described in our columns quite recently. Perhaps, for the bencfit of subscribers in foreign countries, who may not have received their numbers regularly, it may be well to say that it is a ball governor, the balls being very small, and revolving with much greater velocity than is usual, their centrifugal force being partly counteracted and balanced by a weight hung around the shaft. It is exceodingly sensitive and prompt in its action.
Sanborn's book-binders backing machine is a capital thing for the purpose. The machine on exhibition is as finely finished a piece of work as one would care to sec, and it has the adrantage over the one made last year, of being much stronger throughout. Mr. Sanborn also shows a book-piercing machine for power. A cam on a shaft raises a crossbeam, in a slot in which are fixed piercers at any required distance apart, and the work is done with neatness and dispatch. For binders who do not require a machive run by power, there is one of a smaller size to be worked by a treadle.
J. B. Mooney, of Cincinnati, has a machine for cutting bolts. The bolts are passed through a hollow spindle and into a pair of clamps, and the dies are 60 constracted as to cut with one motion. It obviates the fitting-up of dies, as a straight stecl will do by putting a thread on. The barrel machinery of Smith \& Gouchers must be capable of doing capital servico in the oil region of Pennsylvania, if the specimens, consisting of cisterns and tanks on exhibition here, are of its production. Centainly no one could desire neater nor better fitted work than they exhibit. Steptoe \& McFarlane show a tennoning and a molding machine of elegant workman ship; and John Lemon, of Cincinnati, a hoisting apparatus which merits a notice. The platform travels up and down between the guides by means of a rack and pinion, while an endless belt running from the top to the bottom of the building is driven by the engine. All danger of the falling of the platform in case the belt should break is obviated, since it is sustained by the rack and pinion; and supposing that the belt shifter should fail to work when it might be desired to stop at a given point, the man on the platform can still coatrol its progress by slacking the belt by means of an ingeniously contrived lever placed close at hand.
Attracted by a kuot of personsgathered about some object of interest, I pushed my way through and found one of your foster children at its work. The machinc for making stove pipe, invented by M. C. Root, of To ledo, and patented through your office, seems to be capable of doing at one operation what our tin-smiths are now doing at five. The usual routine followed in making a length of stove pipe, is, first, to turn the edge with one machine; second, to form the pipe with another; third, to make the scam by hand; fourth, to draw the end in by hand; and fifth, to put on the swedge or bead. These various details are merged into one operation by the ingenious Mr. Root. Hehas arranged four rollersthree in a line, and ono back of them. The shect is passed between the middle and lower rollers where it gets its edge and groove, then it goes over the middle and back rollers, and under the top one by which time the pipe has been formed, its seam flattened, been bearded or swelged, and the end contracted, which completes the oparation, and turns it out as neat a joint of stove pipo as you ever saw in your life. The machine is worked by a crank and treadio, docs the work of three men, and costs only $\$ 40$.
Onecorner of the grand saloon, up stairs, is occupied by an extensive display of carved rose-wood and walnut furniture, from the shops of Mitchell \& Rammelsberg. In the very foreground of this colleetion of household luxuries, is a walnut arm-ehair, in which the Cincinnati people hope Baron Renfrew may sit when he comes here in the course of his travels. The back is surmounted by tho royal arms of Great Britain, carved in the wood, and supported by graceful columns aronnd which are entwined various appropriate emblems. The covering is of silken damask, and in the picce which covers the stuffed back, are woven the same insignia of royalty.
William Wood \& Co., of this etty, make a fine show of paints, which are said to be fair samples of the articles they sell. One of the jury of award who has had this department under investigation, informs me that in quality and tone these paints are, if anything, superior to those we make in New York, and that there is actu
ally no necessity for western men to be any longer dependent npon the metropolis for their supplics. The cases of philosophical instruments from the manufactory of James Foster, Jr., would do credit to like, or even old Sol Gills, that wonderful gentlemen, who, we are told by Cap'n Ed'ard Cuttle Mariner, of England, could make a watch. Mr. Foster's skill is further shown in the "chronograph" invented by Professor Mitchell, for measuring time during his astronomical observations at the Cincinnati Observatory.
T. Bass, whose sign-card hung on the heap of baskets here, shows that "they are home-made," certainly deserves credit for his sclection of the willows from which the large and small baskets and bird-cages are made, as well as for the admirable workmanship which they indicate him to possess. It may well be a question for our farmers to discuss, whether it is worth our while to pay Germany and France something like a million dollars annually, for willow and willow-ware, when the articles can be produced as cheaply and good as they are abroad.
Miles Greenwood for some cause or other, doubtless from press of more important business, makes a small show of his goods this year. There is a case and some loose samples of beautiful brass castings, and a new valve in the lot is both novel and excellent, but in comparison with what he might have done, his contribution to the Institute this year, is but a drop in a bucket. Mr. Greenwood took hold of Fawkes's steam plow last year, and improved it very matcrially, I hear. The plow-frame is now made of angle iron instead of wood, as formerly, and works much better both for raising and lowering as well as draft. The machine has been down to Mr. Sullivant's mammoth farm in Illinois, where Fawkes has contracted to break a thousand acres this season. Ho has finished threshing about ten thousand bushels of wheat for Mr. Sullivant, and has more work of the same sort laid out.

