he insists that "the crrstallization in iron or any other metal cun never take place in a cold state. To form crystals at all, the metal matat be highly heated, or nearly in a molten state."
The opinion is quite prevalent among engineers and men devoted to science, that tungh metals in a cold condition do become crystalline and very brittle, when surjected a considerable period of time to tension and vibrations. The breaking of the axles of railroad cars, the piston rods of engines, and the iron stringers of bridges, is oftentimes attributed to the metal becoming crystallinc. But, while Mr. Roebling is a disbelicver in the erystalline theory of vibrations, he admits that tension and vibrations impair the strength of iron while it retains its fibrous chat acter. This, he considers, is duc to a separation of the threads of the pure iron, and the cinder with which it is combined, by the vibrations, thus destroying the cohesion of the particles. This is a most interesting question, and the opinion of Mr. Roebling is of great weight in the matter. He asserts that the cables of the Niagara bridge are made of a superior quality of metal ; that they possess an abundance of strength; are free from ribation; that they are wellpreserved, and may be safely trusted for a long series of years. As iron. in large structures, has been applied only in very recent years, long experience on a large scale has not yet been obtained; but, so far as that exprience gocs, Mr. Rocbling is of opinion that "good iron, not overtaxed by tension and vib ation, and otherwise preserved, will prove one of the most durable building materials at our disposal."

CREOSOTING RAILROAD TIMBER

The facility with which timber can be worked into almost every variety of form, the fibrous ant elastic character which it possesses, combined with great strength in proportion to its weight, renders it unrivaled as a matediel for many purposes. Withits many good qualities, howerer, it has a number of inherent defeets, such as combastibility when exposed to high temperatures, and proneness to early decay when exposed to moisture and the atmosphere. In bridges, ships, and other structures, it commences to decay from the very moment it is exposed. When placed in dry situations it endures for quite a long period, but when situated, like railroad timbers, partlyabove and partly under ground, exposed to arr, heat and rain, its life is of very brief duration. The vast expenditures incurred for railroad timber -the sleepers of which have to be renewed every few yearshave naturally drawn much attention towards the discovery of some process to render it more enduring. The K yanizing, Payenizing and Burnettizing processes, for infusing the chlorides of zine and mercury and the sul phate of copper into the pores of wood, so as to coagulate its sap and render it insoluble, have all been tried with more or less success, but recent experiments in England with creosote seem to give it the palm as a preservative agent over all other substances which have been herctof,re used. On the Buckinghamshire Railway about nincty thousand sleepers that had been treated by the above-named three processes, and about thirty thonsand prepared with creosote were laid down, and it was found that thelatter were far more durable than the others. Timber which had absorbed about eight poumds of liquid creosote to the cubic foot was apparently as sound at the end of five years as when first treated. It has also been stated that this peculiar substance not only prevents the decay of timber that has been treated when in a sound condition, but it also arrests decay after it has commenced in timber. This is a most valuable condition, and its reliablity has been tested on quite a large scale on the Great Northern and the Lancashire and Yorkshire Railroads (England), on which roads creosoted timbers, that have been down for ten years, appear to be as good as when first laid.
This is an important question for our railroad companies; they may have their timbers creosoted on the very spots where the trees are cut down in the forests. Creosote is a product of the distillation of wood in retorts, and it receives its name from its well-known power to preserve animal substances by coagulating the allumen. It is a liquid which may be made from the refuse or useless parts of the very trees that are chosen to make railroad timbers. It can be kept in wooden tanks into which the timbers may be placed and sunk by weights so as to steed them for several days under the
liquor. Creosote has a pungent odor, but this is not very oljectionable; it is the same as that which flavors smoked ham, and to many persons it is far from being disagreeable. All timbers for bridges, the sills of buildings, and the sleepers of rallroad tracks should be treat ed with this substance or some other equally as good, if ${ }^{\prime}$ there is any. The refuse creosotic compounds of coal oil-those which are obtained from distilled coal as well as from the natural oil wells-may be as powertully antiseptic in their nature as creosote distilled from wood. Experiments should be made to determine this, because such products are now thrown away as waste, whereas they may be usefully applied to render exposed timber ten times more enduring than it now is, and thus bave millions of dollars to our country annually.

CONTRACT FOR A STEAM FIRE ENGINE. We take the fullowing common-sesse, practical suggestions from the New York Times. There is one very great and unquestionable advantage of free institutions and a free press; they furnish the government with the whole combined knowledge and wisdom of the com-munity:-
To the Editor of the Ncw York Times:
I see by your paper of last Friday that there was $n o$ bid for the building of a steam fire enginc for Hose Company No. 5. I beliere the reasons are, that the advertis ment was not conspicuous, being mixed up with street contracts; that the time was too shart, and that,
so far as one builder is concerned, the specitication of a so fir as one builder is concerned, the specitication of a cylinder not less than $6 \frac{3}{4}$ inches bore by $8 \frac{1}{2}$ inches stroke, deterred him from bidding, his engine bcing: rotary. I know one establishment that was disposed to bid for the contract, but had only five diys notice, which was not sufficient to make an estimate, unless the design had been already made. A month would be but a moderate time for a shop not already in the business, to propose a plan and estimate upon it ; and I respectfully suggest that the authoritics should allow this time, and more, if they can spare more.
I further suggest that the printed forms should be sent to all the fire engine builders and to the principal machinists, and that the proposal should be advertised and also noticed in the Scientific American, and other
papers that go to machine shops. I do not believe that two out of twelve or more shops that build steam fire engines knew that this matter was open to them, or
could have been able to make their bids in time. The could have been able to make their bids in time. The
reference to a particular New York engine, as to size and style, would make it necessary to sce that engine in order to estimate properly.
I would further sugecst that the specification should be revised, the work to be done fully stated, and no reference should be made to the engines now in use, to render a journey to New York necessary as a condition of being able to make an intelligent estimate.

