Tandary in, 1873.$]$
§rientific
Parties having hand power sawing machines for cutting down large timber, address J. H. Mitchell, The new and improved tool, simplest of in ventions. Patent right
Hammer Dies and Heads, strong and dura lie, cast to order
A foot power riveting hammer, in good or er, may be had, cheap, of F. C. Beach \& Co., 131 Duan Always right side up-The Olmsted Oiler Aarged and Improved. Sold everywhere
Wanted to purchase, six good second hand nilling Machines, two extra heavy. Address P. o. Bo
Standard and experimental machinery buil for responsible partees at low rates. Every faclity.
s. C. Forsaith \& Co., Manchester, N. H.

1.-Will some one give me a good and sim 2.-How can I make a varnish that will be trangparent, and so hard that 11 will not scr
beasedon paper and cardboard.- - C. \mathbf{T}.
3.-Can there be an ink manufactured of ny particular color that will not be vilifiblelto the naked through some partlcular colored glass? - H. E.J.
4.-What chemicals are used in boiling wa 4or to kill moss and at the same time to dye 1 t black? The moss grows here o.
treseses.-G. G..
5.-Please give me a recipe for making "Alagka scenery,", namely, white formato ons (In water),
which,In size and form, have a resemblance to monn Which,In size and form, have a resemblance to monn
tatins, etc. Inave seen them in druggitat' windows in

-G. w. H

6.-The [preparation and dressing of furs sem to be held a a ecret from the general pubic and an
entitremonopoly, from the Hudsoal Bay Company's trade to that of manufacturng the furs into garments. Can any one furnish particulars of the best and simplest
methods of such preparation, and also any lmproved sct. methods of such preparation, and alio ony 1mproved scl-
entiflemethods adopted by those who oo far monopolize the trade? Wh.
ing?-H.I. R.
7.-I can tin wrought and malleable cas Iron byrrst placing the iron tn a plckle of onl of vitriol, hen I wash it off and dip it into murratic acld, and then Into molten tin. I always have good success with malle
able cast and wrought tron, but cannot make the metal
 what different process I need to use for the latter?

L. A. B.-See our editorial article, "Losses Power in the Steam Engine." You are nearly right in your estimate or average leverage of cranks, the fig.
ure 180 O 0 . are 180.7854. There 18 no 1o8s
S. L. P., of N. J., seys there is a question et ween himself and friend in respect to to exo examples
of masonry, one of which 1s built on straight lines and the other in Yorm of an arch, the longitudinal space covered by the walls betng exactily the same.
Oneclaims that thequantity of masonry in each cxample the same, the other, that the arch contatins the greater quantity. Answer: The arch, supposing it to be in
the torm of a half circle, contains ffty per cent more asoorry than the stralght wall.
A. P. M. says: Is the friction greater on Journals three feet In diameter or fournals one 1nch in
diameter? The length and quality of the bearings, the Welght upon the fournali, and the number of revolu-
tions are the same in both cases. For answer, see edtro. ial remarks, on another page, entitled "Friction of
C. W. S. asks: At what speed or how many eet per minute a circular saw should run, for sawins
inc plates one half inch thick, and brass bolts orbars of hree inches diameter? Answer: About 1,000 revolutions er minute for a six finch saw will do.
W. H. L. says: What is the difference of West in running a car by horse and steam power? Answer: The estimated prime cost and running expenses
for a first class two horse street car in thiscity, interest, wear and tear, driver, conductor, stabling and all the
expensesincluded, 18 8 88,150 per annum. The same est1mate for the running of each dummy or steam street ln favorof steam.
B. says: The Scientific American inan ar ce headed "Sclentific and Mechanical Possibilities" says on pages29, volume XXVII.: "Heat Increases a bout one degree for every fifty feet that we penetrate the
oearth." A California paper of November 8 has the fol earth." A California paper of November 8 has the fol-
lowing: "The greatest blow ever given to the hot quid theory of the interior of the earth was that de-
qonstrated by the artesian well at St. Louis, which de veloped a temperature at the depth of 9,800 feet which
was too cold to be determined by any fnstrument of cience at the time in use for such a parpose." Will you Answer: The statement which you quote from the Call ornia paper of Nov. 8 , 18 absolutely false, and 1 s etther the esult of some most remarkable misunderstanding, or sometimes purposely introduced by dishonorable persons into newspapers, and which have done a vast
smount of mischief by misleading the public. Experiments give varying results. Some indicate an increase
of 1° Fahr. for each 50 feet of descent, while others show ${ }^{1} 1^{\circ}$ Fahr. for eacciso an increase of 1 Fahr. for each 10 feet. All concur,
however, tn exhbiting an increase of temperature as
the earth's crust is penetrated. Estimates of the thick. Less of the earth's crust have been frequently made
It is not more than a few hundred miles, and may be less than one hundred. Below it, the temperature mast be
aniform, or nearly so, since there, all ordinary earthy

