THE PLANET MARS-IS IT INHABITED

Can it be possible that in all the vast universe but a single planet, and that the merest infinitesimal portion of the grand whole, can be the abode of living creatures such as ourselves? Does Science teach that other worlds are unpeopled deserts, serving no other purpose than to traverse their orbits obedient to the Divine will? Such are the questions which astronomers have been f orced to meet and answer, unaided except bythetestimony afforded by analogy and by deductions from theory, based perbaps on evidence main ly presumptive.
Leaving out of their consideration the possibility of organisms existing under conditions unknown upon the earth, the searchers of the heavens have examined the brilliant orbs which circle round the sun, first crudely and imperfectly, but as crudely and imperfectly, but as their knowledge and means increased with the progress of science, with augmented accuracy and power, adding discovery to discovery; until, link after link, the chain of proof has been forged, leading to but never reaching a universally accepted conclusion. As to all the planets, but two, the answer is certainly negative ; the condition of all other worlds is such as to render human existence upon them absolately impossible. Of the excepted pair, on one, Venus, life may exist, but every probability is to the contrary ; regarding the other, Mars, divided opinion is encountered; and while it is asserted on one hand that, with reasonable certainty, the planet may be assumed as the abode of living beings, on the other the presumption is as specifically denied. Deferring the consideration of Venus to some other opportunity, it will be of interest to examine the present state of our knowledge regarding the Planet of War, and, at the same time to glance briefly over the arguments, pro and con, which have been advanced to prove or disprove its habitability.

Just at the present time, Mars is plainly visible in the evening heavens, a ruddy star in or nearthe constellation Virgo. Forty millions of miles, at least, divides us from the bright globe of light which modern revelation tells us is the miniature of our own earth; 5,000 miles is its diameter, bearing a proportion to the similar terrestrial dimension of 5 to 8 ; consequently the relative surfaces are as 25 to 64 , or more plainly, our world is two and a half times the larger of the two. Comparing the relative densities, Mars' is about three fourth that of the earth, hence the force of gravity at its surface is much less than the corresponding te rrestrial attraction. If therefore, the inhabitants of that planet are proportione similarly to ourselves, their strength must be far greater in reference to their dead weight than is the case with us. I fact, if that organization, known as the Fat Men's Club, could be trans ported to Mars, its members, here barely able to support their mountainous protuberances and walk, would easily skip lightly over six-foot fences or bound along the ground in a way that would leave the best of our runners far in the rear. The nature of the inhabitants of Mars, we shall allude to, hewever, in detail further on

The orbit of Mars is very eccentric. Its center is $13,000,000$ miles from the sun, so that the light and heat received on the surface of the planet must vary considerably. It is less than ours in the proportion of 4 to 9 . The Martial year lasts for 687 of our days, and the Martial day is 40 minutes longer than ours. The inclination of the equator to the plane of its orbit is $27 \frac{1}{4}^{\circ}$, or very little more than is the case with the earth, which is $23 \frac{1}{2}^{\circ}$. The changes of the seasons, so far as depending upon the seasons, so far as differ little from our own These general points being fixed, let us now turn to theplanet's geography, or areography more properly, as we say selenography in referring to themoon. Comparatively speaking, our knowledge of the surface divisions of Mars is next in extent to ourinformation regarding the earth. We know more, in fact, about the hemisphere of the moon than we do of our own 'globe; for while the vast lunar deserts have been measured to nearly an acre, and the mountains and craters to within thirty or forty feet, there are on the earth $11,400,000$ square miles unexplored and unknown.
Jupiter and Saturn are almost constantly obscured their closed envelopes, so that their true surface is rarely if ever beheld. Uranus and Neptune are mere points of light. Mercury is almost always eclipsed by the rays of the sun. to the earth, and comes within $30,000,000$ of miles of us, but to the earth, and comes within $30,000,000$ of miles of us, but
travels between the earth and the sun, so that herbrightface is turned to that luminary and her dark hemisphere toward us. Hence Mars is the best fitted for examination.
In regarding the planet through a powerful telescope, it is at once observable that the poles are marked by brilliantly white zones which, it is believed, are caused by deposits of

