
in ix oxygenised muriate of tin with lac dy ill thick as treacle, and set it aside for six hours. Have a well tinned copper boiler near ly filied with scalding water, into which throw some bran, and a sufficient quantity of newly made nitro-muriate of tin, (tin dissolved in one part nitric and sixteen parts muriatic acid,) add cream of tartar in nearly equal weight to the solution of tin employed, pour in the

scarlet.

To a dye prepared as directed for lac red, add either sumac, American bark, or young fustic, in quantity according to the shade required, cool down with cold water, turn in the wool and boil it for an hour, then rinse it and the color will be permanent
crimson.
Use only half the quantity of tartar speci fied for lac red, and omit the yellow coloring matter; after rinsing the wool, pass it through a fresh scalding liquor, with archil or cudbear. purple.
Follow the directions given ior crimson ubstututing logwood for archil or cadbear.

> COCHINEAL RED.

Put two pints of the best Dutch aquafortis into two pints of water, and from one to two ounces of sal-ammoniac in powder; add granulated tin, a small bit at a time, till sufficient is dissolved, and cream of tartar as for 1 ac de, with well-powdered cochineal in quanity according to the deepness of the shade required. Cool down the preparation with cold water, put in your wool, and boil it for two hours, then rinse in cold water. It is far bet ter, however, to use this quantity in two boils leaving out the cream ot tartar in the second, and adding instead starch, and sometimes common saltalso.
cochineial crimion
After rinsing the wool out of the red dye,
pass it through a fresh scalding liquor of archil
or cudbear as for lac crimson, or through a warm solution of liquid manure from the cow yard.
cochineal purple.
Proceed as for crimson, substituting Saxo blue (sulphate of indigo) for the arebil or cudbear.

Same as for red, using young fustic.turmeric, or American bark, (Quercitron) in the Grst bath, and omitting it in the second. It is indispensable that for cochineal scarlet the wool should have two boulings
The colors obtained from cochineal, though uperior in brilliancy, have not the permanent qualities of the lac dye or the madder red.

New Biue

A continental paper says that one Rydni, proprietor of a great dyeing establishment near Gottenberg, a famous place for dyers, has invented a mode of dying cottons without indigo ; the blue colors obtained by the subotance employed is said to be as clear and fastas that obtained by indigo, resisting the strongest lye, potash and sulphuric acid, and costs but onesisth the price.
These are the tests for permanent colors. The process is kept secret, and if it be true in relation to the price the discovery is a valuable one, if not, no depreciation in the value of indigo may be expected.

Ball Proor Garment
The Dublin papers contain an advertisement announcing that a tradesman has succeeded in inventing a "shot and ball proof arment," which the inventor terms a "landlord's protective garment," and which will rotect its bearer from being shot.

nolian Biner.

From recent discoveries on the shores of Lake Superior, it is supposed that some of the veins of copper were worked by the Indians in the days of yore. Wedges and hammers made of stone have been found in some of the pits.
An Editor down east says that the constant murmur of the sea reminds him of bis wife.

THE NEW YORK

SCIENTIFIC AMERICAN :

This paper, the most popular weekly pub cation of the kind inthe world, is published At 128 Fulton Street, New York, and 13 Court Street, Boston,

BY MUNN \& COMPANY.

The principal office being at \mathcal{N} eav York.
The SCIENTIFIC AMERICAN is the Adocate of Industry in all its torms, and as a ournal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Each number contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRA VINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as is sued from the Patent Office each week ; noti ces of the progress of all new MECHANI CAL and SCIENTIFIC inventions; instruc tion in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the latest RAILROAD INTELLIGENCE in EUROPE and AMERICA ; all the different MECHA NICAL MOVEMENTS, published in a serie and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c
This Journal is not only useful to the Me chanic and Manufacturer, but instructive the Farmer, apprising hin of all the improve. ments in Agricultural Implements, besides to instruct him in all the Mechanical Trades. As a family paper, the Scientific Amernca will convey more useful Intelligence to chil dren and young people, than ten timesits cost in schooling, and as a text book for future reference, (it being in quarto form, paged, and suitably adapted to binding, each volume will contain as much useful information as a large library
The Scientific American has already attain ed the largest circulation of any weekly me chantcal jourual in the world, and in this country its circulation is not surpassed by all the other mechanical papers combined
nes For terma see inside