RECENT AMERICAN INVENTIONS. compass protractor

The object of this invention is to produce an instrument which enables an inexperienced hand, and also a person not acquainted with the manner of making a calculation, to take the necessary observations for the purpose of determining the ships course to a given point, or the bearings of surrounding objects, or the position of the ship from bearings; and the invention consists in the combination with ordinary parallel rulcs of a movable circle, graduated as a compass and provided with a semicircular opening with the exact center of the circle, marked therein in such a manner, that by the combined oporation of said circle and the parallel rules, all the operations for the purposes above stated, can be made in a simple and easy manncr, and without the necessity of any calculation. F. H. West, of San Francisco, Cal., is the inventor of this instrument, and he has assigned his full right to F. S. Seabury, of Stoney Brook, N. Y.

saddle tree.

The object of this invention is to obtain a gig saddle tree, by which a saddle tree may be constructed to fit any horse, and thereby avoid injuring or galling the back of the animal, a contingency of frequent occurrence as saddles have been previously constructed. The invention has for its object the simplifying of the manufacture of gig saddles, especially those of a superior kind, and to render the same more elastic and neat in appearance, stronger and more durable than usual, the invention being applicable to all kinds of gig saddles, such as silvered and japaned seats, jocky-covered seats, \&c., This invention was patented to S. E. Tompkins, of Newark, N. J.

attaching handles to saws.

The object of this invention is to attach handles to a cross-cut saw in such a manner that they may be firmly secured to the saw, and at the same time admit of being readily removed when necessary, in order that the saw may be drawn longitudimally from the kerf when the \log presses or binds against its upper surface, and prevents a vertical withdrawal of the same, a contingency which always occurs where the log is not supported so that its outer ends will fall when the cut is made, and this cannot always be effected, especially with large logs, which are mostly sawed on the ground. This improvement was designed by Isaac Pelham, of Ithica, N. Y.