EARWIGS

was at first supposed to be due to the atmosphere; but this view was soon abandoned; and at the present time it is ge-
nerally believed to be the prevailing tint not only of the soil but of the vegetation. So that instead of verdant ex. panse of prairie or green forests, the eye is met by crimson trees or scarlet grass, and the dull lurid shades peculiar to such hues.
But it maybe well urged that we are assuming too much in jumping to the conclusion that the red spots on Mars are and, the green ones water, and the white ones ice and snow. What proof have we that land, water, and ice exist on the planet at all? Mars has clouds. The invariable appearance of the moon, even under the strongest telescopes, does not exhibit the slightest trace of floating vapor on its surface, nordothe occultations of thestars indicate the existence of an atmosphere. With the planet we are considering the contrary is the case. Its spots change in brightness, and it seems at times as if a vail blurred the configurations of its surface or hours and days at a time. We can tell by the position of the Martial equatort? nat season is in progress in eitherhem-
isphere at any time: and it has been found that when it is winter in one hemisphere and summer in the other, the former portion is always obscured. Just as upon the earth, the wintery sky is rarely clear. Aeronauts tell us that, at high altitudes, the clouds below them sometimes entirely obscure the surface of the earth, or, at times, breaking away, admit but small portions of its dark surface to the view. Hence, when Mars is thus covered in parts, it is as if such portions where blotted out, while the shape of the true surface below is changed. Careful observations, therefore, indicate, with every.appearance of probability, that the misty vail is formed of clouds, vapor, or fog; is formed of clouds, vapor, or fog;
so that, in fact, unless it be a fine day on Mars, we cannot seehis surface.
[To be continued.]

Is Phosphorus Thought?

There appears still to be much difference of opiaion among chemists about the changes which occur in the secretion of the kidneys after waste of nerve tissue. For ple, Dr. L. Hodges Wood as ple, Dr. L. Hodges Wood, as the in 1869, denied the correctness of in 1869, denied the correctness of the generally received statement
that the amount of phosphates in that the amount of phosphates in
the urine is increased by fatiguing the urine is increased by fatiguing
mental exercise. He found that, while the alkaline phosphates were slightly increased, the earthy phosphates were notably diminished after mental work, and that, when the mind was not much employed the excretion of earthy phop was increased instead of dimin

THE HEMISPHERES OF MARS.

nomena. Thus, being considered as physical peculiarities, they have been made the subject of close study by almost 11 eminent astronomers.
For reasons which we shall explain hereafter, the red portions of the planet have been considered as land and the green regions as water, and their appearance has been carefully mapped.
We give herewith "a map, constructed by Mr. R. A. Proc tor from a number of drawings, in which the various seas and continents are marked with the names of noted astrono. mers, by which they are distinguished. It will be observed that the seas seen are all land-locked-true mediterraneansand communicate with each other only by narrow straits. The most remarkable features are the great equatorial zone of continents-of which there are four, namely, Herschel, Dawes, Madler, and Secchi-and the peculiar forms of th bell-shaped seas in the flrst of these grand divisions.
The waters, or rather the spots which we assume to be fluid re of the same color as terrestrial seaf, grayish green; but the land is a uniform ocherous red. To explain this latte the land is a uniform ocherous red. To explain this latter
peculiar tint, various theories have been propounded. It
ished. He accounts for this on the bypothesis that, whe the brain was worked it, withdrew more phosphorus from the circulating fluid.-Medical and Surgical Reporter

EARWIGS.

