rather the area, of the piston of which is equal to the
sum of the others. Answer: To determine the power of the hydraulic press, measure the diameters of the pump
plunger and the ram of the press. The square of the diameter of the ram is divided by the quantity obtained by multiplying the square of the diameter of the plunger
by the distance from the center of the plunger to the by the distance from the center of the plang by the whole
fulcrum of the pump handle and dividing
length of handle. Theresult will be the number of times that the force exerted by the press exceeds that exerted
on the pump handle. Friction is not considered. The
action of four small pumps worked by the same handle would be equivalent to that of a single pump of double J. K. asks: Is it safe to use any remed y
when chemicals are used, to remove scales from bollers? Answer: Mechanical means are always to be preferred, where their action can be carefully watched, is proper If they contatn any acil, howcyer, they will injure the
exposed metalic surfaces wherever they may come in exposed metalitic surfaces wherever they may come in
contact with them. Some apparently harmless remedies is thus sometimes caused.
To E. E.-To form a perfect cube in per connect cach alternate angle with thecenterbya radius

To W. G. B.-This communication was re earlier note. The desire of our correspondent 1 s, how
ever, fully complied with in our last remarks upon the subject of the balance wheel. The only real gain in at tempting to balance a reciprocating plece by a rotating one is that derived from changing the direction of th
disturbing action of the momentum. For example, th reciprocating parts of a horizontal stationary engine, is runuing at high speed, produce horizontal strains which Its foundation and holding down bolts are less well fitted
to resist than to meet the vertical strains which are produced by the momentum of the rotating plece, whic
may be used to neutralize those horizontal strains. J. H. D. Says: A friend claims that, if
weight of 40 ibs. be put on a wagon axle (which is 20 lbs. on each whecl), the pressure is the same on the
top of the wheel as on the bottom; while I assert that, If there are 14 spokes in the wheel, there is just on
fourteenth of the weight on the top Answer: The problem proposed involves the higher
mathematics. If the rim is absolutey rigid, and if the joints are unyielding, the strains on the several spoke will vary in proportion to the squares of the cosines of
the angles which they make with the vertical. In thi case, the force resisted by the vertical spoke, either top or bottom, is about two fourteenths of the total
weight on the wheel, where all the spokes take their pro-
$\underset{\text { what causes sinks, hollows, or low places in brass cast }}{\text { X. Y. Z. Says: }}$ what causes Answr: The defects you speak of are due to va oughly dris, such as uneven shrinkage, mod pouring an oughly dried, etc.; but principally uneven po
too little pressure in the metal from the pot.
says: The piece Iscnd you is broken off from a larger plice weighing y/s of a poond. It was found while exca
vating for a cellar and was embedded about three feet below the surface, in a soll composed of sand and clay When found, it was covered with an oxide fully 34 of a inch thick. Many who have examined it think it is of
meteoric origin. But I have always supposed that memeteoric origin. But I have always supposed that medoes not appear to, for hee mful magnet. Answer: It is
the least affected by a powerf
not of meteoric origin, but is iron pyrites (sulphuret of iron) which is not attracted by the magnet.
$\underset{\text { valve engine, } 10 \text { by } 24 \text { inches. The valve cuts off at about }}{\text { S. S. W. }}$ two thirds of the stroke. Is it possible to set the eccen without changing the length of the valve? Answer: The
engine referred to is probably as well arrangedas will engine referred to is probably as well arrangedas willbe
found possible. To cut off shorter with a single slide valve would probably cause excessive cushloning. To
make a change would require, also, a change in the length of valve face.
C. asks how to make a machine to sand paper wood. Answer: Use canvas belts strongly sewed
together at the ends. The threads may be so tied togeth r as to leave the face on emery side of belt perfectly
smooth and level. Size the belt with a coating of smooth and level. Size the belt with a coating of thin
glue and then let it dry. Hand the belt overtwo pulleys
so that it can be easily turned. Use the best glue, of so that it can be easily turned. Use the best glue, of
about the consistency for glueing wood; put it on ho witha brush, sifting the sand or emery on at once. Go
round the belt as quickly as possible, then lay it on a as hard as possible (an tron pulley, loose on a mandrel, best) ; then hang up the belt to dry.
M. H. B. asks: How can I work a blue color
into soap? Answer? Ultramarineand smalts or zaffre are the materials used; the pigment ought to be stirred
Into the soap when the latter is in the mold. The fear unfounded.
S. L. A. says that a steel square which he the temper. Answer: The simple covering with oll cannot effect the hardness and elasticity of steel. It is a fact that oll and fats are used to anneal steel, eapecially the tools are covered with the fat or oll, whereupon the latter is ignited
B. St. J. says: I am running a steam saw
mill. When getting up steam after the boller is cold
there is a thumping or pounding, like striking with
heavy hammer, from the time wee get 51 bs. of steam till we have 40 lbs., when it ceases. What is the cause of In diameter and eighteen feet long. The connectio pipe from the pump is exposed three fect to the fire, an ing sounds at back . When in front of boller the thum ing sounds at back, and at back, sounds in front, and is
so heavy as to jar the whole mill and to be heard four o
fiver nive rods outside. Answer: We presume that the action
described is due to the presence of cold water in the in the cylinder, or in some other way drain the steam
pipe and allow steam to blow through until the pipe is thoroughly warmed.
D. M. O. asks: Is there any process by which grained sugar can be made from sorghum? An
swer: The attemptsto make granulated sugarout of sorghum have not proved economical. Several pamphlets
have been printed by agricultural publishers in thi subject.
J. K. M. asks: What is the most powerful
bleaching process, and how can I apply it for bleaching an animal substance? Answer: The best bleachin agent for ordinary purposes is chloride of lime. Per-
manganate of potash is also much employect. For househond use, what tis called J Javelle water, to be hat of drug.
gists, can be used to bleach linen and remove wine stains. J. P. C. says: I wish to illuminate a magic
lantern with an electric light; what is the best battery to use, and what is the number of cups? Are there any
magnetic or other machines that would answer the pur magnetic or other machines that would answer the pur-
pose? Answer: It is difficult to inanage the electric pose? Answer: It is dificult to wanage the eleis ex-
light without employing Foucault's lamp, and this is ex
pensive. Professor Tyndall made use of three of these pensive. Professor Tyndall made use of three of these
lamps at his recent lectures in New York, and ran them with a bichromate battery of 50 cells. It is more con-
venient to flluminate a magic lantern with the ealctunn

light.

 for any one but a professional chemist to test bleaching
powders. The directions for accomplishing an accurate
analysis analysis are given in Fresenius' work on quantitative
TV

TV. E. G., of Ky., sends a mineral specimen,
galena, the great lead ore of commercs.
J. M. W. asks for a demonstration of the
J. M. W. asks for a demonstration of the
mannerin which a bird rises through the air withoat ex-
ertion on its own part, and states that this will open ertion on its own part, and states that this will open a
new feld for perpetual motionists. Answer: If you
have read the Scientific American carefully, you will kave read the Screntific American carefully, you wil
know that a brd does not rise without exertion on its
own part, and you will have a wholesome dread of anyhing further on the subject of perpetual motion
F. A. K. says: A lever L has its fulcrum at sure is exerted perpendicularly at the right hand extremty of the lower part. Another lever, of similar dimen-
ions and with its fulcrum similarly placed at the left sions and with its fulcrum similarly placed at the left
hand extremity of its lower part, Is of shape 1. . Which
will will exert the greatest pressure? Answer: The latter,
or \perp form. If the two arms of L are equal in length, here will be merely a transmission of power, less the riction, and no leverage at all. But in the latter forn, the the power is applied is movect further from the fulcrum;
nd the leverage will bc as this distance is to the leugt and the leverage will be as this distance is to the length
E. M. asks: What cheap preparation can I use to make a box water tight against either
water? Answer : Dip the box in hot paraflin.
J. B. W. asks for information with reference next year. Who has It tn charge, and what has been pab-
ished with reference thereto? He suggests that a table of contents for each number would be a valuable addition to our paper: Answer: Write to Professor New-
come, Washington, D. C., for information relating to the come, Washington, D. C., for information relating to the
commission for observing the transit of Venus. We
publish a table of contents for each number on our editorial page
C. M. asks if anthracite coal is injured by
exposure to the weather, or by i:amersion in water? have soaked it in water for some days without any in-
creasein weight." Is carbon soluble in any liquid with orease in weight." Is carbon soluble in any liquid with
out chemical change? Answer: Anthracite coal is considerably deteriorated by exposure to the air, a fact that
is too much overlooked by dealers. There is no solvent
for carbon.
A. G. T. Says: I read the article on the use health. Ihave a large case of stuffed birdsin my sitting
coom, which are, of course, prepared in arsenic. Do you considerthem injurious to the health of the occupants
of the house; and is the profession of taxidermist an of the house; and is the profession of taxidermist an
unhealthy one? Is Ure's Dictionary of Arts and Manudescriptions of the manufacture of trams and organbe kept in close cases, and the room be well ventilated, as molsture and chanses of temperature will liberate tall the symptoms of poisoning unless they are very
cautious. The article on silk mainfaeture, in Ure's Dictionary, is fully illustrated.
D. W. P. says that he and another person Increased by passing through plain glass of uniform
thickness. "I hold thatit is not; hesays that it is." Anin its passage through glass, but not nearly so much as the artificial heat from other sources.
W. S. B. asks: Am I right in supposing one pound to the square inch, would, at a pressure of
two pounds to the square inch occupy a space of two two pounds to the square inch occupy a space of two
cubic feet and so on, and is it the same with all other gases? What is the best rule for determining the pres
ure of water at different hights? Answer: The volume of gases is governed by Mariotte's law, which is that, at
the same temperature, the volume occupled by the same bulk of air is in inverse ratio to the pressure which it
supports. If the pressure of the column of mercury in a tube is equivalent to one atmosphere, adding thispres sure to that which the atmosphere exertson the mercury
we have the air subjected to double its usual pressure and it is, consequently, reduced in volume one half. If we reduced to one third, of four atmospheres, to one fourth, of its original bulk. The only variations in the
law are near the point of liquefaction of gases. For the press