Yours, respectfully,
An Engineer.

THE FAIRS OF 1860.

We take the following full list of the agricultural and mechanics' fairs of this Fall from The Country Gentleman, omitting those which have already been held:
national.
American Inetitute........................New York, opena Sept. 27. state.
Alabam n.Montgomerv, Ott. 29. Nov. 2.

Hermetical Mastic of Graphite.-The preparation of this cement is very simple. A mixture is made of 6 pounds of plumbago, 3 pounds of fine chalk, 8 prunds of the sulphate of baryta, and 3 pounds of linsced oil, well boiled. The black lead, chalk and baryta must be reduced to a very fine powder, and well-mixed with the oil. A cement is thus obtained which, as shown by experiments, is much superior to that made with red lead, and which may be employed with great advantage in luting the joints of steam boilers, water pipes, gas pipes, ec.-Journal de L'Éclairage au Gas.

APPLICATION FOR I HE EXTENSION OF A PATENT.
Improvement in Druwing Frumes.-Eliza Pray, administratrix of Joscph Pray, deceasell, al.d Christopher Stafford, of Plainfield, Conn., has alplided fur the exteusion of a patent granted to the said Joueph l'ray and C. Stiffird on the 12th of November, 1846, for an improvement in the above-named class of inveluions. The testimony will close on the 20 th of October next; and the petition will be heard at the Patent Office on the 12 th of November, 1860.

Dr. Bradley's Improvements in Telegraphing. On page 274 of Vol. I. (new series). Scientific Amimcas, we noticed an improvement in telegraphing, inrented by Dr. L. Bradley, now of this city, by which from 10,000 to 15,000 words per hour could be transmitted, in place of 1,500 or 2,000 , which had been the previous lumit. On applying this apparatus to long circuits, however, Dr. B. found a limit to the rapidity in the action of the relay magnet, and he has since been engaged in improving this part of telegraphic apparatus. He has now a relay which will enable him to transmit 10,000 words per hour. He has also connected this relay with an improved sounding apparatus which enables him to dispense with the local circuits for those who read by sounds. A full illustration of this great invention will appear in our next issuc.

Machine Shop Λ achitecture.-The illustrated article, published in another part of this paper, on Iron Works-their arrangement, location and construction, will be found worthy of the attention of such of our eaders as takean interest in the subject. It is written with intelligenee and ability, and will commend itself to a large class of our readers, as the suliject is an imfortant one, and has never before been presented in any journal so far as we know. The article, with accom panying plans. will be completed in our next number.

McCormick and the Press.-In our issue of the 25 th ult., we noticed the peculiar manner in which the famous inventor of the reaper, Mr. Mc Cormick, became connected with the newspaper press of Chicago. It seems acording to the Times and IIerald of that city, that Mr. McCormick did not get the control of the Times by the summary process of enfurcing certain claims which he is alleged to have purchased against t. The transaction, as it is detailed, shows, that he acted all the while like a straight-forward man.

RECENT AMERICAN INVENTIONS

The following inventions are among the most uscful improvements patented this weck. For the claims to these inventions the reader is referred to the official list on another page:-

magneto-electric machines.

These improvements are for the most part applicable to either of the two common forms of magneto-electric machines heretofore constructed, namely, that which consists of one or more series of helices composed of covered copper wire coilcd round cores of soft iron, applied to rotate between or near the poles of a series of stationary permanent magnets, and that whic h is composed of one or more serics of permanent magnets, applied to rotate near one or more series of stationary helices, but all the improvements are applicable to machines of the first-mentioned furm. The first iniprove ment consists in the employment of a number of helices in cach wheel or circular serves froportioned to the number of magnetic poles in each circular series of magnets as three to two, for the purpose of making the attractive force of the magnets always counterbalance the retarding or holding back force. A sccond improvement consists in the arrangement of the helices of two or more whecls or circular serics in a spiral relation to each other, that is to say, so that in a machine having two wheels or circular scries of helices each helix of either wheel or circular series is in a line midway betwee: the lines of the two heliecs of the other whel, and that in a machine, having more than two whects or series of helices, the helices of the several whects are arranged in regular succession at a distance in advance of each other equal to the distance between those of each wheel or series divided by the number of wheels or series in the machine, the object of such arrangement | being to bring the helices of the several series alternat-