The insects popularlytermed earwigs are known scientif cally as forficulce, a name derived from the Latin, and mean ing " small scissors." The French appellation is perce-oreille or ear piercer, and is given on account of a pair of claws or nippers extending from the posterior extremity of the body, which resembles the instrument sometimes used by jewelers for boring the ear to admit earrings. The vulgar name earwig, is owing to the supposed predilection of the insect to enter the human ear ; an erroneous impression, doubtless based on the instinct of the animal which teaches it to take refuge in dark cavities. Even if it did enter the organ of hearing, it could do no harm, as it could not penetrate any further than the drum, and might be easily dislodged from the passage by a drop or two of oil
The color of the insect is from brown to dusky yellow. The body is elongated and flattened; and the head is slight ly movable and heart shaped, having fili form antenncs of from twelve to forty ar ticulations; on the sides of the head are small eyes. A breastplate, rectan gular in shape, follows; and, in the segments in rear of the thorax, two pairs of differently constructed wings. The first pair are shorter than the ab domen, cut squarely in rear, united to the frame in the center, and not crossed upon each other like the similar appen dages of grasshoppers and cricket The wings proper would hardly be sup posed to exist, as exteriorly they ap pear as a horny shell which, when fold ed close to the body, become a means of protection. The rest of the mem ber is formed of a diaphanous, rain bow-tinted membrane, which folds up like a fan and is completely covered by the exterior scale. The abdomen is covered with scales, similar to those on the tail of the crawfish, from which the sex of the animal may be told, the male having nine above and eight below, and the female, seven above and six in the ventral region. The male insect has also much stronger nippers, and the last segment of the back is larger than in the female. The claws attached below the thorax are six in number, short, and only suitable for running. They terminate in tarses of three articulations.
The young, on leaving the egg, and after the first change of skin, have no vestige of wings except a slight elevation on the posterior sides of the second and third segments of the thorax. After the second change, short wings appear, more or less united in a thin envelope or sheath; and it is not until the third sloughing that the insect has all the mem. bers entire.
Earwigs dislike light and live entirely in obscure places, concealing themselves under stones, in cracks of trees, and sometimes in deep flowers. They are social, and numbers are found together. They are voracious eaters, feeding on flowers and boring into ripe fruit, or, if they cannot get vegetable diet, contenting themselves with carrion or manure. If kept without nourishment, they devour each other. Their only utility to man is the war which they wage on several insects destructive to wheat and other grain, particularly
those varieties the larvæ of which bury themselves in the kernels of the plants.
The females have a remarkable and curious fondness for their young. The eggs are developed in little cavities in the earth and always in damp places. The mother watches them carefully, transporting them from the place if the moisture dries, or gathering them if they become scattered The larvæ at first are white, and appear to swell after emerg ing from the egg, but become dark and hard in a few hours. The female still guards them, and, it is said, gathers them under her, as a hen does her chickens. Earwigs are desti tute of feelings of gratitude or filial affection; for just as soon as they attain sufficient size, they proceed to devour
their mother, if she happen to get injured or die, and also their mother, if she happen to get injured or die, and also
such of their relatives as fall under the inevitable law of natural selection.
The engraving, extracted from La Nature, given herewith represents the three varieties of the earwig common in Europe. The insects marked 1 are the ordinary garden species or true earwig. No. 2 is called the "giant Labidour" and is the largest of the different kinds. The antenno have a large number of articulations, the elytra are elongated and rectangular, and strongly protected by a shell-like cov ering. The nippers are nearly straight, have a tooth in the middle, and appear dark at the extremities. The male in sect represented grows, nippers and all, to about an inch in longth, and the female to about two thirds that size. In
Fig. 3 is shown the "apterous Chelidour," a variety confined Fig. 3 is shown the "apterous Chelidour," a variety confined
to the Pyrenees mountains; a similar and smaller species is also found in the Alps and other ranges. The head is somewhat triangular, and the body, of a chestnut brown. The insect attains the length of half an inch.

Contespoutiente.

Spontaneous Generation.

To the Editor of the Scientific American:

