SCIENTIFIC AND PRACTICAL information

Utilizing suint for the manufacture of prossiate of POTASH.
The suint, which forms almost the third part in weight of the raw wool, has been found to be an excellent material for the manufacture of yellow prussia te of potash, which is used for making Prussian blue and other articles of commerce, inasmuch as, after heating, it consists of an intimate mixture of carbonate of potash and nitrogenous carbon. Formerly this suint was exclusively used for the production of potash. Havrez found, however, that it is three times as valuable when directly used for the manufacture of prussi ate of potash. While 100 kilogrammes of dry suint, containing 40 kilogrammes pure potash, cost only $\$ 3,100$ kilogrammes of the potash of commerce cost from $\$ 14$ to $\$ 16$. Thus it will be seen that, by employing the suint, 100 kilogrammes of potash may be obtained for $\$ 7.50$.

ALCOHOL FROM MOSS.

In the northern governments of Russia, large quantities of alcohol are at present produced from the mosses and lich. ens growing there in enormous quantities. This new industry originated in Sweden, and was subsequently introduced in Finland. Several large distillêries exhibited such alcohol at the recent industrial exposition in Moscow, where German, French, and English manufacturers praised its quality highly. The net profit is said to amount to 100 percent.
rocess for purifying the condensation of engines

FROM FATTY MATTER.

The steam condensing from engines always contains fat, resulting from the material used for lubricating. Cail \& Co., in Paris, collect the water of condensation in a common reservoir, and pump it into a receptacle provided with a powerful stirring apparatus, consisting of shovels, Archimedean screw, etc. This receptacle is three fourths full, the remaining space being filled with petroleum ; the apparatus is set in motion for five minutes, the water being allowed to settle for fifty-five minutes. Five minutes' time is sufficient to separate all the fat which is then contained in the oil, and the purified water can directly be used again. A hundred pounds of petroleum will absorb fifty pounds of fat; it ras then a specific gravity of 0.840 , but should be renewed when presenting a density of 0.810 . It is regained by distillation.

aUSTRALIAN mineral caoutchodc.

This material (described on page 197 of our volume XXVI.) which is now being imported into Germany, occurs in Coorong in moderately thick layers on the sand. Analyses seem to indicate that it stands in a generic relation to petroleum, but why it has been deposited in that peculiar form must be left to future investigations.

TO PROTECT CLOTH AGAINST MOTHS

Reimann, in his Fürberzeitung, recommends for this pur pose steeping the cloth for twelve hours in a solution prepared in the following manner: Ten pounds of alum and twenty pounds sugar of lead are dissolved in warm water, the mixture being left undisturbed until the precipitate of lead sulphate is deposited. The clear liquor, now consisting of acetate of alumina, is then drawn off and mixed with 180 gallons of water, in which a little isinglass has been dis solved. When well steeped, the goods are dried and finished by pressure or otherwise.

artrate of manganese

The action of permanganate of potash upon organic mat er in general is to destroy it. Not only is glycerin decom posed with violence when allowed to drop into a hot, concentrated solution of permanganate of potash, but alcohol, aniline oil, and other organic substances, including the orpanic acids, are decomposed, partially or entirely, by it. Notwithstanding this violent action of the permanganate upon organic acids, Anton Fleischer has succeeded in preparing both a tartrate and oxalate of manganese. The neutral tartrate of manganese obtained was found upon analysis to
have the composition represented by the formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{MnO}_{6}$. It is slightly soluble in water, 1,000 parts of water dissolving only $2 \cdot 17$ parts of the salt. On adding alcohol, it crystalizes out. When moist, it is rose red; when dried over sulphuric acid, it has a lighter color; at the temperature of boiling water or above it, it is almost colorless. It dissolves readily in mineral acids. What practical use can be made of it re mains to be investigated.
electro-positive state of an insulated candle flame.
When an insulated flame is placed between the balls of discharger connected with the positive and negative con ductors of an electrical machine, the flame is attracted to wards the negative pole so strongly as to ignite a piece of phosphorus attached to that pole. If a piece of burning phosphorus be placed between them, the phosphorus on the
positive ball soon burns, and the long column of phosphoric positive ball soon burns, and the long column of phosphoric
acid vapor is also attracted to it and forms with it the phos phate of the metal.

COOLING WATER BELOW THE FREEZING POINT.

