T. P. says: My friend argues that a chain
wound around a log and fastened toa pin in the log will roll up the skid poles on to a wagon more easily than it
will by simply runniag the chain once around the log will by yimply runnig the chain once around the 10 g
and fastening to the wagon. I teontend that tit makes no draft to the hor sese is the same, as the pulling point is
always on the top of the log. He contends that winding he chain around the log helps to roll 1 t , as part of the chain 1s pulling downo
Answer: T. P. 1 s right.
M. D. asks: 1. How long is a
estimating the run of a a steamboat?
2 . What is the
en area of a sphere or globe four feet in diameter? Please
give a rule for the same. 3 . How much more water will a forty horse power boller evaporate with one pound on
the safety valve than if there were ninety pounds, other things remaining equal? Answers: 1. The knot or nautical mile is about one sixth longer than the common statute mile. It is given by various authorities as $6,0,765$
$6,086,6,120$
and 6,19975
feet.
Bowditch gives 6120 . The United States standard and most generally accepted
 or more exactly, by 3.1419. . The solid contents 18
ured by the product of the cube of tis d dimeter by ured by the product of the cube of its dameter by $\%$, or,
to be precise, 0.5236 . For a sphere 4 feet in diameter, these values are $50: 265$ square feet and 33510 cubic feet. 3. In the inverse proportion of their total heats. If in both cases the bofler was fed with water at a tempera-
ture of 32 Fanr., the proportion would be as 1,148 to
"Anxiety" says: I have a brother fourteen Inclination for books. I am without sufficient patience to teach him, and I have found after schooling him two years that he cannot spell the simplest words, neither Evdently the schools should share but I write for your advice regarding a trade for htm . He can make a good pigeor house, ladder, and chicken body about the house, and centers every interest ti pigeons and chickens. What must I do with him, I
mean, to have him out of my sight? Can I apprentice he realy a brother to the poor boy; that is, be to mind a
hime
heving courage the development in him of a good character by the exercise of the most patient kindness on your part. Take an interess in what interests him, and kinaly ea y of improved varieties, 18 not a bad occupation and re quires the exercise of considerable titellitgence. Suppl specimens of poultry, that is if you have have the meanes. He formation and ability to make use of what he knows and thus astepping stone to improvementin otherdirec. dions, mental and practical, will be insensibly gained he is a nulsance ; on the contrary, strive to see ho any bodyin the wo than yourself, it might be your duty to encourage him
$\underset{\text { M A. H. says : I have in view the improve }}{\text { mat }}$ The hight of dam will be 10 feet small turbine, and convey the water from dam to whee in a penstock. The whole length of penstock will be base of dam and the last sofeet wtll be built down a steep ncline, the lower end being 28 feet lower than the upper
The wheel is sald to use under this head 156 cubic feet water per minute. The diameter of penstock when at
tached to wheel is 12 inches. What I want to Shall I get the beneft of the whole fall if I make th penstock the same size all the way? If not, would it do o construct the portion ona level with base of dam of 16
nches diameter and theremaining part 12 inches? Als Which would be cheaper, water or steam power? Ca binesbe relled on? Auswers: 1. Make the penstock of section at least as great as the wheel and of uniform size. The effect will be that;due the whole fall less the mod-
erat friction of the pipe. 2. Where it is uniform and during which it may be required, water power is cheap
est. The advantage of steam power lies in its reliabillty and uniformity and the privilege which it permits of portation and proximity to market nay mate it desira ble. 3. The tables of power of turbines are often unse-
liable; consult only those which are known to be based apon actual tests of the wheels themselves If a manupurchase, he can ertdently be trustea
F. H. D. says: 1 . How far is it practicable
carry steam from boiler to engine under about 60 lbs. pressure with pipe well protected? 2. How high vertic ally can water be raised with steam siphon through an
inch pipe under same pressure? paint tin roofs? 4. With 10 feet fall of water, what per cent of same could be raised 90 feet with hydraulic
ram? Answers: 1. By very carefully protecting the pipe with non-conducting and non-radiating covering, tion, steam can be conveyed almost any distance without great loss. Always make a steam pipe as short as poeveral hundred feet in well covered pipe, but the most bservationhaye had short stea pipes. We know of no experiments on this point directly. The Giffard injector has been made to force water into a steam hoile er carrying but half the pressure of the first. We should from this fact, judge it possible for a well proportioned
steam siphon to lift water to a hight of nearly 120 feet. with 60 lbs.steam. We should make the pipe large proportion to the size of the instrument. The friction Yes. 4. The hydraulic ram, if well designed, shoul force, with a fall of 10 feet, about five per cent of the A. W. asks: Did you ever know of an instance of the water leaving a steam boiller and going int team pump? If so, what was the cause and what the remedy? There has been a case of the sort brought to my notice, and I know of no cause unless it was because it was a new boiler, and that there was animal grease
enoughabout it to make it foam badly. The boiler is connected with seven others, six of which are old boilers and never known to foam. It has always happened in the night time, when the rest were making little or no steam. The water used is river water. If this boiler
be cleaned first, so that there is not much fre under it
before cleaning the others, it has ceased to trouble. An
tiled a pipe as described, by condensation, where littl or no current was passing through. Other cases ar often met with in which so great a velocity has occurre ing-to choke a pipe. Our correspondent can judge for
inself to which class of phenomena the case which hives belongs.
E. R. D. says: I have charge of a 20×48 Corliss engine, making 56 revolutions per minute. On
the side of the cylinder, there are two $\$ / 2$ inch glebe alves for attaching an indicator. Can you tell me why get strongelectric shocks when I open elther of thes
valves? Is It owingto the friction of the escapingsteam, or to superheated steam let in from the superheater
Let me ask, as to my letter, pnblished on page 164 of the Let me ask, as to my letter, pablished on page 164 of the
volume: Were the fires caused by electricity or superheated steam? I will add a little more information
About 20 minutes before stopping, the last fire is put on consisting of shavings and coke screeningsmixed. Five till the water is six inches above the top gage cock Twentyminutes afterstopping and shuting offallvalves, f more cold water is not let into the boiler. Answer by the friction of particles of water, mingled with the escaping steam, against the sides of the orifice. Farada proved that perfectly dry steam would not produce thl in this case. It is very probable that the fire referred to mayhave been due to electrical sparks, which are quit
C. asks: If it is 14 feet from the rim of on driving wheel of a locomotive to the rim of the othe how wide should the tre of the diver be to remain on he track going around a
is is not, atmospheric pressure which causes water to
ise in a pump to fll the vacuum caused by the valve Answers: 1 . Lay it down on paper and determine it for yourself. You will be better satisfied than with a me
estimate. 2. It is.
W. S. H. asks: Which is the best form