In your issue of August 23 is an editorial on "Spontaneous Generation," containing some interesting facts and statements on that important subject. Knowing that your desire, as a friend and votary of science, is to give your readers "the truth, the whole truth, and nothing but the truth," and knowing also that very many of your readers are most deep ly interested in the results of the investigations referred to, I venture to ask space for some additional facts and state-
ments. Your article opens with the statement that "All experiments thus far made with infusions of different substances, for the purpose of producing infusorial animalculæ, appeared to prove that the access of air was necessary for their forma-
tion." The truth of this was admirably shown by Professor tion." The truth of this was admirably shown by Professor
Huxley, in his great address, as President of the British Huxley, in his great address, as President of the British Association, in September, 1870. After pointing out the fact
that the theory of spontaneous generation (the doctrine of that the theory of spontaneous generation (the doctrine of
abiogenesis) was the accepted theory of the world, on the origin of life, until two hundred years ago, he proceeds in a most masterly and exhaustive manner to trace the history of the opposing theory, that all life originates from some antecedent germ (the doctrine of biogenesis), from its first enunciation by the philosopher Harvey to the date of that address before the Association.
Professor Huxley's conclusion, which is very guardedly and yet very strongly stated, and which was reached by passing through all the experiments up to that date, is as
follows: "But though I cannot express this conviction of mine too strongly, I must carefully guard myself against the supposition that I intend to suggest that no such thing as abiogenesis ever has taken place in the past or ever will take place in the future. With organic chemistry, molecular physics, and physiology yet in their infancy and every day making prodigious strides, I think it would be the hight of presumption for any man to say that the conditions under some day, be artificially brought together. All I feel justified in affirming is that I see no reason for believing that the feat has been performed yet."
Perhaps no one will deny that Professor Huxley is as wel fitted as any man living to reach a just conclusion on this subject. Notwithstanding his strong desire to believe the theory of abiogenesis true-a desire, the strength of which
is shown by the unwarranted admission concerningthe pos is shown by the unwarranted admission concerningithe possible power of organic chemistry, etc., thrown in by the way -he feels himself compelled to declare that he sees " no reason for believing" that the feat of producing life by spontaneous generation has yet been performed.
That at the time of making his address, Professor Huxley was familiar with Professor Bastian's loudly trumpeted ex periments, that after sufficiently investigating them he determined to ignore them in that address as being unworthy of scientific consideration, and that he had the very best rea sons for doing so, appear from an eminently spicy and tren chantletter which appeared in Nature, October 13, 1870 ,
That letter furnishes data from which any ordinary reader, who makes no pretensions to science. can reach a judgment for himself upon the value of Professor Bastian's experiments and the caliber of Professor Bastian. It is as follows
"Dr. Bastian and Spontaneous Generation.-I find that the address which it was my duty to deliver at Liverpool fills
thirteen columns of Nature. The reply with which Dr. Bas thirteen columns of Nature. The reply with which Dr. Bas fesses to deal with only the first portion of the address.
Between us, therefore, I should imagine that both you and your readers must have had enough of the subject; and, so leave both Dr. Bastian and his reply to the benign and lethe an influences of time.
whom Dr. Bastian's really wonderful effluence of words weighs as much as if it were charged with solid statements
and accurate reasonings; and I am further told that it is my duty to the public to state why such distinguished special
pleading makes not the least impression on my mind. With your permission, therefore, I will do so in the briefest possi
ble manner. The first half of Dr Bastin's ble manner. The first half of Dr. Bastian's reply occupies
seven columns of your number for the 22d of September In all this wilderness of words there is but one paragraph which appears to me to be worth serious notice. It is this:In the first place, he does not attempt to deny: he does
not even allude to the fact [that living things may and do
arise as minutest visible specks in solutions in which, but a few hours before, no such specks were to be seen.] And thi is in itself a very remarkable omission. The statement mus be true or false; and if true, as I and others affirm, the ques tion which Professor Huxley has set himself to discuss is no longer one of such a simple nature as he represents it to be
It is henceforth settled that, as far as visible germs are con cerned, living beings can come into being without them." If I did not allude to the assertion of Dr. Bastian, put betwee the brackets, it is because it bears absurdity written upon its face to any one who has seriously considered the conditions of
microscopic observation. I have tried over and over again to microscopic observation. I have tried over and over again to
obtain a drop of a solution which should be optically pure, obtain a drop of a solution which should be optically pure
or absolutely free from distinguishable solid particles, when viewed under a power of 1,200 diameters in the ordinary way I have never succeeded; and, considering the conditions of observation, I never expect to succeed. And though I hesitate to speak with the air of confident authority which sits so
well on Dr. Bastian, I venture to doubt whether he ever has prepared, or ever will prepare, a solution in a drop of which no "minutest visible specks" are to be seen by a careful
searcher. Suppose that the drop, reduced to a thin film by searcher. Suppose that the drop, reduced to a thin film by
the cover glass, occupies an area one third of an inch in diam eter ; to search this area with a microscope in such a way a eter; to search this area with a microscope in such a way as
to make sure that it does not contain a germ one forty-thouto make sure that it does not contain a germ one forty-thouto ascertain with the unassisted eye whether the water of a pond a hundred feet in diameter is or is not absolutely free from a particle of duckweed. But if it is impossible to be sure that there is no germ one forty-thousandth of an inch in
diameter in a given fluid, what becomes of the proposition, so valuable to Dr. Bastian that he has made your printer waste special type on it?
I now pass to the second part of the reply, which, though