A glass tube closed at one end and blown to a bulb near the upper end, and the upper limb bent and drawn to a point, is filled to the middle of the bulb with distilled water
that has been boiled. The water is heated to drive the air that has been boiled. The water is heated to drive the air out of the tube, and the tube is sealed by the blowpipe. An other tube of the same form, but not bent and drawn to a paint, is filled with water that has not been boiled and hence contains air. The two are now placed in a freezing mixture, and after the water in the open tube has frozen, the other treering mixture and shaking, it will instantly congeal.

Hay miteis.

Some time ago, there died a large number of horses in Nordheim, Germey, from inflammation of the intestines the true cause not at first being known. At last it was as signed to the hay, in which, upon close examination, an im mense number of microscopic animalcule were found. They belonged to the genus acarus fcenarius, to which genus the mites living on dry fruit and in cheese also belong. In times of horse diseases it might, therefore, be proper to mi croscopically examine hay and straw, since even the bes fodder, if stored in a damp place, is very likely to be infost ed by those and other parasites.

testing water for hyaienic purposeis.

One third of a fluid dram of the water to be tested is evaporated on the object glass of a microscope, on which a small reservoir has been formed by cementing a glass ring upon it. The temperature should be about 120° Fah., not higher. The residue from pure water, when examined under themicroscope, reveals only colorless, dendritic or sharp ly defined crystals of carbonate of lime. But if the wate holds organic substances in solution, the residue exhibits more or less imperfectly formed crystals of a yellowish or reddish color; and, if the impurities are considerable, it shows twin crystals and triangles with obtuse angles and other distorted forms. Experiments prove that less than a one thousandth part of urine or decomposing organic matter is sufficient to change the appearance of the residue consid erably.
durable crucibles for melting steel.
Such crucibles are prepared from a mixture of 10 parts ground and washed chamotte, 10 graphite, 15 asbestos, quartz (not too finely powdered) and 22 fireproof clay. The asbestos, as a fiberous body, prevents the falling asunder of
the crucible when cracking, and thus any loss can be pre vented.

ORIGIN OF ELECTRICITY.

Dr. Louis Elsberg, of New York city, has communicated a new theory of the origin of electricity. According to this scientist, the number of vibrations executed by the moleheat, namely, they exceed 38,000 a second (at which point the consciousness of sound ceases altogether) and are below 200 billions in a second.
effect of different colored light upon the amoun of carbonic acid gas in respiration.
Two Italian investigators, Selmi and Piacentini, have in stituted an interesting series of experiments to determine whether different colors affected the respiration of animals as they are known to affect plants. Theanimal to be experimented upon was placed in an air tight box into which no light could penetrate except such as passed through glass of a given color. Air freed of carbonic acid was constantly ad-
mitted into the box, and escaped by a second opening, where mitted into the box, and escaped by a second opening, where
it was passed through a vessel which contained some abit was passed through a vessel which contained some ab-
sorbent of carbonic acid, so that its amount could be accurately determined. Representing the quantity of carbonic acid respired by a dog, in a given time under white glass, by 100, the ampunt given off under black glass was 82.07 , under violet, $87 \cdot 73$, under red 92 , under blue 103.77 , under green $106 \cdot 03$, and under yellow 126.83 . The difference was still greater when the experiment was tried on a pigeon and on a hen. The authors came to the conclusion that green and yellow rays, which are the most important to the vege-
table kingdom in taking up carbonic acid, are also most fatable kingdom in taking up carbonic acid, are also most fa-
vorable to the respiration of animals, that is, enable them to give off the most carbonic acid. Previous investigators have reported in favor of blue glass, so that the question is not yet fully settled.

NTIMONY AN EXPLOSIVE METAL

If a piece of copper foil be attached to the negative pole of a galvanic battery, and a piece of platinum foil to th positive pole, and the two immersed in a hydrochloric acid solution of antimony, the antimony will be precipitated as metallic mirror on the surface of the copper. After remov ing it from the liquid and carefully washing with distilled water, the brittle antimony can be removed by bending the copper back and forth. Antimony thus obtained will ex plode upon being rubbed in a mortar or struck with a ham mer, light and heat as well as detonation being produced by the explosion. The reason of this extraordinary action of only one metal is due to the rapidity with which it return from the amorphous form to the crystaline.

BENT WOODWORK IN CARRIAGE MARING

by henry f. porter.