Ampticau.
matter and common metals are liquid. "It is not impos-

sible, nor is it improbable, that there may be a central olld mass of alloyed metals whose melting point 18 too | -Prost furnace to fuse thurston. |
| :--- |

M. H. W., of N. Y., H. C. K., of Mass., and thers, write us in reference to our reply to the question of R. and W. about the fly wheel. The subject seems to
be one in which many of our readers are interested, and we will endeavor, in anearly fasue, to state the princtthe difference between a "standing"anda "runntng" ance and between the case which we speciffed and
those presented by our correspondents. We will her mplyremind them that we stated that "if the whee accurately balanced, and is perfectly symmetrical, i. C.K. hasexperimented witbmoldingmachines, grind. unsteadiness of movement simply because, although, in good standing balance, there was a lack of symmetry
His method of securing a running balance is a method of securing symmetiy. By symmetry is meant suchan arrangement of heavy material that each particle is bal ncedby another, equally heavy and equallydistantfrom the center of motion. In such a case only can we get a
perfect standing and a perfect running balance at the same time. A standing balance, otherwise, will not be running balance, no
P. R.S. says: I think of putting in a 10 horse power steam engine. I will have to dig 20 feet water from roof. Can you tell me how much water would have to use per hour in my boller to get 10 hors to the and how will it work to run theescape pipe dow othat there would be but little loss? Answer : A mod arately good boller driving an ordinarily good 10 hors
power engine would require about a hundred gallons of power engine would require about a hundred gallons of
water per hour. A bad boller and fneflicient machine might use nearly double that quantity, while the best expected to run regularly at 10 horse power on fifty gal lons per hour. Your arrangement of exhaust would no
be satisfactory. It would only heat the surface, and it carried down under water would subject you to serious loss by back pressure
E. T. Q., of N. H., says: I observe in your parr for Dec. 21, 1872, a reply to R. and W., in which you ccuratelybalanced, keyed firmlyupod ashaftinany posi) thon, " does notnecessarily produce unsteadiness in the
shaft." I am unable to understand how shatt." ram unable to understand how your reply can
be correct, unless you have some unusual meaning for the expression "unsteadiness in the shaft." Will you
explain more fully, and will you also state whether a shaft carrying a perfectly symmetrical and accuratel balanced wheel, keyed firmly at an angle of 45° to the
shaft, will saw rapidly with out fumping from its bearing if not held down? Answer: Already answered elise
where. We were probably not sufflentlypreciset language. The shaft would leave its bearings if uncon-
fined, and driven at suffictently high speed. It would
E. B. M. says: I notice that some of your correspondents recommend tan bark to clear a bofler of
scale. Will it be infurious to our boller to use water of a tan yard, the liquor being conducted directly from the vats, after being exhausted of its strength in tan. Water strongly impregnated with old sour 1 iquor from a tannery would, in time, corrode your boiler and migh lo serious injury. If you cannot elsewhere obtain pure
water, try it cautiously. Vegetable acids attack 1ron a to mineral actds, although you may find the solution so
effectinalongtim
W. E. H. says: Given two boilers, each feet in length, all other things equal, is there any differ ence in the pressure per square inch required to produce rupture Orin olher woras, does the length have any thing to do with the bursting strain? Answer: The diminish its resistance to bursting pressure.
One of your correspondents, Le R. F. G., of ass., maintains, or strives to maintain, that the part not, "for the time betng," move forward. I am fnclined
to the opinion that, for the following reasons, no part of such wheel is devoid of a forward movement: 1 st . If we closely watch a wheel while turningforward, it " seems' if the top part of a wheel has a forwardmovement dependent upon the progress of the wheel upon the raill, and independent of its motion upon the axle, it "seems",
to me that every other part of the wheel must have to me that every other part of the wheel must have a
forward movement also, because no part of the wheel has a backwardmovement, and all parts are so connected
with the top as that if one moves the othermust. If. ocomotive wheel, four feet in diameter, with No. marked on 1 ts highest part, and No. 2 on the part in
contact with the rall, revolves one quarter round, 1 whl bring No. 1 two feet in advance of the axle; and as he axie has moved forward nearly three feet, or one
quarter of the wheel's circumference on the rail, No. 1 will be nearifve feet tin advance of the position it first terround places No. 2 two feet behind the axle, which has moved near three feet forward, it places No. 2 nearone
foot in advance of the place itstartedfrom. Andas the foot in advance of the place 1 itstartedfrom. Andas the
descending movement of No. 1 is equal to the ascending novement of No. 2 , it results that Nō. 1 has moved more wheels an inch in diameter, with a. mark on the circumference of each, and hold one stationary in one hand
while we take hold of an axle passing through the center of the other, we will find, on putting the marked the other that the one revolving turns once, and only once, around on its axis.-s. s. G.
To J. E. S., query 1, page 378.-After more nd iron hooks to be the most cone use of rubber belte I的d iron hooks to be the most convenient and most durhad punch the holes for the hooks on an exact line. For hook will have the same strain. Do not depend on your eye for punching the holes on a line, but first mark a ine with a square and Chen punch the holes, not too large for the hook. Now about dissolving rabber in
pirits of niter. There 1 s no such thing as dissolved
rubber in the true sense of the word. With essential olls
dissolved, but such solution will not saturate. Shellac
gum copal, pitch and rosin may be dissolved and mixed so that florous materials may be saturated with them but rubber separatesfrom its so called solvents, or rather the solvent evaporates and leaves the rubber in a thing
film on the surface over which it is spread. Neither will fre melt it , for at melting heat rubber will decompose makinga tremendous smoke and leaving verylittle residuum. Rubber is a unique substance. About vulcanized rubber, there are many mistaken notions abroad. The
process of vulcanization 18 simply submitting the rub. ber to heat (steam or hot air) in such a manner that the heat can be regulated and controlled as to time and deree. I have heard vulcenization compared with the burning of bricks, bat there 18 no similarity in the pro. Rubber treatedin that way would decompose.-A. E. \forall

