

Fig. 1.-THE PHGEIXVILLE blast furnaces.c IRON BRIDGE CONBTRUCTION.
The various processes by which iron is prepared to be used in bridge building are many of them as new as is the employment of this material for the purpose. The subject is

Fig. 6.-boiling furnace.
ne considerable public interest, and hence we extract chamber trom an album of designs, recently published by Messra from
rolling. The rolls (Fig: 9) are heavy cylinders of cast iron placed almost in contact, and revolved rapidly by steam power. The bloom is caught between these rollers and passed backward and forward until it is pressed into a flat bar, averaging from four to six inches in width, and about an inch and a balf thick. These bars are then cut into short lengths, piled, heated again in a furnace, and re-rolled. Af-

Fig. 2.-LLLEVATOif.
ter going through this process they form the bar iron of corsmerce. From the iron reduced into this form the various parts used in the construction of iron bridges are made, by being rolled into shape, the rolls through which the various parts pass having grooves of the form it is desized to give to the pieces. These rolls, when they are driven by steam, obtain tbis generally from a boiler placed over tbe heating obtain tbis generally from a
or puddling furnace, and heated by the waste gases from tbe furnace. Tbis arrangement was first made by John Griffie, the superintendent of the Phœnix iron works, under whose direction the first rolled iron beams over nine

Fig. 8.-ROTARY SQUEEZER
inches deep that were ever made were produced, at these works. The process of rolling toughens the iron, seeming

Fig. 8.-DUMPING ORE AND COAL INTO blast furnaces.

Fic. i.-CARRYING THE IRON BALLS.

Clarke, Reeves \& Co., the well known iron bridge builders, brick, covered with metallic ore and slag over the bottom to draw out its fibers; and iron which has been twice rolled is the accompanying engravings and description, deferring, to a and sides, and then, the oven being charged with the pigs considered fit for ordinary uses. For the various parts of a subsequent article, illustration and notice of some of the most of iron, the heat is let on. The pigs melt, and the oven is bridge, hewever, where great toughness and tensile strength remarkable structures constructed at the extensive establishment of the above firm.
The Phœenix Iron and Bridge Works are located in Phoenirville, in the Schuylkill Valley, Pa., and were founded in 1790. At the present time over fifteen hundred hands are constantly employed, and the establishment is probably the notantly stirs this mass with a barlet through a hole in the door, until the iron boils up or "ferments," as it is called. This fermentation is caused by the comonly one in the world where the crude iron ore, fresh fem iron; and as socn as the excess of this is

FIG 4.-THE ENGINE ROOM onsumed, the cind of this consumed, the cinders and slag sink to the bottom of the oven, leaving the semi-fluid mass on the top. Stirring this about, the puddler forms it into balls of such a size as he can conveniently handle, which are taken out and carried on little cars, Fig. 7, made to receive them to the squeezers. In the latter (Fig. 8) the ball is placed and forced with a rotary motion through a spiral passage, the diameter of which is constantly diminishing. The effect of this diminishing. The effect of this la and lag and the shape of a short thick cylinder, called a bloom. This process was formerly performed by triking the ball of iron repeatedly with a tilt hammer.
The bloom is now reheated and subjected to the process of

as well as uniformity of texture, are necessary, the iron is rolled a third time. The bars are therefore cut again into pieces, piled, re-heated, and rolled again. A bar of iron which has been rolled twice is formed from a pile of fourteen separate pieces of iron that have been roiled only once, or "muck bar," as it is called; while the thrice roubl made from a pile of eight separate pieces of double rolled iron. If, therefore, one of the original pieces of iron has any flaw or defect, it will form only a hundred and twelft part of the thrice rolled bar. The uniformity of texture and the toughness of the bars which have been thrice rolled