REPORT OF THE TRIAL OF STEAM FIRE FNGINES AT RENSSELAER COUNTY FAIR, TKOY. N. Y.
[Reportnd expresily tor the Scientific American.]
On Thursday of last weck, the principal steam fircengine builders assembled at Troy, N. Y., for the purpose of testing the merits of their several machines, and to arrive, if possible, at some definite conclusions respecting the merits of the various plunger and rotary pumps employed by them. Tho day set apart for thie trial was the 27 th ult., and at the hour specified the several engines made their appearance on the grounds, drawn cither by hand or horse-power. We have not room for the metcorological report of the Smithsonian Institute, which was taken for us, but the wind was light through the day, except at intervals, when it blew quite fresh from tho West; indeed, had the day been specially selected from the year, it could hardly have been finer for the purpose. The sky was covered with sullen clouds until nine o'clock, when, having reliered themselves of a slight shower, they partially cleared away. Tho prizes to be awarded by the Fair Committec, of which William E. Hagan, Esq., was chairman, amounted to $\$ 100, \$ 75$ and $\$ 50$. In addition to these, it was announced from the judges' stand that the citizens had contributed $\$ 200$, to be awarded ns the Fair Committee thought proper. Tiro tests of each engine were to be had-one to play from the pipe through 50 feet of hose, using such nozzles as the exhibitors pleased, for 30 minutes from signal. The other test was in the case of first-class engines, to pump, throngh 800 feet hose, 18 inches against time, out of a tank 15 by 22 fect in measurement, and not quite three fect in depth. In respect to the second class pumping on quantity, they were to work on the tank for 15 minutes from signal ; the amount of water discharged in that time to be estimated by the judges. The exhibitnrs were allowed 15 minutes from the tap of the bell to get ready. Λ t the scoond tap they were to start fire and play for 80 minutes, as previously set forth.
The engines entercd for competition were as follows, in theorderof playing:-Messis. Lee \& Larned, Novelty Works, New York City-Welf-propelling stenmer Niagara; weight, $11,500 \mathrm{lbs}$.; size of stcam cylinders, $i \frac{1}{2}$ inches diameter by 14 inches stroke; capacity of pump (Carey's rotary), 1,200 gallons per minute. Hand engine No. 5, of this city, same makers-horizontal steam cylinder, 7 inches diameter by $8 \frac{1}{3}$ stroke; capreity of pump, 220 gallons per minute; weight, $4,448 \mathrm{lbs}$; with one gage of water in boiler and no water tank. Mechanics' Own, same makers; same size cylinder and pump; weight, 4,278 lbs ; water in boiler; no tank. Steamer Southeark, Philadelphia (this engine played last), same makers-horizontal steam cylinder, 0 in . diameter by $8 \frac{1}{2} \mathrm{in}$. stroke ; capacity of pump, $\mathbf{C} 00$ gallons per minute. Amoskeag Manufacturing Company, Manchester, N.H.-Hand engine No. 2, weight, $4,858 \frac{1}{2}$ lbs. ; sizo of steam cylinder (verticnl), 8 in . diameter by 12 in . stroke; size of pump (plunger pattern), $4 \frac{1}{\frac{1}{2}} \mathrm{in}$. diamoter hy 12 in. stroke ; capacity of pump, 251 gallons per minute; no air chamber on pump. Steamer Huron, same makers, first-class engine-size of steam cy linders, two direct acting vertical engines, respectively 8 in . diameter by 12 in . stroke ; two plunger pumps, $4 \frac{3}{4} \mathrm{in}$. diameter of plunger by 12 in . stroke; weight, without fucl or water, $\mathbf{6 , 0 3 0}$ lbs.; wood and water, 7,100 lbs.; capacity of pumps collectively, 600 gallons per minute. Silsby, Mynderse*\& Co., Seneca Falls, N. Y.-One firstclass engine, rotary pump and engine (Holly's patent); weight, 6,049 lbs.; air chamber on pump; sise of \cdot steam cylinders not given ; capacity of pnmp, $\mathbf{6 0 0}$ gallons per minute.
These are all that rere entered by prominent manufacturers; others were expected, but failed to arrive. We must not omit, however, to notice one machine entered for competition, which will certainly, if it grows a little, create a grent revolution; this is the handiwork of Charles Fichtcl, of Philadelphia. Size of steamer built by Charles Fichtel, horizontal steam cylinder, 4-8ths of inch diameter by 6-8ths of an inch stroke; capacity of pump, one nut-shell. This was really the neatest specimen of workmanship we have seen for some time. The whole affur weighed but $2 \frac{1}{2}$ pounds, and was an exact fac-simile of the Lee-Larned engine, even to the Worthington pnmp which supplied (?) the boilers with water, whose cylinder was only th of an inch in
diameter. The whole feed pump, steam and water cylinder would easily go into a small thimble. This is a working model, as we saw it in operation, throwing a stream about the size of a pin 4 feet 6 inches. Mr. Fichtel may congratulate hinself on having produced the most complete specimen of skill and patience that has been seen in a long time.
