than 15°. Whatever the size of the wheel may be, no less than 24 guides and not more than 27 are used. The number of floats used will depend on the size of the wheel, but never less than 23 and not more than 4 inches apart for a wheel of any diameter.
The advantages claimed for this whecl are, 1st, The wheel has not a great weight of water bearing on it to wear the step away; 2d, The wheel may be readily raised without removing it from its proper working position; 3d, All parts are very accessible for repairs and removable at pleasure; 4th, It is very light, and may be started with little water.
Further information in relation to this invention may be obtained by addressing the inventor, A. M. Swain, at Lowell, Mass.

IMPROVED COMBINATION AUGER.

Augers with adjustable cutters, by which holes of different sizes can be bored with a single tool, are no new invention, and the one here illustrated claims to be only an improvement on those heretofore in use.
The shaft is constructed of a solid cylinder, cast of malleable iron, and the flange that surrounds it is made sharp on its edge, as seen in Fig. 1, in order that it may cut in pieces any chips that, if left whole, might choke either the entrance of the auger or the escape of the chips. Said flange, as will be seen, runs the whole length of the shaft, so that it can be bored in the whole length if desired, without taking it out to clear it. The number or measure in inches is put upon the center column of the shaft, so that the user may know the exact depth of the hole without otherwise measuring it. The cutter, as represented in Fig. 3, is made round and flat, with two cutting edges which project below the body of the cutter, similar to the iron or cutting part of a plane, and having projecting spurs or lips similar to other augers. By this shape of cutter, all the chips are drawn out when the auger is withdrawn, so that, if it is necessary to bore deeper, there are no chips left at the bottom of the hole to hinder the feed screw and cutter taking hold readily. The cutter is held to the shaft, as seen in Fig. 3, by a dovetail tenon made upon the shaft, and a dovetail groove made into the cutter. It is made to extend or not. When not made to extend, the cutters are made with simply a square hole in the center for the end of the feed screw, b, to pass through; in which case a different sized cutter must be put on for each sized hole required. But when the cutter is made to extend, there is a set screw, a, that runs through one shoulder of the cutter, which screws against a shoulder made upon the shaft adjoining the dovetail tenon, and points are made into the shoulder for the point of the set screw to enter (see Fig. 3), so that it is held firmly wherever placed. Upon the opposite shoulder of the shaft (as will be seen in Fig. 1) is marked a guide or measure, and the other shoulder of the cutter runs against this shoulder as it is slid upon the dovetail, s) that the cutter is readily set to cut any sized hole required. The hole in the cutter for the feed screw is elongated to allow the cutter to slide when the feed screw is in. When the cutter is in a central position with the auger, the tool bores the smallest hole within the limits of its capacity, and when moved the distance of one mark, it will cut-supposing the marks civided into 1-64 of an inch-a 1-32 of an inch larger hole, and so on to any desired size. Different sized cutters are put on, so that it is only necessary to have swo augers or shafts and five cutters to bore from half an inch to a two-inch hole; and if each hole is $1-32$ of $:$ in inch larger than the other, they will bore no less than 43 different sized holes. But if not made to extend, the same number of augers or shafts, with seven cutters, will be required, allowing the difference in the holes to be $\frac{1}{4}$ of an inch, the same as is usual with a set of common augers; making this a very cheap and convenient set of boring tools. The feed screw is made movable, not only to allow the taking off and putting on of the cutter; but different threaded screws can be put in to bore, if in very hard wood, very slow-if in soft wood,
very fast. In common augers, if one cutting side or the feed screw breaks it is good for nothing, and must be replaced at the expense of a whole augur; but if such an accident should happen to this auger, a few pennies will purchase a new cutter or feed screw, and then it is as good as when new. The augers and cutters can be made to cut any size from $\frac{1}{4}$ of an inch to 12 inches, or if necessary, a six-feet hole; in fact, no round hole need hereafter be cut out with a chisel. A shipbuilder can bore for his anchor chains, his port or cannon holes, through the side of a vessel, or bore through the decks for the smoke pipe.
Fig. 2 represents an improved mode of fastening handles to augers, secured by a separate patent to the same inventor. The portion, e, of the shank which enters the handle is made round, and being turned, is of course in exact line with the rest of the auger. A semi-circular notch is cut in the side of this part of the shank to receive the pin, d, Figs. 1 and 2, and when the shank is passed into its place in the handle, this pin is pushed down so as to enter this notch and hold the shank from either turning or drawing out of the handle. In order to admit the shank without removing the pin entirely from its hole in the handle, a semi-circular notch is made in the side of the pin similar to the one