Fig. 10.-COLD saw
are so great that they may be twisted, cold, into a knot without showing any signs of fracture. The bars of iron, whether hot or cold, are sawn to the various required lengths by the hot or cold saws, shown in the illustrations, Figs. 9 and 10, which revolve with great rapidity.
For the columns intended to sustain the compressive thrust of heavy weights, a form of the firm's own design is used in this establishment, to which the name of the Phœenix column has been given. They are tubes made from four or from eight sections, rolled in the usual way and riveted together at their flanges (Fig. 12). When necessary such columns are joined together by cast iron joint blocks, with circular tenons which fitinto the hollows of each tube.
To join two bars to resist a strain of tension, links or eye bars are used, from three to six inches wide, and as loig as may be needed. At each end is an enlargement with a hole to receive a pin. In this way any number of bars can be
not exceed a certain maximum, usually fixed at ten thousand pounds to the square inch. As the weight of the iron is known, and its tensile strength is estimated at sixty thousand pounds per square inch, this estimate, which is technically called a factor oi safety of six, is a very safe one. In other words, the bridge is so planned and constructed that in supporting its own weight, together with any load of locomotives or cars which can be placed uponit, it shall not be subjected to a strain of over one sixth of its estimated strength.

Fig. 11.-HOT SAW
After the plan is made, working drawings are prepared and the process of manufacture commences. The eye bars, when made, are tested in a testing machine at double the strainc to which, by any possibility, they can be put in the bridge itself. The elasticity of the iron is such that, after being submitted to a tension of about thirty thousand rounds to the squareinch, it will return to its original dimensions; wh:le it is so tough that the bars, as large as two inches in diameter, can be bent double, when cold, without showing any signs of fracture. Having stood these tests, the parts of the bridge are considered fit to be used.
When completed, the parts are put together or assembled, as the technical phrase is, to see that they are right in length, etc. (Fig. 15).

Fig. 18. FURNaCE and hydraulic die.
joined together, and the result of numerous experiments made at this establishment has shown that, under sufficient strain, they will part as often in the body of the bar as at the joint. The heads upon these bars are made by a process known as die forging. The bar is heated to a white heat; and under a die worked by a hydraulic pressure (Fig. 13), the head is shaped and the hole struck at one operation. This method of joining by pins is much more reliable than welding. The pins are made of cold rolled shafting, andfit to a nicety.
The general view of the machine shop (Fig. 14), which covers more than an acre of ground, shows the various machines and tools by which iron is planed, turned, drilled, and handled as though it were one of the softest of materials. By means of this application of machines, great accuracy of work is obtained, and each part of an iron bridge can be exactly duplicated if necessary. This method of construction is entirely American, the English still building their iron bridges mostly with hand labor. In consequence also of this method of working, American iron bridges, despite the higher price of our iron, can successfully compete in Canada with bridges of English or Belgian construction, The American iron bridges are lighter than those of other nations, but their absolute strength is as great, since the weight which is saved is all dead weight, and not necessary to the solidity of the structure.
Before any practical work upon the construction of a bridge is begun, the data and specifications are given, and a plan of ihe struc ture is drawn, whether it is for a railroad or for ordinary travel, whether for a double or a single track, whether the train is to pass on top or below, and so on. The calculations and plans are then made for the use of such dimensions of iron that the strain upon any part of the structure shall

Fig. 15.~ABsEmbling bridge under shed
ways caused by an ill-fitting shoe. So long as a lsvel shoe rests evenly upon the proper bearing surface of the foot, no corn can occur, but when the surface of either foot or shoe is irregular, then the most prominent point of contact is pressed upon unevenly and bruised. A corn is a bruise and nothing more, save that usage has confined the term to bruises of one part of the foot-the angle of sole between the wall and bar. This part of the foot is most liable to injury by uneven pressure, because it is in relation to the termina tion of the shoe. If the end of the shoe does not reach the extremity of the heel, it forms a point upon which the yield

Fig. 12.-Riveting a column
ing horn is pressed at everystep. Short shoes then are most objectionable, and, we find, a frequent cause of corns. They are often purposely employed on hunters, and on horses with capped elbows, seldom really necessary, but if so, should be very carefully fitted. By way of avoiding corns, it is the common practice of many farriers to "ease the heel of the shoe," that is, to so fit it that the last inch of the shoe take no bearing on the foot. A space is thus left between the shoe and foot in which one might place a penny piece. This is one of the greatest evils of shoeing, for not only is a of the greatest evils