physics.
H. C. S. asks if frost will follow down an
J. L. asks: Is the air which is injected into
the receiver or heater of the caloric engine warmed br the recelver or heater of the caloric engine warmed by
the exhaust before it is injected or not? Also, is the Ifldity of a frozen road bed the only cause of the ralls
breaking? It is denied by some scientifc authorities that fron is less tenacious when it is frosty, but experi ence seems to contradict such a theory. Answers: The
air entering a hot air engine is not usually previously heated. Ralls have slightly greater strength, probably when cold, but they have less elasticity and consequent-
ly are less well fitted to resist concussion. We presume ly are less well fitted to ressist concussion. We presume
that the last fact may fully reconcile experimental deduat the last fact may fully
E. H. B. says: The water in Lake Michigan June,1871. Some persons have an idea that the wearing away of Niagara Falls and the changing of the current in
Chicago River is the cause; but I am of the opinion that It is caused by the action of the elements or by evaporareat depression of the waters of this great inland sea? Also where is the wash or caving in of the bluffs and
great clay banks along this shore deposited? The wash great clay banks along this shore deposited? The wash
is immense every y yar. Answer: The light of water il the great lakes is greatly infucnced by the violence an well as the greater or less amount of rain which has fall en within the drainage area from which the water fiows We do not suppose that the wearing away of Niagara Falls has had the effect notea, but it would probabls precisely. We presume that the soll washed from the
banks is widely distributed over the lake.bottom, and ome of it is probably carried down the Niagara River C. A. M. says, in answer to A. J. query 3 ,
page 10,
that horn is clarified by first puting into
oiling water, and when apon a wooden pin of a convenient length, and scraped length of the horn at each stroke of the shave. It now has a clean surface, and is sawn into one or more cylln
drical pleces of convenient size, each of whith is split engthwise by passing it over a circular saw projectine
through a table. These pieces are now placed again bolling water, and, when hot, transferred to bolling whale oil, from which, while still hot, they are taken and
oolled or flattened and placed between sheets of Russian rolled or flattened and placed between sheets of Russian
iron in a powerfulscrew hot press. The press is made od several adjacent cast tron boxes containing square openThe pieces remin in aboulth which they are heare the temperature of the press, and when removed are color will be darker according to the length of time
R. B. M. says, in answer to E.S.S. S., query 3, page 59: Jacket your pipes with aebestos paste, onc hin boards or tin; charcoal pulverized, or any other
non-conducting material will answer for the jacket. have jacketed my pipes with fine hay, and have had no A. (i. C. query
taps in the following manner:
24, the bottom of one of the cutting grooves until it is
bright (au old fine cut file will answer); then place the
shank of the tap in the tongs, with point of the tap from you and the polished groove on the upper point a little elevated; if a taper tap, the large part of tha forth over a slow fire, that has the coal charred so bright groove assumes a deep red color.-Z. D.
C. M. says, in answer to W. L. L., who asked on windows: The crystalline forms which the vapors of a room assume, while betng condensed on the cold panes
of a window, depend mostly on the surface condit:on of of a window, depend mostly on the surface condit on of
the glass. A glass plate, absolutely clean and fiat, would the glass. A glass plate, absolutely clean and fat, would
show no forms, the frost belng equally distributed. The usually done in a roundish, spiral, or scroll like manner hence the first adhesion of vapor, and the subsequent
crystallization (if we can call it so) follows these lines and produces the well known fern-like or leaf-like forms. streaks only, and t the frost crystals will be formed in the same directions respectively, much more resembling those of some
chemical salts than vegetable shapes. Snow crystals, obstacles, are always hexagonal, with secondary forma tions of the same system.