CUTTING PILES UNDER WATER-AN INGENIOUS APPARATUS.
To obviate the necessity of (1 instructing a coffer dam in the Schuylkill, so as to builu a pier for the Pennsylvania Railroad bridge, an ingenious contrivance has been put in operation to prepare the foundation of the pier. The water, at the spot where the pier is being constructed on the west side of the river, is about 17 feet deep, and after driving the piles, they have to be cut off level with the mud at the bottom. To do this, a long iron shaft is firizly secured to the uprights of the machine that drives the piles, and is driven by the steam engine ordinarily used for the pile-driver. This shaft, which is hollow, has secured to its extreme lower end a circular saw, 4 feet in diameter; the entire shaft being suspended by a rope passing over a pulley at the top of the uprights. Another rope, which passes around a drum, regulates the precise hight at which the shaft must be secured to saw the pile accurately at the length desired. The driving pulley on the shaft is made morable, so that at each change of the elevation, as required by the rise and fall of tide, its position is changed to suit the line of belting from the driving engine. The precisc elevation of the shaft, and consequently the saw, is fixed for every pile by instrumental observation, taken from the shore with a spirit-level; and, with all the difficulties, it is surprising to witness the rapidity with which the work is done-some 60 piles being cut off on Saturday last. In one instance, by accident, the elevation of a pile head, after being cut, was found to be $1 \frac{1}{2}$ inches too high. The saw was again applied, and the $1 \frac{1}{2}$ inch neatly taken off in one slice, as was proved by the picce floating to the surface. Yesterday the whole number of the piles were cut off and made ready to receive the stones for the pier. The

HATHAWAY'S COMBINATION AUGER.
in the shank of the auger, so that, when this pin is drawn back sufficiently to bring this notch opposite the hole in the handle, the way is clear for the admission or withdrawal of the auger shank. The pin is kept in place by making a short flat place on the side of it, as seen in Fig. 2, and a screw rums through the handle against this flat place in the pin, which prevents it from falling out, at the same time allowing the pin to be shoved in sufficiently to fasten, or if withdrawn, to release the auger.
This mode of fastening is equally applicable to the fastening of bits in braces of all kinds; also drills in chucks for lathes, and all socket tools whatever. It is as applicable to ordinary square-shanked tools, as to those which are made round. It will readily be per ceived that one handle is all that is necessary for a whole set of augers. By making augers with round shanks a great saving of time and trouble to the manufacturers will be effected. Besides the manifest advantages spoken of which this auger has, we will name another which is by no means a small one, and that is its portability. A carpenter having to go a long distance from home to do a job of work, which is very often the ense, and not knowing the exact boring tool he will require, instead of loadiug himself down with the common angers and handles so as to be certain of having the right size, he can simply take his handle and auger shafts and, wrapping them up in a piece of paper, put them under his arm or into his overcoat pocket, if he wears one, and putting his cutters into his breeches pocket, he goes prepared to bore any sized hole he can possibly require.
The patent for this combination anger was granted Sept. 4, 1860, and the patent for the mode of securing the auger to the handle and bits into braces, \&c., was granted Aug. 21, 1860.
Further information in relation to them may he obtained by calling on or addressing the inventor, J. Mr. Hathaway, No. 169 Center-street, corner of Canal, New York, second floor, corner room.

Orled silk is manufactured by coating it with some quick-drying boiled oil, and drying it in a warm room. Two or three successive coats are sometimes put on, each being perfectly dried in susceseisn.
management of the scow on which the apparatus rests is under the superintendence of Mr. Vanhorn, and great care and skill are necessary to prevent accidents. By guy ropes anchored from different points of the scow-each with a man to attend to it-the position of the scow is regulated nicely, and, at the same time, works the feed for the revolving saw. This work of sawing piles is sometimes attended with great difficulty, and is only well adapted for rivers where the surface is not much disturbed, as a heavy wind, or even the passage of our river tug-boats, interferes with the operation, as the scow upon which the machine is erected should he held quietly in position during the process of sawing; otherwist, a fracture of the saw would result. Mr. Vanhorn has endeavored to counteract, to some extent, the effects of a light wind or slight undulation of the water surface, by attaching to the side of the pile-scow, two flat-boats heavily laden with stone; but still, when steamboats pass, the operation of sawing ceases. The whole work is well worth witnessing.Philadelphia Ledger.

A New Discovery in Egypt.-A Paris correspondent writes that \boldsymbol{a} letter received there from Mons. Aug. Mariette, the eminent Egyptian antiquarian, states that a very important discovery has been made in Efypt:"The excavations made at Memphis have brought to light a metal founder's workshop. We have already discovered his tools, about 40 pounds of unrefined silver, gold medals, 20 silver mednls never seen before, and other objects destined to the crucible."

The Polytechicic Assoclation.-The mectings of the Polytechnic Association, during the fair of the Institute, were suspended, chiefly for the reason that the president and several of the prominent members are occupied in their duties as managers. The fair closed on the 6th inst.

Something Interesting to Come.-In our next number we shall commence the publication of Professor Faraday's six lectires, on the various forces of matter. They are exceedingly interdsting and "instrictive, and will be fully illustrated by spirited andaritice:

