

For the Scientific American.
(Continued fromg.
Continued from our last.) black grounds.
Black grounds for japans may be made by mixing ivo:y black with shellac varnish, o for coarse work, lamp black and the top coating of common seedlac varnish.
A common black japan may be made by painting a piece of work with drying oll (oil painting a piece of work with drying oll (oil
mixed with lead,) and putting said work into mixed with lead,) and putting said work into
a stove not too hot but of such a degree, graa stove not too hot but of such a degree, gra-
dually raising the heat and keeping it up for a long time, so as not to burn the oil and make it blister. This process makes a very fair ja pan and requires no polishing
tortoise shell japan
This varnish is prepared by taking ot good linseed oil one gallon and of umber hralf a pound, and boiling them togetheruntil the oil becomes very brownand thick, when they are stramed through a cloth and boiled again until the composition is about the consistence of pitch, when it is fit for use. Having prepared this varnish, clean well the copper or iron plate or vessel that is to be varnished (japanned) and then lay vermillion mixed with shellac varnish, or with drying oil diluted with good turpentine, very thinly on the places insended to innitate the clean parts of the tortoise shell. When the vermillion is dry brush over the whole with the above umber var sush diluted to a due consistence with tur pentine, and when it is set and firm, it must be put into a stove and undergo a strong hea for a long time, even two weeks will not hurt it. This is the ground for those beautiful snuff boxes and tea boards which are so much admired, and those grounds can be decorated with all kinds of paintings that fancy may suggest, and the work is all the better to be Gnished in an annesling oven.
painting japan wore.
The colors to be painted are tempered generally in oil, which should have at least one fowrth of its weight of gum sanderac or mastic dissolved in it, and it should be well dilu ted with turnentine, that the colors may be laid on thin and evenly. In some instances it does well to put on water colors or grounds of gold, which a skilful hand can doand manage so as to make the work appear as if it was embossed. These water colors are best prepared by means of isinglass size mixed with boney or sugar candy. These coloss when laid on must receive a number of upper coa the varnish we have described before.
In our next we shall treat of the finishing of japanned work.

For the Scientific American.

Tye indigo Blue on Cotton.
Good Indigo is as high in price as cochineal, berefore this color is a valuable one not only on account of its permanency, but because the otuff that makes it is so expensive. It has, therefore, received great attention in the economising of the indigo, so that no particle of its coloring matter may be lost. The art of indigo blue dyeing, therefore is distinct in itself and it takes a long time to be master of it, and unless the operator has a good eye for color, he will never be profitable, either to himself or employer, as the feeding of the vats and the striking of different shades of color ail depend upon this faculty. This color is so well arranged and systematized by the dyer that shades of half a cent in price per pound, in the ratio of pices are made ard these mus be done, so that there will just be a certain quantity of indigo taken upon the goods and sonelost, for such a valuable dye drug cannot 3. lost with impunity in the smallest quanti bies.

o sett a bluevat.