$\underset{\text { helped in his indexing. }}{\text { H. Maving had toindex } 29,000}$ words I think I have a right to speak about it. In the firs place, I got hold or a somewhat stifflsh paper (old ledge paper is excenent); then 1 cut it into slips of conven-
ent size (1 inch by 2 inches will be about right). I put down on each slip one word or sentence (depending o
the kind of index), with page and otherreference ifsuc is necessary. When every word or sentence which I
wanted in the index was noted down, I got hold of 24 wanted in the index was noted down, I got hold of 24
cigar boxes, which I lettered from a to z. I now distributed those slips into the boxes. This done, I put the now empty boxes again before me, got hold of a, and distributed all silps bearing words beginning with a be tween these boxes, thus, aa, ab, ac, ad, etc., to the end of
the chapter. This done, I got hold of aa, and successively ab, ac, etc., and distributed those slips further. Whe
arranged alphabetically I pasted those slips belongin to a in proper order on brown wrapping paper. Having treated a in this way, I took hold of b, and so on to the
end of the alphabet. It took me a fortnight (6 hours day) to get through with the distribution, and after tha the copying took me several months.
A. G. C., on page 59, asks how to temper
taps. He must first of all bear in mind that a tap is sim ply a series of cutters on a bar; hence the cutting part as possible tor hard enough to cut, and the base sof as possible to insure durability. This can be best accom-
plished by dipping at as low a heat as possible and mak ing the outside hard, while the inside will be compara
tively soft when rubbed off ready for tempering. Hea a heavy ring (a brokenpulley hub is a sgood as anything) which have on side of your fire for use while hardening
taps, and also a heavy pair of tongs, made hot in the same way. Take the lever end of the tap with the ho tongs, and insert the tap in the center of the hot ring,
butdonot let it touch the sides. It is better to kee
turning it round turning it round. If the temper draws too fast, wher
ward until the right color is attained. This, too, de
pends on quallty of steel and the size and make of the tap, and lastly the purpose for which it is intended.McC .
W. A. W. says, in answer to J. E. S. (query steam engine, to be heated by a common stove: Anything
that you can make to make the requisite amount of steam, will answer the purpose. I saw a boller and furnace in Graud Rapids;
Mich., that was made something like a box stove with: boller set in the top, about one half the diameter of the boller being in the firebox; there was no grate in fire-
box or fiue in boiler. It was cast iron and evidently all cast whole, except the bottom of the furnace and front nd of boller. The cyllider of engine was 3 by 5 inche A safety valve one inch in diameter will be plenty large
enough. Ten pounds pressure will be all you will need Whynot gear up higher and run your evgine at 100 rev-
olutions per minute instead of 150 ? J. W. says, in answer to J. E. S., page 378, volume XXVII., and W.G. B., page 27 , volume XXVIII.,
on transmiseion of motion : I would say that it is simply absurd to refute a thing we have not scen practically
tested. W. G. B. seems to be a true disciple of doubting Thomas, and much like the man who, when he heard of
the first iron ship being built, swore it would sink. simply assert that I have seen belts as wide as four inch es work admirably on the plan described by me. And
further, it has come under my notice, since I wrote my his plan a on President street, Baltimore, and will be used againin the reconstructed building. I have only to add that, in
constructing the slifter, it should only allow the cdre o the belt to come fairly with the edge of the loose pulley, so that the pressure of the shifter with the pliability of
the belt brings it in contact with the revolving iast pul the belt brings it in contact with the
ley, when it takes hold quite easily.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific Matericin acknowledges, with much pleasure, the receipt of original papers and contributions pon the following subjects
On the Equatorial Protalberance of the Earth. By J. H.
On Aero Steam Engines. By D. B. Tr
On Flux and Reflux. By R. W.
On the Action of Water on the Tưbine. By J. B. R.
On a Unity of Action by Inventors, concerning Foreign Patents. By J. A. B.
On the Wheel question. By II. E. M
On Protection from Fire. By H. \& B
On Frotection from Fial Science. By N. L.
On Tidal Water Power. By W. B. S.
On the Astronomy of the Ancients. By A. L.