The results of the playing of the engines are given below. The time given may not accord with that of the judges (owing to the difference in watches) in rela tion to the start, but the mean time of playing and the results-both steam and water--are derived from official sources, and is the only authentic account published.
Staamer No. 5, City of New York--Lee \& Larned machine.-Signal to make ready given, at 10 o'clock 25 minutes, 50 seconds; signal to start fire given at 10 o'clock, 40 minutes, 50 seconds. Engine began to work in 7 minutes 52 seconds from signal; water from pipe almost instantaneous; water in boiler perfectly cold; no fluid, grease, or anything foreign in the boiler; the average of the steam taken every five minutes was at the start 3 pounds, in 10 minutes 45 pounds-subse quently ranging from 154 to 40 lbs ., on the fourth 5 min utes, this result arose from over-firing; in five minutes after, the steam ran quickly up again until they stopped with 135 lbs .; this boiler steamed perfectly free, the fuel being coal. The results obtained through 50 feet of Boyd's hose, out of $1 \frac{1}{6} \mathrm{in}$. nozzle, were 209 feet; for the first 6 minutes the wind was rather fresh, and blew the stream about some-last 4 minutes no wind whatever; auxiliary feed pump on boiler. On quantity, same engine, through 800 fect of hose; signal to start at 11.25 ; steam at start, 140 pounds; fuel, wood and coal; pumped 15 minutes on the tank, whose capacity was 2,459 gallons to a foot, size of tank 15 by 22 feet stopped playing at 11.40, and lowered water in tank 1 foot and $20-100$ of a foot.
Steamer Mechanics' Own-Third class engine.-Trial on distance, 50 feet of hose, $1 \frac{1}{8}$ inch nozzle; started at 12.01, stopped at 12.31, having thrown 174 feet against a good cross breeze. This engine did not commence playing nutil 11 minutes from signal; cause, some obstructions in the smoke pipe unavoidably overlooked; the steam subsequently ranged from $8,9,12,55,140,100$, 105 lbs ; fuel, wood. Same engine pumping on tank, 800 feet of hose, open butt. Started at 12.38; pamped in 15 minutes 1 foot and 26 -100 of a foot from tank 15 by 22 feet; steam ranging from 150 lbs . at the start to 155 lbs. at the close; fuel, wood and coal.
The next engine was No. 2 Amoskeng-Second class -L. H. Straw, agent; engine described previously. Started at 1.11; water from pipe in 7.30 from applica tion of torch; no wind at all during trial ; played 30 minutes through $1 \frac{1}{8} \mathrm{in}$. nozzle 160 feet 3 inches; water gage indicated 50 pounds per square inch; last minute 100 lbs ; the steam ranged from 20 lbs . at the start to 75 lbs . on the last stretch; but the average was very poor ndeed, owing to an inferior quality of coal, imported from Liverpool; the mean pressure during this trial was 51 pounds. This was a single plunger pump engine. Same engine on quantity-Started at 1.55 water pressure on hose, 140 pounds; steam at the start 185, ranging to 65 lbs at stopping; quantity exhausted from tank, 1 foot 53.100 of a foot. The steam was better during this trial, but there seemed to be a lack of firc-surface for continued playing.
Next engine-Silsby, Mynderse \& Co.-One firstclass machine. Started at 2.34 ; steam in six minutes from signal; water from pipe in 7 minutes 20 seconds threw an inch and a quarter stream 216 feet; no wind whatever; fuel used, coal. Played 26 minutes and was then ruled out by the judges; cause, joint blowing out of the steam cylinder; this machine stood steadier than any of the others whilst playing. Same engine on tank-Signal given at 3.16 , stopped at 3.31 , quantity discharged from tank, 1 foot $29-100$ of a foot; steam ranged from 90 to $82,60,55 \mathrm{lbs}$. This engine should have pumped 18 in . against time from its class; but it was overlooked by the judges.
Next engine-Steamer Hzon--First class-Built for the city of Detroit by the Amoskeag Co. Signal to start fire at 3 o'olock $56 \frac{1}{2}$ minutes; water from pipe in 6 minutes 30 seconds from signal; no wind during trial; distance thrown through $\frac{13}{8}$ in. nozzle, 223 feet 9 inches; daring the last five minutes ran very irregular-
ly ; steam ranged $23,40,85,125,130,150 \mathrm{lbs}$.-stopped at 90 lbs . On quantity-same engine, pumping 18 inches out of tank against time; 800 feet of hose, open butt; 13.30 seconds.
Next engine-Lee \& Larned's self-propeller, Niagara. Signal to start at 5 o'clock 11 minutes: water from pipe, 6 minutes 30 seconds, through 10 in. nozzle; distance thrown, 208 fect 8 inches. At this point, aftel having played 16 minutes, the cast-steel pump shaft, $3 \frac{1}{4}$ inches in diameter, was twisted off, and the engine was ruled out very reluctantly by the judges. Fuel used, wood; steam at starting, 5 pounds, ranging from thence to 120 .

