Srimitifir chmmiral.

MUNN \& CO., Editors and Proprietors. NO. 37 PARK ROW. NEW VORK
\qquad A. E. beach.

TRIRIB
 Ono coly, nin wisr One cors, sis months

voL. XXVIII., No. 9. [New Series.] Toenty-eighth Year
NEW YORK. SATURDAY, MARCH 1, 1873.

small POX.-.OLD AND NEW REMEDIEs.

Superficially considered, it appears singular that certain contagious diseases, especially small pox, spread more in the winter season (which, in other respects, is the healthiest time of the year) when the cold destroys the miasmata which fourish in tropical climes and, in hot summers, sometimes visit portions of the temperate zone. But in order to explain this apparent anomaly, we have only to consider that in winter a large number of the lower classes of people huddle together in ill ventilated rooms, in order to shelter themselves against the cold. Of course this is favorable to the growth of miasmata, which only need suitable conditions to propagate themselves. Microscopists have succeeded in tracing the origin of many contagions to parasitic growth, eithe egetable or animel, and it is not improbable that this will altimately be the case with all, the denial of many medica formerly, equally high authorities used to deny most peremp. formerly, equally high authorities used to deny most peremp-
torily, to several diseases, the origin which is now, beyond orily, to several diseases, the origin which is now, beyond growth of animalcula or vegetable parasites. It should also be considered that the fact of not finding such, in certain cases, is only a negative proof; they may be there and the investi gator may have failed to find them; but other searchers in course of time and with instruments more perfect than w possess at present, or by help of an improved modus uperandi will undoubtedly discover them. Microscopic investigation has only just commenced to be applied in medicine, and the most advanced physicians know now that it is one of the most powerful helps in medical diagnosis.
Eruptive fevers are diseases of the blood; they probably originate in a kind of catalytic poison in the system, which may be a sesult of parasitic growth, as is the case with fer mentation and many other chemical changes. However, the future will decide the question definitely; in the mean time we must observe, use our best judgment, and apply all the light, as far as the present state of science allows, to combat this class of diseases, among which small pox is one of the most virulent, loathsome and dangerous. In order to be fully convinced of this, one has only to visit a small po hospital and see this interesting disease in all its stages
In regard to the effectiveness of the protaction afforded by vaccination, the statistics show that this discovery, made by Jenner more than a century ago, had the most startling influence in staying the small pox ravages of that time, and it kept the nations who accepted it comparatively free; the ex perience of the physicians of the present day tends in the same direction, and all doubt fostered by some in regard to ts effectiveness proceeds solely from want of acquaintanc with the facts, which are overwhelming in proof of its grea value to the human race. As the health and longevity of vaccinated persons is on the general average equal to that of others who escape the small pox without vaccination, there can be no serious objection on that ground. The rule, laid down by some, that persons must be vaccinated every seven yeurs is totally arbitrary and without any foundation what soever; different individuals will differ greatly in this repect, and, in order to be safe, it is well to try if vaccination will "take" in case any danger is apprehended, even if it has been applied only three or four years ago. If no epi demic is prevailing and the person is exposed to no danger, it is needless to revaccinate every seven years; ten years or more may elapse, and we have known individuals who undoubtedly, by a single effective vaccination in childhood have been protected for their whole lives.
In regarid to the treatment, it must be kept in view that here, as in all eruptive fevers, it must have its course, and cannot be cut short without robbing the patient entirely o his chance of e cape. Careful guarding against taking cold,
good nursing, the mildest possible diet, and abstinence from
irritating food and remedial agents simil
are the first necessities of small pox cases.
The latest medical journals recommend two new remedies which experience has proved to be beneficial. Dr. Revillod, of Geneva, recommends glycerin as an exterior application this, through its soothing action, diminishes the intensity of the eruption. He mixes it with soap and some mercurial ointment. Dr. Carl Nagel, Royal Chancellor of Health in ointment. Dr. Carl Nagel, Royal Chancellor of Health in
Berlin, recommends xylol; he has administered this internally in eighty cases, thirty-six of which had the small pox nally in eighty cases, thirty-six of which had the small pox
in its worst form, and only four died, which is a better result in its worst form, and only four died, which is a better result
than that of any other remedy thus far known. When administered while the disease is but surpected, xylol does not prevent it, but greatly eases the patient and facilitates a peedy recovery.
Xylol, or xylen, is also called the hydride of xylenyl; it is one of the hydrocarbons obtained by the distillation of coal
tar, wood tar, or Burmese petroleum. The coal tar con tains little of this ingredient, but one pound of oil separated from crude wood spirit contains about one ounce of xylol. It is a liquid similar to benzol and toluol, but has the antisep tic properties of carbolic acid from coal, and of creosote from wood. It separates from the crude wood spirit by the addition of water, and is purified. like other cognate products, by sulphuric acid; the brown mixture, after standing, i washed with a solution of potashand then in water, dried ove chloride of calcium or glacial phosphoric acid, and then sub jected to a fractional distillation, when the xylol comes over as 800
Fahr.