It is only recently that much attention has been paid to the bending of different wooden parts of a carriage. Not only in this country, but also in Europe, it has long been ustomary to saw out crooked pieces, and when lately we resorted in preference to bending, it was not only for the purpose of saving material but particularly for the reduction of
weight and the greater durability of the pieces. The latter is a very important point. The saving of weight is twofold. In the first place, a piece which is to be bent canoriginally be sawn out in a reduced size, for the reason that the grain
will all run parallel with the sweep when the wood is bent, and thus such a piece does not require to be stronger at any particular point as a piece sawn cross-grain always must e. The second point in which weight is saved is that a f piece requires for plating only one half the size of iron illustrate this with the example of a rockaway perch, or, in
other words, a perch for the heavier class of work. If such a perch is sawn out cross-grain, it will require to be plated on all four sides, thereby considerably increasing the weight without adding to the durability. We have seen many cases where the incessant vibrations and jerks, to which the perch is exposed under all conditions, have caused the wond to be chawed off by the ironing, occasioned by the exposure of the chass grains. If, on the other hand, the perch is bent a single iron plate on the bottom is all thatis required, and there is no possibility of the wood getting damaged by it, as all the grains run parallel and present a smooth surface not easily attacked. The point of durability has long been recognized by leading eastern builders, and, on such work as the Concord coach, of which the proverb says "it wears but never tears," we find the back pillars, bottom pieces, and most of the crooked parts all bent. Scarcely any kind of vehicle has been exposed to such hardships as tne old overland stage, and it was early found that cross-cut parts could never withtand such trials as upsetting, rolling down ravines, etc., incidents so common on the old perilous overland route. When bent, such pieces, as a rule, never broke. This example goes far to show that it is preferable to bend perches, whenver practicable, instead of following the old method of ross sawing. Still, there is another and very material point to be obtained in making perches. It will frequently be noticed, on perch carriages, that it seems to have been the aim of the maker to conform the sweep of the perch as near as possible to the lines of the body; and this produces, in many instances, a very crooked perch, a circumstance which is rather unfavorable to durability.
In speaking of perches, it may not be out of place, although not coming under the heading of this article, to say a few words with reference to straight double perches for wagons. It has been customary to plate these underneath, by bolting a perch $\frac{13}{16}$ inch square with a $\frac{3}{16}$ bolt, which in reality leaves not sufficient strength in the wood to resist an extraordinary strain, such as may be caused by accidents, or even by ordiary wear and tear. It has been tried for this raason, and found to be perfectly practicable that these perches for wagons are not ironed through their whole length, but only sectionally at both ends, namely, nine inches on either side. In this way the inevitable vibrations can take place unobstructed in the middle of the perch, and the resistive power of the wood is not endangered or lessened by any holes. Plating in general is of no account after the wood has given way. Besides perches, there are other important pieces of bent work connected with carriage parts, namely, bottombeds, futchels, back bars, and shafts. As for the bottombed, its arch is, in the firstinstance, conditioned by the hanging of the body, and next by the hight of the front wheels. If the body is to be hung low, the bed will have little or no rch; and if the wheels are low, it will require more arch on the bed in order not to get too high a carriage part. The exreme hight of carriage parts should never be more than welve inches for the heaviest work, which of course is coniderably reduced for lighter classes of work. The arch of he bed is also limited by the consideration of obtaining the proper position for the pole, and we cannot give here fixed measures, because they vary in almost every instance. What we wish to convey is that a bent bed, even when arched as much as four inches or more, is still safe, and hat a bed sawn across grain, whose arch a contemporary thinks should be limited to $2 \frac{1}{2}$ inches, is more unsafe than a bent one with double this amount of arch.
Back bars, when they have to be arched, should always be bent. The curve required can be sawn out. In the case of bars, the grain of the wood is not exposed to friction, and therefore there is no danger of checking. Back bars have, under certain circumstances, to stand a considerable strain. When the vehicle is moving on a sloping road, the whole weight is thrown on one side, and the bar is thereby given a tendency to twist. The motion of the springs also is often not the same on each side, for instance, when one wheel meets with a resistance while the opposite runs on smooth
ground. Jerks thus caused are transmitted to the bar, with ground. Jerks thus caused are transmitted to the bar, with somewhat reduced force, it is true, but still with such in ensity as to call for the best material. On C spring car iages, the back bar will have to be plated with b
Shafte mol prequently done
Shatts and poles for wagons have been bent for a number of years, for the same reasons which we gave for the other parts. Our intention has been to callattention to the decided advantages obtained by having all pieces bent over the old plan of sawing them out. The progress made in beiding during the last few years is worthy of notice, and proves the patronage and encouragement given it by the trade. It is only a few years since one of the first leading firms in this country experienced great trouble in bending double Nowadays they find no difficulty in bending perfectly, and without split, seven to eight inches. A further illustration is the advance made in the bending of rims. A rim bent a present is less in size and just as durable as a heavier rim was some years ago, both for the same size of work. It is made for top wagons at present $\frac{7}{8}$ inch deep, with $\frac{5}{8}$ inch tire. This progress was in a great measure brought on by ma chinery, and it is but just to say that, for all similar wants of our trade, requiring the ingenuity of others, we are promptly met by inventions of the most excellent tools and materials. This fact in itself should be an encouragement to us to keep on the road to improvement and perfection.The Hub.