Steamer Southwark.-Lee \& Larned engine. Signal at 5 o'clock 50 minutes, 30 seconds; water from pipe in 6 minutes 47 seconds from signal; whistle blown 6 minutes from signal ; started with 10 pounds of steam; distance thrown agamst a stiff breezc, through 50 feet of hose, and $1 \frac{1}{2}$ inch nozzle, 172 feet; the darkness prevented us from taking the steam, but the averag was not over 75 pounds. Samo engine on tank through 800 feet of hose, pumping 18 inches against time, 14 minutes 25 seconds; average steam 80 pounds; 579 gallons per minute discharged from pump. $£$ This enginc ended the trial.

remaris.

It will be seen, by examining the figures,' that, thus far, the plunger pump party have the best of it, in distance, and also in quantity ; but this must not be taken as evidence of the superiority of one over the other, both parties claiming, from their experience, that their respective pumps are the ones which do the best service. The hand engines of Messrs. Lee \& Larned are much maller than the one of Amoskeag No. 2 pattern, yet heir engine pumped within 27 -100ths of a foot as much on quantity as the Amoskeag, and beating them by 13.9 inches on distance, out of the same sized nozzle. W cannot discuss this matter at present, as at our time of lic. The award will, however, probably be given to the otary pump of Cary, with Lee \& Larned's boiler, as egards distance, and to the Amoskeag on quantity dis charged in a given time. The Silsby \& Mynderse en gine presents many excellent features as regards its ar rangement and general construction. The boiler steam ad very freely, and seemed to make plenty of vapor for an engine that took a good deal. Their stream, how ver, was not so solid m its body as those of other exhi bitors. The committee propose to offer a premium the next ycar, of $\$ 1,500$, for the best steam engine drawn hand. This is the true way to encourage inventor ostep forward and try their several inventions; and we doubt not that it will result in bringing the steam tained. Any man who looked upon the friendly strif upon that day in the field, and sav the sobid columns of water flying swiftly through the hose, could not but wish that such a stream were turned upon the old hand en ines, and they washed away entirely. The number o teamers multiply rapidly, we are happy to say, an emulous in so good a cause. May the day soon come emulous in so good a cause. May the day soon come
when none else shall be used; every separate impulse of the water, they work out prac tical victories, and attain to greater results in the public mind than any pen or tongne could effect in a year.

COL. JOHN C. BO YD'S HOSE.
We saw this excellent hose fully tested at the trial of teamers, last Thursday, and can speak of its merits per sonally. Through all the tremendous strain which the steamers put upon it, even when the Niagara acciden took place, there was not enough moisture on the out side to soil a handkerchief. It is made of tour-ply cotton foods, lined with a composition, and has successfuly withstood a pressure of over 360 pounds per squar

We desire to return thanks in this place, to Wm. E Hagan, chairman of the committee, for a place on the udge's stand. It is wholly due to this gentleman's ex ertions that the affair was pushed forward with the spirit in which we have set forth.
The judges on this occasion were, Daniel Doncaster, L. A. Orcutt and J. P. Collins, Esqs.

The engines upon exhibition have all of them done much better than upon this occasion. It seems at times when the best duty is required, that circum stances will not mold themselves to suit the will.
The time of raising steam varied but 30 seconds in the whole number of engines, with the exception of the Mechanics' Own, whose pipe Wras choked, and we are pleased to be able to record so signal a success in the way of steady playing as these engines accomplished. One half hour of such work with a steamer is a worse test upon it than half-a-day at a fire, on account of the desire of all parties to do their very best, and the rapid yate of working to which the machines are subjected. The accident to the Niagara was unavoidable, and could not have been foreseen; we hope it may not be long before we shall have another such trial to record, with better angeess,

issued from the united states patent office or tir werk endina agptimazs 25,1860 .
[Reported Officially for the Seisntufo Amrbions.]