It is well known that many derivatives of tar, creosote carbolic acid, benzol, toluol, xylol, etc., are all poisons for small organic growt s , either vegetable or animal ; that they for instance, at once destroy fermentation by killing the microscopic yeast plant; it is also known that mercurials are especially poisonous to parasites of all kinds, especially ani-
mal ones. These remedies now appear to mal ones. These remedies now appear to be effective in not an argument for the probability of the theory that this disease also is due to a morbid organic growth, perhaps in the blood itself, which produces that violent fever, with the symptoms of pain, nausea, etc., and finally works itself out hrough the skin and mucous membrane by a copious erup tion, which is often strong enough to destroy the skin like so many burns, and sometimes even so violent as to destroy the life of the patient, in the same way as an extensive scald ing does, which is fatal by arresting the natural action of the In mall pox in this country, we believe the above details to be of general interest and utility to our readers.

WORD WITH TEE READER, THINKER, AND WRITER.
We believe that there is no portion of our journal of great interest than the columns devoted to our correspondence, and we should be unappreciative did we undervalue the ractical suggestions and information imparted by its writecs. We would take the present opportunity of requesting from ur readers even more frequent communications. Let us have all possible ideas. Criticise everything that appears pen to criticism; and, if experience has taught you differantly, give the public the benefit of your wisdon. The mer act of your finding any difficulty in committing your knowl dge to paper need be no drawback. We want ideas, not words; and if the brain work is there, we will put it into roper shape. Every week we publish a large number of questions on different subjects. Sometimes we are at a los or a suitable reply which many of our readers can readily find; in such cases responses from our subscribers are appre ciated both by the enquirer and ourselves.
The modern newspaper is the substitute for the ancien orum. Instead of a number of people meeting in some public place, as they used to do, and discussing various ques ions of interest, they now write to their paper and inter change their views through the medium of its printed

pages.

Necessarily, among the multitude of communication which reach us, there are many agreeing on some single topic n such case we exercise our discretion in the publication of uch as we consider the most sound and suitable. There ar others devoted to the discussion of questions which it is only waste of time to consider. We allude to perpetual motion, quadrature of the circle, and all of that class. We would arnestly impress upon all who entertain such chimerica deas to turn their minds and labor to more profitable pur suits.
We believe that the:e is no better way of acquiring and and disseminating knowledge than to establish a co-operation between those who read and those who write-to place the pinions of the practical man beside those of the theorist he worker beside the thinker, and thus obtain views clearer etter, and more comprehensive on subjects interesting alik

THE PHOTOMETER APPLIED TO A8TRONOMY.