Fig. 14.-VIEW of Machine shop

Then they are marked with letters or numbers, accord-
ing to the working plan, and shipped to the spot where the ing to the working plan, and shipped
bridge is to be permanently erected
As an example of the architectural beauty as well as the engineering skill displayed in the manufacture of these fabrics, we give on our front page an engraving of the Girard avenue bridge, in Philadelphia, Pa . Its width is one hundred feet, equal to six railroad tracks. It has three spans o one hundred and ninety-seven feet and two of one handred and thirty-seven feet, with seven trusses.

Corns in Horses.

There is a wide-spread fallacy that corns usually depend upon some peculiar form of foot, and that with such feet they are, like coughs and colds, almost unavoidable even with the best management. The truth is, that corns are al-
inch of the best bearing surface of the foot unused, tut increased pressure is thrown upon the spot where shoe and foot are in contact. Instead of preventing corns, it is a com mon cause, and why it should be so will be understood when we say that the seat of the corn is about an inch in front of the extremity of the foot, in fact, just at the spot upon which this "eased heel" throws most weight. Corns may be due to an uneven surface of foot, not of shoe, as when the wall at the heels is lower than the bar, in which case a level shoe is almost certain to act as an exciting cause.
Lameness from corn usually shows itself about a week after the herse is shod, depinding of course upon the de gree of pressure existing. In some cases, however, a corn is the cause of lameness after a shoe has been on for a month or more. This may be due to the shoe having shifted on the foot, or to the growth of horn carrying the shoe forward and within the wall.
The inside heels of the fore fee are most commonly affected, becaus the shoes for them are always fitted closer on the inside than the out and hind feet are hardly ever af fected, because the shoes for them are always fitted long and wide Let us repeat, a corn is simply bruise, similar in every way to bruise of our nails. There is in jury to the sensitive parts, followed by discoloration of horn. When a horse is lame, if on removing the shoe and gently trying the foot all round with the pincers, tenderness is shown at the heel, we suspect bruise or corn. The farrier would at once cut away the horn at the part until he saw it discolored, and then wculd say he "had found a corn." Imagining this discolored horn to be the offending substance, he would proceed to remove it, layor after layer, until he reacked the ensitive and now bleeding tissues We need hardly point out the ab surdity of thispractice. The stained horn is simply a sign of injury to the sensitive foot, and the removal of this horn, while it does no good
to the bruise, leaves the foot miserably weak for weeks or perhaps months. What would be thought of a surgeon Who, because his patient had a discolored nail, the result of the sensitive tissues! No medical man would do such a thing, and no patient would permit it. Yet veterinary surgeons and farriess follow this practice on the horse's foot and horse owners assent to it. The result is, that corns as sume a fictitious importance, and the heel, robbed of its horn, is liable to fresh injury for a long time

We may be told that the horn is removed so as to release any matter formed as the result of inflammation. It is certainly a plausible excuse, but not a true one. A professional man should be able to diagnose the presence of matter without injurious explorations, and matter is never present unless a horse is worked for two or three days after the appearance. In about 80 per cent of the cases in which a farrier professes to have let out matter, he has simply let out a absorbed in a day or two after the cause of injury-the shoe -had been remored. The remaining percentage of corn cases show matter because from negligence or ignorance the shoc has been allowed to remain on the foot, continuing the injury, and thus set up active inflammation.