longer than the first, is really more condensed, inasmuch as longer than the first, is really more condensed, inasmuch as it contains two important statements instead of only one.
The first is, that Dr. Bastian has found bacterium and leptothrix in some specimens of preserved meats. I should have been
very much surprised if he had not. If Dr. Bastian will boil some hay for an hour or so, and then examine the decoction,
he will find it to be full of bacteria in active motion. But the motion is a modification of the well known Brownian movement, and has not the slightest resemblance to the very rapid motion of translation of active living bacteria. The bacteria are just as dead as those Dr. Bastian has seen in the
preserved meats and vegetables; and which were, I doubt not, as much put in with the meats as they are with the hay, in the experiment to which I invite his attention.
The second important statement, in the second part of the
reply, is: "Professor Huxley is inclined to believe that there reply, is: "Professor Huxley is inclined to believe that there self and some others." In this I cordially concur. But I do not know why Dr. Bastian should have expressed this my ments, inasmuch as I thought it my duty to let him know both orally and by letter, in the plainest terms, six month ago, not only that I conceived him to be altogether in the wrong, but why I thought so.
Any time these six months, Dr. Bastian has known per
fectly well that I believe that the organisms which he has fectly well that I believe that the organisms which he has
got out of his tubes are exactly those which he has put into that what believe that he has used impure that what he imagines to have been the gradual develop
ment of life and organization in his solutions is the very simple result of the settling together of the solid impurities, which he was not sufficiently careful to see, in their scattered conditions, when the solutions were made. Any time these
six months, Dr. Bastian has known why I hold this opinion. He will recollect that he wrote to me asking permission to bring for my examination certain preparations of organic
structures, which he declared he had clear and positive evistructures, which he declared he had clear and positive evi-
dence to prove to have been developed in his closed and di dence to prove to have been developed in his closed and di
gested tubes. Dr. Bastian will remember that, when the first of these wonderful specimens was put under my microscope,
I told him that it was nothing but a fragment of the leaf of the common bog moss (sphagnum); he will recollect that I had to fetch Schacht's book "Die Pflanzenzelle," and show microscope, before I could get him to listen to my suggestions and that only actual comparison with sphagnum, after he had left my house, forced him to admit the astounding blunder
which he had made. To any person of critical mind, versed in the preliminary studies necessary for dealing with the difficult problem which
Dr. Bastian has rashly approached, the appearance of a scar let geranium, or of a snuff box, would have appeared to be
hardly more startling than this fragment of a leaf, which no one even moderately instructed in vegetalje histology could Dossibly have mistaken for anything but what it was; but to rr. Bastian, agape with speculative expectation, this miracle
was no wonder whatever. Nor does Dr Bastian's chemical criticality seem to be of a more susceptible kind. He sees no difficulty in the appearance of living things in potash-alum
until Dr. Sharpey puts the not unimportant question : Whence did they get their nitrogen? And then it occurs to him to have the alum analyzed, and he finds ammonia in it. ${ }^{*}$ And as to elementary principles of physics: In his last
communication to you, Dr. Bastian shows that he is of ion that water in a vessel with a hole in it, from which the ion that water in a vessel with a hole in it, from which the
steam freely issues, may be kept at a temperature of " 230° to 235° Fabrenheit for more than an hour and a half." " \dagger I hope that Professor Tyntall, whom Dr. Bastian scolds as authoritatively and unsparingly as he does me, will take note
of this revolutionary thermotic discovery in the next edition of this revolutionary
of his work on heat.
f his work on heat.
It is no fault of m
Dr. Bastian's labors mine if I am compelled to write thus of Dr. Bastian's labors. I have been blamed by some of my
friends for remaining silent as long as I have done concerning them. But when, because I have preserved a silence
which was the best kindness I could show to Dr. Bastian, he presumes to accuse me publicly of unfairness, and to tel your readers that my address "is calculated to mislead" of judging of the competency of my assailant.
Jermyn Street, October 10 . H.
Jermyn Street, October 10.
After such a damaging exposition of Dr. Bastian's claims ing
by so great and so competent a man, you will doubtless agree
with me that no scientific man would be inclined to expect anything of any real scientific value from such an experi mentor, should he even devote his time for a century to come to his experiments. The opinion of Mr. Wallace, and all his school of prejudiced and purely imaginative philoso phers, will have no weight with the true scientist when arrayed against the careful research and clear logic of Pro fessor Huxley's
The truth is Professor Bastian has attempted to prove what can not be proved even if it be true. Such is the delib what can not be proved even if it be true. Such is the delib
erate conclusion of my esteemed friend and teacher, Dr. Arerate conclusion of my esteemed friend and teacher, Dr. Ar-
nold Guyot. Said this great man, in conversation a few days nold Guyot. Said this great man, in conversation a few days
since: "The conditions of the problem-in the material and since: "The conditions of the problem-in the material and
instruments used and in the limitations of the eye and the microscope-are such that, even if life should be spontane ously generated, in the manner claimed by Professor Bastian it could never be proved." It can never be known that there is no life germ as a minutest visible speck present in any flask of liquid. To ascertain with a microscopic power of 1,200 diameters that there is no germ one forty thousandth of an inch in diameter in a flask that exposes to view a lat eral surface of three square inches, would be just as easy as to ascertain with the naked eye that not a single flea is living on the side of a pyramid of 600 feet base and 900 feet ascent, or on any one side of Cheops itself. This, however provided the miniature ocean currents in the flask should be not more active than the living inhabitant of the Cheops. But the germ of one forty-thousandth of an inch in diamete is too large; reduce it to one one-hundred-thousandth of an inch and then make the calculation. A microscope which would make such a germ, when brought into its range, clearly visible would lift up a man to the hight of the Himalayas.
I trust that these facts and statements will not be uninterPrinceton, N. J