FEw things are impracticable in themselves, and it is for Few things are impracticable in themselves, and it is for
want of application, rather than of means, that men fail of success.

An American Doctor in London.
Dr. E. P. Miller is writing from Europe, to The Lavos of Life and Journal of Health, edited by Harriet N. Austin, M. D., and published at Dansville, N. Y., some very inter esting letters. From a lengthy letter from Dr. Miller in the January number, we condense the following extracts
There are some things in this world so vast that it is liter ally impossible for finite minds to comprehend them. It is true we are not quite so lost in thought in their contempla tion as when we attempt to search the boundaries of space or number the fixed stars, yet we are amazed to find how much there is to learn, and after all we have done, how little we know.
London is a world of itself, and it would require more than Ω lifetime to know it. There are more than $3,000,000$ human beings, crowded into an area of about 122 square miles. There are about 6,000 public houses, wine cellars, and beer saloons, where alcoholic liquors are sold, and these places dispense $43,200,000$ gallons of ale, $7,800,000$ gallons of wine, and $2,000,000$ gallons of other strong drinks every year. As a result they have 129,000 paupers, and it requires 5,000 lawyers, 2,000 ministers, 3,000 doctors, and 500 undertakers to take care of the criminals, sinners and sick people. Nearly every street you traverse, and public or private building you examine, has a history of its own-many of which date back hundreds of years.

THE LONDON UNDERGROUND RAILUAT.
Dr. Ellis kindly invited me to visit the Crystal Palace with him on the day following my arrival, and I gladly embraced the opportunity of accompanying one so faniliar with the grounds. The Crystal Palace is about six miles from my hotel, and the most convenient mode of reaching it was by the Underground Railway. I had wanted an opportunity to ex amine this subterranean enterprise, and was both surprised indispensable necessities of London. They could no more indispensable necessities of London. They could no more
get along without their underground railway than could get along without their underground railway than could
New York without horse cars. Trains pass on these roads every ten or fifteen minutes, and a train often carries four or five hundred passengers. The stations are frequent and convenient, and the cars are so constructed that a stoppage of not more than one or two minutes is required to load and unload an entire train. The cars are well lighted and frequent openings of the roadway to the surface secure tolerably good ventilation. The engines in use condense their own steam and consume their smoke, so that these nuisances are almost entirely avoided.
the crystal palace.
The train I took stopped at the Crystal Palace grounds; and, as I stepped cut from the depot, at a short distance in front and above me stood that magnificent temple of glass and iron glistening in the sunilight, while all about, for acres, was one grand parterre of flowers and fountains. I can never forget the sudden change in my feelings as I passed from that subterranean passage of darkness to the magnificent scene which was the very perfection of light. I was liieral ly chained to the spot. It was like a fairy vision, so beautiful; I thought of the Bible description of "the Holy City coming down from God out of Heaven prepared as a bride adorned for her husband," and of the time when "all tears shall be wiped away and there shall be no more death, neither sorrow, nor crying, neither shall there be any more pain, for the former things shall be passed away." It seemed to me that all the beautiful things that were ever thought of in Paradise were concentrated here. I do not think it possible to find another place where can be seen more of the beauties of nature and of art in three or four hours' time than at the Crystal Palace.

The interior fulfilled the promise of the surroundings. Outside there are acres of flowers, tropical plants, trees, shrubs, and vines, native products of different countries and climes, growing in all their freshness and beauty. Acres of fountains, in glass and out of glass, picture galleries of ancient and modern masters, statuary, architectural products and manufactured articles, pictures and wax representations of all the different nations and tribes of people, and of the
different beasts, birds, fishes, and insects. I am quite sure Noah's ark was not half as large, nor did it contain half as many curiosities, or cost half as much to build it.
A concert is given in the Crystal Palace every afternoon. The view of the fountains in full play, when seen from the balcony of the Palace, beggars description. There are hundyeds of them of every conceivable variety and form. the
water being supplied from towers 260 feet in hight, which water being supplied from
are erected on the grounds.
The Crystal Palace cost about $\$ 6,000,000$, and not far from $\$ 3,000,000$ are annually expended in supplying it with new curiosities and defraying the running expenses. May it prise, intelligence, and refinement of the English people!
I must confess my opinion of the English people was essentially changed by an acquaintance with them. They are a great people. They are proud of their race, and justly so. They are honest, industrious, and educated. They are above the average of the human race in health, physical strength, and endurance. They are fond of out-door life, of sports, of physical exercise, and social enjoyments.