The rational treatment of corn is to remove the shoe, and foment the foot with warm water-in other words, to remove the cause of injury, and help nature to reabsorb any effusion. If matter forms, it must be thrown off. Nature does this through an opening at the top of the wall, between hair and hoof; man endeavors to do it byan opening through the sole. Now, we believe in nature's plan, and experience show us that it is the best, if not the quickest, course for the horse's foot. Warm fomentations facilitate this course, and therefore the treatment we have suggested is applicable to all stages. This treatment does not injure the hoof, and a cessation of pain, and consequent lameness, can be followed the other hand, when the bars are destroyed and the sole cut away, the wall is left without any support. It is too weak to properly sustain weight; if it rests upon the shoe it is pressed either inwards or outwards, and the recently injured parts are again hurt. Thus, and thus only, it is that the existence of corns can be said to predispose a horse to their recurrence. A corn is only a temporary accident, like a bruised finger; the one is just as likely to recur as the other. If a horse remains lame over a fortnight, there is sontething more than a corn-either a badly fitted shoe, or the injury the ordinary cure for corns is worse than the disease Horses are, we know, frequently lame or tender for months after having had a corn. Let such animals be properly shod, no cutting out of the heel allowed, and we guarantee a speedy cure. Remember that a corn is a bruise of horn-covered part. Treat it as you would your own finger
under similar circumstances, and very little trouble will be entailed.-Land and Water.
patent office decibions.
thi praivtraizating plove hill patrint.-Care do. davide.
 zagitt, Commisetone

decibions of the courts.

United Staten Circuit Court.---District or California, Ninth Judicial Circul
 [In Equity. - Bcfore Sawyer, Judge. - Declacd April 7, 1879.] SAWYRr, Judge:

mecent Gutcrican and foreign Patents.
Improved Extensible Ladder.
John c. Hearne and Duston Adams, Plcasant HIII, Mo.-Tuis Invention
consists of two " lazy tongs "contrivancce conncetcd together at the midd consists of two " lazy tongs "contrlvances connected together at the mid-
die jolnts of the bars by cross bars long enough for the ordin.ry purposes each end by cords, which limit the extension of the lazy tones frame, and support the welght of the cllmber. The top cross bar is provided with hooksor otherdevices for suspending the ladder, anda rope is attached it suspended from the so that the ladder can be fop one, or through an es pulling the cord down; the ladder can be quickiy let down witen requy by for use by relcasing the rope. Thi whole constitutcs a collveutent and ef where It will be out of the way when yn folded up.
Improved Turbine Water Wheel.
bline water wheels, in which the objectionable fenturc-the ternilanation o the wheclease at the bottom flange, which renders it dillicult to make th fange at the holes for the bearings-ls done away with, and the case is ex tended below the bottom flange, and a speclal Hange ls provided to rest o the floor, support the whecl, and make a joint around the discharge hole and this fange also serves to support the wheel so higli as to prevent heavy
bodicesfrom belng carried into the wheel. By this arrangement, it le cla:med, the water leakt

Francls A. Daring, Fajetteville, N. Y. - This invinc
proved addreselngmachine, intenced particutrely for use relatce to an im lishers and such other persons whose buslaces requires thin to senilat fre quent litervale documents or mallimatter to the same subscribers or per in position for use in printing. The invention consiste in the cuplayuinent of an endiess chash passing around a prismatle presser block, and luytng the addre $\mathrm{ses}^{\text {or printing plates removs bly secured to it by springlug thet }}$ ends into slots formed in the links of the same. The invention ulso consilding frame, and in formlug u coothed serement entizagling with opposite purpose of curning the same one quarter revolutlon at cach downward the lon of the frame, and for retaining the same in position fimmovably during the upward motion of the samc.
$\begin{gathered}\text { Improved } \\ \text { Adolph Hofstater, } \\ \text { Dew York city. } \\ \text { Dothis }\end{gathered}$ Bolt.
Invention has for its object to eurnish an Improved at tachment for bolts, by theuse of whell it will belf. posible for the bolt to be worked back and the door nuqast cned from the
outide of sald door. By sultable construction, when the boit 1 s pushed outside of sald door. By sultable construction, when the bolt is pushed
outward so as tu bring lits knob tntu the space between the forward end ot an open ecntral keeper and the rear end of a forward keeper, and a semlcs illadrical plate has beca moved laterally upon the bott so as to cover the opening or slot in the central kecper, it will be implossibic for the bolt to be drawn back without Arst moving the plate to one side to uncover the
 to cover the opening in the kecper, may be sllipped into a noteh in the forward end of the rear keeper, and whlch, when the sald plate is moved to uncover the sald opening, may be silpped into a noteh in the rear cnd of
the open keeper, to prevent tic sald plate from getting out of place aceldentally when in clther positlion.
Improvement in Recovering Tin from Waste Scrap.
Henry Panton, Ncw York clty.-Thc Inventor proposcs to Henry Panton, New York elty.-The Inventor proposes to utilize the tid ton. For this purpose he cuts clic clitps into small plecees and places them In a revolving cyllinder, into which a showcr of mercury is constantly fallong converting the remalnder scrap fron tinto steel, as well as the cyillidrical of convcrting the remainder