Take 10 lbs . of good Bengal or American indigo and grind it in water so that it will be as fine as flour, so fine that no grit will be fel in the fingers when rubbed between them. Indigo grinds easier if steeped in warm wate
for four hours before being put into the grinding mill. Ten pounds of indigo thus ground is put mto a clean cask, such as a wine or oil puncheon, filled nearly full with clear water To this is added fourteen pounds of the sul phate of iron (copperas) and sixteen pounds of the flour new slacked pure lime. This mixture is to be well stirred every few hours for two or three days, when the liquor in the at will have a fine deep green color, a sure sign that it is in good order for dyeing. There is one thing to be observed, however, which is, that the rake tor stirring the vat must be of an val shape, or like a disc on the end of a locg stick, the disc to be of steel, very thin, as the lime, copperas and indigo unite together and stick in lumps at the bottom of the vat, and the vat must be raked from the bottom until all the stuffs are mixed in a wet powder.
Before a blue vat is used for dyeing, it must not have been disturbed atter being raked for twelve hours, and then whatever is wanted to be dyed must be dipped andhandled, so as not odisturb the sediment at the bottom, and then where a vat is used, it must be stirred up again and not touched unti! it is to be used for yeing. A thin crust gathers on the surface a blue vat after it is stirred up, which keeps the action of the atmosphere, and thin crust is broken the indigo sinks and will not give out its color until stirred up and left to settle again. The cause of this is the ef fect of a law which is too abstract to be of any use to explain here, and it would take up oo much space to do so. We merely state the fact. When cotton is dipped in a blue vat it is not blue but green, and holds this green color untılit is exposed for a short time to the tmosphere, when oxygen is absorbed and a deep blue the result. Blue dyeing is, there ore, an unhealthy occupation, as in a close room the atmosphere is deprived of much of its vital principle. The deepness of blue shades are made by frequent dippings and airngs. Two vats, the one set weaker than the other and the cotton squeezed our of the one (the weakest) aired and finished out of the trongest, will enable a small factory to docon siderable work. We might describe the sys tem of blue dyeing upon a large scale, but this of itself would require almost a volume of matter ; our object is to describe so as to be a benefit to a number who would manutacture little for themselves. Blue vats must be fed a it is termed, from time to time, that is when hey look blackish, they must get a little copperas and lime added, and be well stirred up, as the indigo does not give out its coloring in the blue vat but very slowly, but more economically than by any other plan. By fre quent dippings and teedings as we have direc ted a cotton blue vat will dye a great quanti ty of goods and work up all its indigo unti the liquor is quite whitish. When the va must be renewed, by saving all the clear liquor and throwing away all the grounds or sedi ment, and adding as before directed, filling up with clear water what is wanting in the old liquor to fill the vat.

Five vats are called a sett, and to work in digo very advantageously, five setts are reces sary. A water tight wooden box may be used for a vat instead of a hogshead, and some vats are made of iron. The proportions w have given for setting a blue vat will enabl any person to set a larger or smaller one, by varying the quantities of the dye drugs. The liquor wrung or dripped out of goods must no be thrown away, but always returned to the vat again.

Bengat Lights.

Take of the nitrate of potass (saltpetre) parts, sublimed sulphur 4 parts and antimony part, and let them all be mixed in powder and beat armly into a stout iron cup and se n fire and it will give an intense luminous lightand if a little camphor is addedit is still more brılliant. Such lights have been made use of for signals at sea, by communicating to a great distance at night.

Thunder Powder.

If 3 parts of saltpetre, 2 parts of pearl ashes and 1 of sulphur bemixed well together, and sixty grains of this mixture be held over a candle in a metal spoon, or over a fire on a shovel, it will explode with a loud report. This mixture must be preserved in a well corked phial.

The above cut is a represeutation of a move ment whereby irregular lines may be cut in manner different from that of Blanchard's ma chine. The plan is not so simple, but it is much older and has 'ween long known. By the proper construction and connection of the up per figuie and the wheels being put in mo tion by the pinion and perpendicular and ho rizontal lines and points of equal length car ried to the surface of the first and third wheel will on being passed over the figure above describe curved lines on the block on the wheel below. Those lines may be so construc ted as to produce from an original figure an endless number of duplicates, and by the lines between the upper and lower wheel being of various lengtha, any size may be produced.
This cut may be a useful hint to many who are seeking to supersede the traverse mode of mechanical turning of patterns.

This is another arrangement whereby spiral ines may be cut on revolving cylinders. The ut which is seen on the horizontal screw in he first figure is attached to a carriage on which is seen an arm fastened by two screws. At the extremity of this arm is a horizontal piece with a slot held at its opposite extremity by a long screw rod which also moves along with the carriage. Thus supposing the bevilsto be put in motion, the slot piece would be traversing and the small pointer which is een against the shaft of the horizontal bevil would remain stationary; but if the slot piece be placed in an oblique direction by means of he screw rod to the right, the pointer will be traversed along the shaft and describe a siral line thereon.