- Pamplilete giving full particulary of the piad af anplylyg for

30, 109.-Ethan Allen, of Worcester, Mass., for an Improvement in Metallic Cartridges:
 or the purpose set forth and described.
30, 110.-L. L. Alrich, of Carthage, Mo., for an Improvement in Faucets.
 and B, the whole being arrmged and operated by a key, in the
[This invention is an improvement in faucets wherein a key ased to open or close the faucet. It consists in operating a plug o valve that is fitted into a cyllndrical chamber projecting up from the opof the faucet, so that it may be movedup and down, but which will not turn in the crlinder; said plug being geated in suoh a man ner in the faucet tube and acted upon by a spring that the flow of iquid can only be obtained by using a key adapted to the faucet.] 30,111.-G. B. Arnold, of New York City, for an Im provement in the Manufacture of Ruffes:
made as described; that is to say, the fabric to be plalted or rubffed made as described; that is to sny, the fabric to be plaited or rompd
being operated upon 8o as to be ruffled by the feeding device, and
fastened by the stitching apparatus of a sewing machfee at one and agened
the same operation, when no binding or foundation fabric is em-

30,112.-G. B. Arnold and Alfred Arnold. of New York City, for an Improvement in Sewing Machines We claim, first, In a sewing machine, the emplosment of the eppof cloth, E and F , and thereby protecting F from the action of the
athering mechanism, substantianly ae set forth. Recond, Gathering cloth and stltching or fartening the gathers on vice. A, preaser foot. B, and separator, \mathbf{C}, or their equivalents sub Thiru. Requlating the lescrlbed.
gathered fabric, by changing tho position of the semarator, 0 or

30,113.-J. C. Baldwin, of Waterville, N. Y., M. D. Baldwin, of Brantford, C. W., and Robert Brayton, of Buffalo, N. Y, for an Improvement in Pre serving Hops:
We claim the described process of preparing and preserving hops
30, 114 - G. S. Ball and Wm. H. Nauman, of Dayton Ohio, for an Improvement in Seeding Machines:

30,115.-Benj. Barnard, of Farmington, Ohio, for an Jmprovement in Seeding Machines:

[This invention consists in an improved seed-distributing appara tus, the mode of constructing and arranging it, together with gage for regulating the depth of the planting of the seed, and agitators for preventing the choking of the seed in the seed-bores, the parts being so arranged, whereby an exceedingly aimple and ficient m chine is obtained forthe purpose specifled, and one not liable to get out of repair or inoperative by ure.]
30,116.-G. E. Beach, ef Jersey City, N. J., for an Improved Railroad Switch:
I claim, first, So hinging and connecting tworails, R C, or \mathbf{J} K, in purpose of guiding atminu upon another track withont breaking their continuity, asbastantlally as set forth.
Seoond, I claim the fixed benrings.
Second, I claim the fixed bearinge, $m \mathrm{~m}$. In combination with the
forked bar or rod, Pand the hinged contlinuous raile, $B \mathrm{~B}$, and J
K , substantially as and for the purnose deacribed Third, I clnim. in combination with the hinged continuous fail,

a Sub. A. Black and F. C. Ford, of Erie, Pa., for claim the for Railrond Frog:
combination with the piece, c, of the raill, supported upon the chiair
$30,118-\mathrm{J}$. H. Boyd, of Baltimore, Md., for an Im: provement in Saddles:
I clinim the application to the cantle of addles of an india.rubber
roll, as described.
30,119.-T. E. C. BrinIy, of Louisville, Ky., for an Improvement in Cultivators:

 the shares, J, and teeth, L as and for the purposes set forth.
[The object of this invention is to combine the plow, harrow and cultivator in suoh a manner or by such an arrangement of parts tbat the device may be used in any of the capacities aforesaid by a very simple adjustment, and made to work under ans of ite aifnetmonts equally as well as those implementin intended for anj of the abore даmed purfoses peparatelg.j