Improved Folding Chair.
Asahel C. Boyd, Worcestcr, Mass.-The invention consiste in forming cach front leg and superposed arm in a single side plece that is reversely with a round that serves tuc doubtc purpose of a connceting plvot for the
tinks and a rest for the upper ends of the tegg.

Improved Car Dumper

Owen M. Avery, Pensacola, Fia.- The invention coasists in dumplng a ar on the slde by means of rockling beams plvoted to the middic of a bev
led bolster. It also consists in a pecullarly constructed and operated shifter, by which the rock beam is made to ficrtorn lte intended function. It also consiste in a locking device appifed at each cad of the shifter. It also consists in a doubie notelica lock bar appilica to the middic of the shifter. It also consists of means for tirowing lic ince of gravity from the median line of the truck and to that side of the car on which the ioad is to
be dumped. It aleo consists in a pecullarly simple and conventent mode of coupling car dumpers together.

Improved Fertilizing DInterinl.
James Whitchill, Frederick, Nd.-The Inventlon consitats in grinding or reducing linnestone to a granular state so thint It will pass the drill ceenty
and may oc applited In mall quantitiez with as greateffect as in Iarge quan itles. Thus it is sold in packages, airtight or approximately a

Improved Vacuum Pan.
Dr. Aurcllus P. Brown, Upperville, Va.-The Invention consists in
method of producing and melntalning a vacuum in the condcnsing coll of a vaporiztng apparatus whercby the continued action of aing air pump (although one may be used to start ft , if defired) te rendeled entirely unncecs sary, and a great saving ts thercby produced in the ordinary procces of distil
Improved Horse Collar.
truct a horse collar New York city. -The object of chis inventlon is to con than those at present in use, but protects, alsor), the neck uf the horse agalng acalde and brulses caused by the unduc phessure of the collar. This inven with a metalle shoulder plece having a projecting rim, by which the usual
wind hames are dispensed with and the strain on the collar disiributed over the whe etronce, protecting and only the neck of the horsc, but also yurnishthe metallic covering and conncted by a stronk wire plece, with ring
thed attached to hold the harness together.

Improved Convertible Freixht Car
Willam Worsiey, Littic Falis, N. J.-The Inveullon consiste in V shaped detachable sectlons appiled to the Hoor of a graln car, to give the necessary that the grain may be discharged oll elther sidc of the car from the same nozzle.

Improved Hose nnd Pipe Coupling,

 of same place.-Thy Invention consists in the inprovement of plpe or hose ground or packed. A nut, made in two parts, has each part hinged to a wivel working on one pipe. The other plpe screws into thise sectional nut, which draws the plpestogether. The two parts of the nut archeld together
by a ring which is made to at the conical surfacc of tic ouiside of the nut. The taper of this surface must be suffictent to allow thi: ring to be casily pulled off. The ring is provided with lugs to which are attached chalng which are made fast to some Axture. Now, oy a silght movcinent of elther the coupling or the axture, the ring is pulicd of and clie coupling discon
nected. Each plpe is provided with a pressurc valvc. When the plpce are connected thesc valves are open; but
close automatically or by the oressurc.