REMEDIES FOR SORE THROAT AND NASAL CATARRH.

Dr. Ellis gave me a simple recipe for throat and lung affections with which I propose to close this article. Upon my remarking on my tendency to such affection, he said "Now, Doctor, you may go home and thank God for having seen me, for I will give you a simple remedy that will be the means of prolonging your life many years. Get a silk rib-
intil worn out and then replace it, and continue to do so." I confess I was a little surprised to find a man of Dr. Ellis's intelligence relying with so much confidence on such a remedy, and I asked an explanation of its virtues, but this he was not prepared to give. If any reader tries this or the follow ing remedy, I should be pleased to know the result.
A remedy for nasal catarrh which I think of some value, I will also give. Many cases of catarrh are caused by inability of the liver to perform its function properly. In such cases there is often a too alkaline condition of the blood. When this is the case, the liver does not take out as much of the carbon and other substances as it should, and the mucous membrane of the nose becomes a dumping ground for the foul matter. If persons thus aflicted will squeeze the juice of a good sized lemon into half a tumbler of water and drink of a good sized lemon into half a tumbler of water and drink hygienically, be surprised to seen how soon the catarrhal difficulty will diminish. When it fails to do so, it may be considered as due to other causes.

New Apparatus for T'esting Quality of Lubricat- ing oils. ing oils.

This machine, recently patented by R. H. Thurston, Hoboken, N. J., affords a means of making a combined dynamometrical and thermometrical test of the lubricating value of any lubricant, and also of determining, at the same time, its power of sustaining heavy pressures and its durability under any required pressure.
A journal, on a shaft running in a securely mounted frame, is grasped by a clamp and the boxes are set up to any desired intensity of pressure by a powerful screw compress ing a spring; the pressure is known from the reading of a suitably arranged scale.
The pressure being adjusted as desired, the clamp swings about the journal and, by compressing a spring or by raising a weight, determines the exact amount of force require to overcome friction, by the reading of another scale.
A thermometer, set in the journal brass, indicates the commencement and progress of any heating of the journal. The time required to beccme heated and to burn off, under given pressure, will indicate the durability of the oil where
it may be exposed to such a pressure. may be exposed to such a pressure.
Several forms of machine are described for special classes of lubricants, as for heavy oils for locomotives, at the one extreme, and for the light oils used on sewing machines and other light machinery, at the other extreme.

The Spread of Fires in Cities.

A correspondent, R. B. V., of Md., says :
"It strikes me that the greatest cause of the spread of fires is the falling of the walls of the houses as they are burned out, a dread of which, in very many instances, keeps
the firemen back from the work. If that the firemen back from the work. If that dread was removed
they would rush forward and subdue the enemy; but as houses are now erected, many of the valiant men are crushed to death by falling walls; and not this only. Who has not seen rows of houses all on fire in a few minutes from end to
end, just because they were so built that the partition walls, one after the other, had fallen, thereby permitting the fire to go from house to house with such rapidity that all efforts to save them were in vain? To prevent this, permit me to suggest: That the walls be of brick (it is the most fireproof material) and of reasonable thickness, with as few windows as will afford the necessary light and air, with tight iron shutters to each. In all the walls on which girders or joists are to be placed, put good substantial upright fastening that will not burn, for the ends of every girder and joist to fit on; so that each of them, while laying horizontally, will be a reliable stay to keep the walls in their proper upright position, and will be so constructed that, as soon as each girder and joist is either burned or brokenintwo, they will fall out of on the subject injury to it; for, after allthathas been said erage given to each girder and joist by the present plan of putting them in the walls. When the falling of the walls is obviated, the standing ones will screen the surrounding proprepaired with less than half the expense of labor, time and money."

Vaccine Virus.