In a recent article on the physical nature of the planet Jupiter (see page 400 of cur volume XXVII), we described he important results deduced from photometric observa tions of that planet; and we may add to this that photo metry has often been applied to the starry heavens, in orde o determine the comparative luminosity of the heavenly odies. It is evident, however, that the common methods as applied here on earth to compare the relative intensity of
different flames, and of which one was described on page 83 different flames, and of which one was described on page 83
of this volume, are entirely inapplicable; and therefore other
ifferent principles
The most perfect photometer adapted to measure and com pare the light of the heavenly bodies is undoubtedly that in vented by Zollner, the famous astronomer and spectroscopis of Berlin; he invented it as early as 1860, but only recently has he applied it extensively to celestial photometry. It is based on the principle of the polarization of light; and in order to accomplish his purpose, h : makes use of the prop erty of the analyzer (see Tyndall's lecture, page 35 of ou urrent volume) to transmit or obstruct the polarized ray in proportion as it is turned round an arc of 90°; forintermed te portions of the angle of rotation, a strong light may b gradually diminished till the transmitted rays are equal to the weaker light
The first thing Zöllner had to do was to determine how far the angle would serve as a measure for the intensity of light. Mathematical theory teaches that the amount of ligh transmitted does not increase as the angles themselves, but as the squares of their sines. Zöllner found this law per fectly verified by practical experiment, in testing this photo meter in many different ways. By attaching such a polariz ing photometer to an astronomical telescope, he has been en abled to determine the comparative luminosity of divers heavenly bodies with greater accuracy than had previously been possible; and the results ottained will especially b most interesting to posterity, who will be able to determin what changes have taken place in the course of time, change which are sometimes very great and of the utmost import ance to the extension of our knowledge of the nature of the heavenly bodies.
As a standard of comparison, he uses the light of a lamp shining through a pin hole; and in order to be independen of the perhaps variable light of this lamp, which may differ on different nights, he compares two stars with the lamp and only notices the difference between the stars. If, for in sance, the planet Jupiter has to be compared with Venus, he directs the telescope to Jupiter and turns the analyzer till its luminosity is equal to that of the lamp shining through the pinhole, and finds it was turned, say, 10°; then he di ects the telescope to Venus, and finds that he must turn it 5° in order to diminish its light till it is equal to the lamp light. The relative luminosity will then be as the square of the sines of these angles, that is, as 0.0174^{2} is to 0.0389^{2}, or as 0.00030276 is to 0.00151321 , or, approximately, as 3 to 15 o to 5
Among the results thus obtained by Zöllner are the fol lowing

comparison of planet

Tlue fixed star Capella as compared to Mars is as 1 to 7; to upiter, as 1 to 10 ; to Venus, as 1 to 50 ; to Saturn, as 1 to $0 \cdot 4$; to Uranus, as 1 to 0.0066 ; to Neptune, as 1 to 0.0007 .

COMPARISON OF FIXED stars.

The same star Capclla as compared to Sirius is as 1 to 5 to Vega, as 1 to $1 \cdot 2$; to Betelgeuse, as 1 to 0.5 ; to Regulus, s 1 to 0.4 ; to Pollux, as 1 to 0.3
the moon compared to the planets
The full moon as compared to Venus, when full, is as 150 to 1 ; to Jupiter, as 700 to 1 ; to Mars as 1,000 to 1 ; to Saturn, s 18,000 to 1 ; to Uranus, as $1,159,000$ to 1 ; to Neptune, as $10,000,000$ to 1 .
The sun as compared to the moon is as $\mathbf{7 0 0 , 0 0 0}$ to 1 . Con equently the light of the sun surpasses that of the most dis tant planet, Neptune, 7,000,000,000,000 times.

DISCOVERIES OF TIN IN QUEENSLAND

The most recent reports substantiate the fact that tin fields of unexampled richness have been discovered in the English colony of Queensland, Eastern Australia, the presence of the netal being detected over an area of 550 square miles. Mr. T. F. Gregory, the mineral land commissioner, states that t the present time, only about 225 square miles of this area have hitherto been found sutficiently rich for working, but here are many instances of tin being found in paying quan tities beyond these limits. The physical and geological character of nearly the whole of the area described is that o an elevated granite table land, intersected by ranges of abrup hills, the highest limits of which are about 8.000 feet above he sea, its eastern escarpment forming the water shed of he Clarence river, the northern that of the Condamine, and the southwestern, the Severn and McIntyre rivers. The por tion of the district over which the deposits of tin ore are dis ributed is that comprised by the water shed of the Severn river. The richest deposits have been found in the stream eds and fluvial flats, the paying ground varying from ew yards to five chains in width, occasionally broken by ocky bars; but even in these instances large deposits ar frequently lodged in the pockets and crevices between th ranite boulders.
The probable yield of ore is stated at ten tuns per linea chain of the beds on the various creeks. In some instances, his has been found to extend to thirty tuns per chain. Re garding the mineralogical character of the rocks, it is stated that the ore is associated only with granite which is invariably red. The granite generally is coarse grained and spems to disintegrate rapidly under atmospheric influence. There re numerous bands of loosely aggregated rock, granitoid in in character, highly micaceous and traversed by bands and veins of quartz in all directions, in which the crystals of tin reabundant. No tin floors, as at the Elsmore mine in New SouthWales, have yet been discovered.
As the lodes and veins have as yet been but very partially tested, it would be premature to give any decided opinio upon them. It is probable that they will prove a source of great wealth, and perhaps render Australia one of the first tin producing countries in the world.