By my query, page 340, Volume XXVII., 1 wished to find out if J. W., or any one else, knows any
practicable way to shift a belt from a loose pulley at the riven end, provided, of course, that the belt is not in notion. There are plenty of mechanics who are ready nachinery. I think some of them could be fooled sev eral dollars worth with such advice as J. W.'s, po.ge 292. J. E. S. page 378, intimates that 1118 not good practice to Hike the loose pulley much smaller than the tight one, n my other article my language implied more than $]$ neant when I sald a difference of aninch is no hindrance to the shifting of the belt. The plan recommended by Mr. Coleman sellers of making the hub of the loose pu
ey longer than the face 1s a good one, andin addition the aceshould be madeveryhighin themiddle, so that, ifthe ub wears so as to allow the pulley to tip to one side, he belt will keep as near as possible on the middle of 1 t. When a loose pulley tips, so that the shifter has to be depended on to keep the belt from running off, the fric-
Hon on the shifter wears the belt very fast. When the ariven pulley is placed over the driver, a properly made ightener is in most cases.preferable to a loose pulley. ome light machines, as a saw table, with the driving the belt made by moving the machine thetension works exceedingly well. The tension of the belt can be as it can also with the tightener, resulated to a nicety, hichis very desirable as it saves unnecessary straining of the belt and saves much time in lacing it, and the W. G. B., of Mich.

To J. E. S. query 1, page 378.-For lacing engthwise the skin, and take out the stretch with wa nstead of oli. My experience is that one such lacing
will outlast two of the onl tanned, and will not spoil will outlast two of
your belt. - H. D. I.

[OFFICIAL.]

Index of Inventions

For which Letters Patent of the United States were granted.
For the week ending December 10, 1872 and each bearing that date.

Un each Caveat. \qquad 810	
	each Trade-Mark
	On Issuing each original P
On appeal to Examiners	
	On appeal to Commiss
applic	
	n application for Extens
On granting the Extension..............	
On an application for Design (33/3 years)................. 810On an application for Design (7 years)........	
an application for D	
	ale tie fas
Basket, S. I. Russell.	
	, ${ }^{\text {th }} \mathrm{ch}$
ed bottom, Turnbull \&	
dler blow off, B. C.	
	Boller for ranges, hot wa
Bolt,flour, C.B. Slater............	
	oot, Felton and Floy
oot seam, Br	
	Boots, inserting pegs in, T. T. Pros
Boots, slitting soles for, w. Wickersha	
	Bottle stopper, J. H. Parkhur
ck cle	
Brddles, connection	
	Brush making mach
Buckle, harness, A. Walker.	
	Bullet, explosive, S.H. Mead,
Button, lacing, D. Heaton..	
	Buttonhole cutter, C. M. Jo
nceling, etc., revenue	
	nal boat propeller, P. Rippl
Caraxle, G. W. Miltimore............................. 188,790 Car brake, W. s. Foster............................... 189,844	
Car brake, w. Nelson.....	
Car coupling, S. C. Bole \qquad 139,824139,721	
Carding machine stripper, A.Carriage, landau,H. Kıllam.	
	Carriage, landau, H. Kill
Carriage lan	
Carriage curtain fastening, A. M. Bardwell......... 138,	
Carrlage wheel hub, J. H. Harper (reissue)......... 5,	
Carriage clips,	
	Caster for trunks, G. Have
Churn, J. E. Mitchell.	
Cigar perforator, E. A. Konter..................... 139,8	
Cigar bunches, making, S. Scholfeld................. 133,725 Clothes drier, J. P.’’acker............................. 183,882	
Coaiscuttle, D. Smith............................. 139,806	
Corner strip, G. Corbett (reissue).................... 5,17: Cornice tool, J. P. Ballantine 183,82()	
Corrugating metal, A. W. Gray...................... 133,773 cotton cleaner, J. L. Coker 153,761	
Cultivator, C.and P. G. Krogh 189,8ij	
Digger, potato, D. M.Lamb........................... 188,714 Diab weiber A. W. Thombon................. 18,51,	