On the Motions of the Sun. liy A. D.
On the Mineral Wealth of Virginia. By W. De H.

On Marine Camels. By E. S. F
On the Servant Question. By L. C. G.
On the Use of River Water for Extinguishing Fires in New York. By W. B. D. On the Detection of Explosive Oils. By J. [OFFICIAL.]

Index of Inventions

Letters Patent of the United States were granted for tife weise ending January ${ }^{7}, 1872$,
ND EACH BEARING THAT DATE.
[Those marked (r) arc reissued patents.]

SCHEDULE OF PATENT FEES:

On each Caveat.....

n filing each application fora Patent (i7 years) On issuing each original Patent.
Oa appeal to Commissicner of Patents On application for Recissue.
a application for Extension of Patent
On granting the Extensi
On an application for Design (31/2 years)
n an application for Design (7 years). $\$ 10$
$\$ 25$
$\$ 15$
$\$ 20$
$\$ 10$
$\$ 20$
$\$ 30$
859
$\$ 50$
$\$ 10$
$\$ 10$
$\$ 15$
.830

Bag holder, J. B. Brown........... Bag fastening, mail, w. J. Stowel

Bayonet attachment, J. W. Ncill.
Bee hive, D. Loofbourrow
Bell ringer, steam, West and Parker
Blower for grates, F. McCarthy
Boller, sectional steam, Babcock and Wilcox.
Bone black, revivifying, Λ. Lonsky.
Book, memorandum, II. M. Hinadill
Boob, memorandum, II. M.
Bools, C.W. Glidden.
Boots, machine
Boring machine, N. R.\& A.P. Nerchant (r)
Bottle stopper, A. Hebbard....
Bracelet fastening, F. Kursh.
Brick machine, E. R. Hubbar
Burial casket, S Stetn
Canal boats, propelling, A. Ames
Cane Juice with sulphurous acid, J. Dymond
Car coupling, J.W. Bates.
Coupling, J. L. De Good
Car coupling, C. H. Kendal
Car coupling, street, J. Stephenson
Car frame, R. M. C. Parker.
Car spring, J. W. Culmer...
Car spring, railroad, J. W. Culmer
Caruxte, lubricating, J. R., Morri

 134,571134,608
134,614 134,608
134,614
$13+, 687$