D readers.
D. S. Gregory,
Professor in University of Wooster, Ohio.

The Devil Fish.

To the Editor of the Scientific American
I notice in your last issue an illustration representing the devil fish. Until I saw it, and your announcement of two living specimens, I was not aware of the existence of any living specimens in the world. My attention was particu-
larly attracted to the matter because I have a most perfect larly attracted to the matter because I have a most perfect
fellow (in alcohol), and have earnestly endeavored to find out fellow (in alcohol), and have earnestly endeavored to find out
how many there were either in Europe or America. Thus how many there were either in Europe or America. Thu own. If the one in the Hamburgh aquarium is but two fee from tip to tip, mine is more than as large again, being four feet three inches. The smaller one has, however, the ad vantage of being alive.
The strength which these creatures possess is almost beyond comprehension, as is evidenced by what took place when my pet (!) was captured. He had seized hold of a sub marine diver, at work in the wreck of a sunken steamer off the coast of Florida. The man was a powerful Irishman who claimed to weigh three hundred pounds. His size and build fully verified his statement, and, to use his own lan guage, " the baste landed on top of my shoulders and pinned my arms tight. I felt my armor and myself being cracked into a jelly." It seems that he was just about being brought to the surface, else the monster would have killed him, for he was suffering so from the terrible embrace that he could move no part of himself. When dragged on to the raft from which he had descended, and finally released, he had fainted. The men on the raft seized the fish by one of its wriggling arms, and tried to pull it off, but could not break the power of a single one of the suckers. The fish was only removed by being dealt a heavy blow across the sack containing the stomach. This sack stood stiffly up above the eyes, while the eyes stood outlike lobster's eyes and gleamed like fire. The monster is, all in all, one of the most fright ful apparitions it could be the fate of a man to meet. It fulfils in every particular the horrible features attributed to it in Victor Hugo's "Toilers of the Sea." Notwithstanding the severity with which the able Frenchman has been criticized for "creating a nondescript with his weird imagination." the truth must be granted that his "nondescript has an actual existence, as is evidenced by the specimens in Brighton and Hamburgh, as well as my own. The likeness of the picture to mine is perfect in every particular.

Charles B. Brainard

Winthrop House, Boston, Mass.

J. H. says: "I am building a planing mill inside the fire limits, and have concluded to use perpetual motion in place of steam power. I do not care about a highly finished machine, but it must be all right in its working parts, have a capacity of about 80 horse power, and be easily controled. Whom do you consider to be the most reliable maker of per petual motion engines?" [Inventors of perpetual motion engines would do well to advertise their devices in the Scr intific American.-Eds.]

Burnt and Broken Grate Bars.-R. F. writes that he recently visited Cape Breton, N. S., and there saw, in a boile furnace, a system of protecting the bars from the burning to which they are subject, and from the violent raking which is necessary when they are choked with clinker. The means employed consist of a layer of flat pieces of freestone, placed underneath the coal. The clinker adheres to the stones, and the bars are protected from burning, warping, and chok-