M. Chauveau has succeeded in separating, in a pustule of vaccine, a serous matter and molecular granulations, in order to inoculate with each, separately and comparatively. He has found that the vaccinal serum is not virulent, and that On the addition of water the granulations deposit themselves, and so long as the mixture is in repose, the water is unaffected. If, however, the liquid be agitated, the granulations expand and communicate the virulent property to the whole. It has been determined that vaccine thus weakened with fifty times its weight of water is as certain in its action ess if in concentrated form. M. Chauveau therefore con-
cludes that in the pus of the variola and of the morbid affection, as well as in the vaccinal liquid, the specific activity which constitutes virulence resides exclusively in the elementary corpuscles held in suspension by the humors.

An African Steam Gage.

H. A. M., an esteemed Southern correspondent, sends us the following anecdote: Not many miles from Panola county, Miss., a certain wealthy planter has a cotton gin run by steam. Upon one occasion, heinvited a mechanical friend up into the gin house to see it work. After showing the premises, he called out to his old Ethiopian fireman: "Sam, are you ready to start?" The old man ran his hand back-
ward and forward over the surface of the boiler, and, with a face important with grave judgment, replied, "No, Marse Abe, I don't tink she quite hot enough yet." "Good Lord," exclaimed the mechanical friend, " is that your steam gage?" and he left the gin house. Fact, gentlemen.

Forests and Drought.
T. S., of Pa., writes to say that it lies with us to decide whether our ontinent shall retain its present luxuriance and salubrity to remote ages or not. He regrets the rapid diminution of our forests, and the decrease of moisture in the interior parts of the country; and concerning the latter point he states that, in some parts of the country, where five feet of snow usually fell in a year, there is not now five inches.

Sardinia and Sicily, once the granaries of Italy, have suffered the penalty of their thoughtlessness in exterminat. ing their forests. Two thousand years ago, those lands were celebrated for their wonderful productiveness, and were said to be the most beautiful in the world. In 1800, Humboldtvisited Venezuela, South America, and was informed by the natives living in the valley of Araguay that they had noticed, with great astonishment, that a lake which lay in the middle of the valley had decreased in volume every year; the cause of this is clearly traced to the felling of a great number of trees which grew on the surrounding moun. tains. In Hungary the periodical droughts are universally attributed to the annihilation of the forests. In Cairo, Lower Egypt, a great many years ago, rain fell but seldom, only once in three or four years; but since the time of Mohammed Ali, twenty to thirty millions of trees have been planted, and the result is now that the people have from thirty to forty rainy days every year. Surely these few of the many examples are warnings sufficient to put us on our guard.
Facts for the Ladies.-Mrs. D. Magra, Saratoga Springs, N. $\overline{\mathrm{F}}$., has used arce 1860 , and earned annually about $\$ 500$, with no expense for repairs. See the new Improvements and Woods' Lock-Stitch Ripper.
Inventions Patented in England by Americans.
Compiled from the Commissioners of Patents' Journal.
From. December 5 to December 111,1872 , inclu
Oris, ETc.-F. Kersting, Grand Rapids, Mick.
Clatifying Oils, ETC.-F. Kersting, Grand Rap
Cutring Pliers.- N . Thompson, Brooklyn, N. Y .
Gas or Liquid Meter.-D. B. Spooner, Syracuse, N. Y.
GAs or hiquid Meter.-D. B. Spooner, Syracuse,
Hosse Shoe Nails.-A. Alden, Cambridge, Mass.
insulating Compound.-Z. G. Simmo
Lanp.-J. H. Irwin, Philadelphia,Pa.
Lamp.-J. H. Irwin, Philadelphia, Pa.
Middlings Perivier.-W. W. Huntly, A. P. Holcomb, a. Heine, Silver MidDLINGS PURI
Creek, N. F .
Ordnance, etc.-W. E. Woodbridge, New York city.
Ordnance, etc.-W. E. Woodbridge, New York city.
Railroad Coupling.-H. c. Kibbe, San Franclsco, Cal.
Patent orrice decisions.
 In an interference betwcen an application and a patent, where it ap yeared
that the patent had been. ranted during the pendency of the application
without an interferenee. Held, that the partieg hould be treatedas if both
were applicants. Goodman's patcnt sustained.
 $4=2=\mathrm{Eavava}$

practice in interferencers.
Rule 59 , relating to interferences, is hereby amended by Inserting at the
end of the frst pararah the words here tialicized, so that as amended the
paragriph will read as
 December 50,1872

DECISIONS OF THE COURTS.

United States Circuit Court, Eastern District of Pennsylvania. AND DAYTTN C. MORGAN vs. JAMES S. MARSH
AND OTHERS.