Chloroform

This substance, which has lately been dis covered by Professor Simpson, of Edinburgh, is made as follows: Four pounds of chloride of lime is added to twelve pounds of water and twelve fluid ounces of rectified spirits and distilled as long as a dense liquid which sinks in the water that covers it over, is produced Great care must be taken to have this pure, and the test is a perfect insolubility in water; if it nixes in water it is not pure, and it is apt to be attended if so used, with troublesome results. A few drops of it when placed in a handkerchief before the mouth, cause al most instant insensibility, acting far more rapidly than ther. It is inodorous and excites little or no coughing and is said not to cause headache or sickness and those unplea sant effects attending ether. It must be properly prepared and applied Prof. Simpson's discovery must be a great benefit to medica science. We are positive that it will perfect y cure whooping cough if it is properly ap plied.

Dying in Masic.

A bird in captivity has been known to sing more and louder than usual, untıl it fell dead at the bottom of the cage, t s solict attention to its deficiency of food, from the want of which it at last perished; and another instance is related where the little creature sang earnestly when surrounded by the flames of a burning house, Under such circumstances we may be allowed to suppose that an attentive ear might have detected a variation in the notes from the usual song: for under wuch
less exciting circumstances a changeis known o occur in the modulation.

A warning to Cockroaches
A writer in the Express says; This being the season when the cockroach, the pest of our kitchens commence their nocturnal excursions, the following receipe may call forth the grateful acknorvledgments of those of our readers who suffer from the presence of this loathsome insect.
Take a sixpenny loaf of wheat bread-the staler the better, reduce it to a crumb, (of course after paring off the crust) then in a pint of water put two teaspoonsful of cayenne popper, one of pulverised orisseed, half a drachm of saltpetre; the same quantity of white lead, and a wine glass full of extract of hops.-Now throw in your crumbs of bread, and digest or six hours in a moderate heat; then bottle it and leeep it in a dark cellar. Three or four drops of this liquor or rather pastry, on a lump of sugar and some dozen lumps strewed about the kitchen will remove the pest in less than no time.

Todrive away anto
I saw in your paper a plan to drive away ed ants by feeding them with bacon; bụt the following is better than that ; it is to drive a way black ants; when they trouble your sugar box, \&c., just roll up a small piece of camphor gum in a paper, and put inside the box, and it will soon kill or disperse all these intruders; sage tea leaves thrown in their way are also very troublesome to them -Ohio Cultivator.

The Shooting Fish.
A fish in Java called the Jaculator, catches lies and insects by throwing water from its mouth. It is said that it seldom misses its aim at a distance of five or six feet, beinging down a fly by a single drop.

Whooping Cough.

A teaspoonful of oil to a tablespoonful of molaases, a teaspoonful of the mixture given whenever the cough is troublesome, will af ord relief at once it is said, and in a few days effect a cure. The same remedy it is also af firmed relieves the croup however violent the attack.

THE NEW YORK

SCIENTIFIC AIMERICAN

This paper, the most popular weekly pub ication of thekindinthe world, is published At 128 Fulton Street, JNew York, and 13 Court Street, Boston,

BY MUNN \& COMPANY

The principal office being at New York.
The SCIENTIFIC AMERICAN is the Ad ocate of Industry in all its torms, and as Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Each number contains from FIVE to SE VEN ORIGINAL MECHANICAL ENGRA VINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as is sued from the Patent Office each week; noti ces of the progress of all new MECHANI CAL and SCIENTIFIC inventions; instruc tion in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAI and CHEMICAL experiments ; the lates RAILROAD INTELLIGENCE in EUROPE and AMERICA; all the different MECHANICAL MOVEMENTS, published ina series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c
This Journal is not only useful to the Me chanic and Manufacturer, but instructive the Farmer, apprising him of all the improvements in Agricultural Implements, besides to instruct him in all the Mechanical Trades. As a family paper, the Scientific American will convey more useful Intelligence to children and young people, than ten times its cost in schooling, and as a text book for future reference, (it being in quarto form, paged, and suitably adapted to binding,) each volume will contain as much useful information as a large ibrary
The Scientific American has already attain. ed the largest circulation of any weekly mechanical journal in the world, and in this countryits circulation is not surpassed by all the other mechanical pa pers combined.
隹 For terms see inside