lowed, as at C? Answer: The straight punch will b
preferable, as the others will be more easily broken. F. says: There are two lines of heavy shaft
ing upon the same plane, but they are at an angle with each other of 33°. I wish to communicate 100 horse ware, is with gears, britin this case the noise is a ser
ous objection. The driving shaft runs at a speed of 10 accessfully up to 15e's universal joint can be use inform me whether it is practicable to use three of Hooke's universal joints of
11° each, and in this way make the angle of 33°, commu incating 100 horse power, and diviving the second line o power be greater than it would be if gears are used
Willthe motion of the shaft driven be irregular? The ize of shaft used is 3 zin inches diameter. Answer: Thre difficulty and expense of hanglug gid wear while by them. The motion would be slightly irregular. There claimed to work well belt led around guide pulleys would probably give mos Hooke joint will give regular motion. In this form, an intermediate shaft is connected with each main line b: Hooke joint at each of its ends.
J. C. C. says that our answer to J. H., as to
silding of wheels on curves, was correct. Withou coning, the flanges would last but a short time. Th proposition of J. J. C. Will not convince any railroa
man that coning is an injury, from the simple fact tha

of equal diameters, that is, the parts of the treads bear ng on the rail (see engraving) as at A, curve to the le
nd at B to the right. The wheel, being largest at or near the flange, travels a greater distance in the same
number of revolutions than it does at figure 3 , allowing it to curve without grinding the flanges, that is, if comes to a straight track, the bearings on the rail become of equal diameters, and the least tendency to vary
rom the center of the track is regulated by the cone. rom the center of the track is regulated by the cone
If J. J. C. Fill examine a pair of driving wheels with the coning worn off, he will find the flanges half ground of
alo, that is if the drivers are run very long after the become cyllarical or nearly so
W. T. asks: Will you please give me the
calculation for horse power practically
in ollowing conditions: 10 inch cylinder, 2 feet stroke, cut of at end of stroke. Steam enters through a bout 10 feet evolutions, 90 . I do not know what to allow for fric ion and loss of pressure of steam in transmission; and
the calculation without allowances gives so much that it would seem to require a considerable deduction to accord with our ideas of what we are using. Answer: A en inch cylinder has 88\%/2 Inches area of piston; steam ntering through 10 feet of 2% inch pipe from a boiler
carrying 100 pounds steam should reach the cylinder With a prossure of, probably, not less than 90 pounds,
the engine making 90 revolutionsper minute. Themean ressurewill be reduced somewhat in the steam port it without seeing an indicator card. We can only guess that the average pressure on the pistonin suchan engine, under such circumstances, will not exceed 60 pounds per $88 \frac{1}{3} \times 60 \times 90 \times 4 \div 33000=51 \frac{1}{2}$ Thin $78 \frac{1}{2} \times 60 \times 90 \times 4 \div 33000=51 \frac{1}{3}$. This, our correspondent must
remember, 1 m merely an estimate. An engineer ac-
customed to the use of the indicator can settle the mat.
ter at once. The steam pipe is large enough. Thevalve
should not be allowed to follow full streke. It would save fuel and give more power if cutting of at \%. An
engine following full strokeusually gives an !ndicator card like No. 1, while, if cutting off at $\%$, it would mak

N. T. P. says: I propose to bore a hole
nches in diameter about 8 or 9 feet into permanent om, and then flll the hole nearly to the top with smal crap iron. Will this give suffletent dissipating surface Answer: The ground connection which you propose is
nuch betterthan the common practice of merely stic ng the extremity of the rod into the ground for a sho istance. The value of a ground connection depend duced between the extremity of the rod and the earth. The greater the quantity of the conducting material nd charcoal are also excellent.
J. M. M. asks: Is there any liquid that can ent from common blacking? Answer: There is nothing
W.McC.asks: Can you tell me whether will beches can be blasted by any known process tha Will be cheaper than extracting them with a machine
What would be the cheapestand safest mode of blasting Answer: Removal by the machine would be more effec tive than blasting, probably also cheaper. We have seen
it stated that a good method is to bore the stumps and dstated that a good methoas to bore the stumps an etrated the stum
until consumed.
J. E. W. says: I have two shafts parallel to J. E. . Says, desire to transmit positive motion from one to the
other, both to runat the rate of from 3,000 to 3,500 revo utions per minute and with as little noise as possible Please tell me the most practical, durable and econom
ical way to accomplish it. A.nswer: Will not this do
Λ and B are the two
 shafts, two inclese from center to center. Fit
on end of each a face plate. C D, and connec with links, E F, each three inches from cen-
ter to center, making both links of same
length by drilling the holes for pins sinultaneously, clamping them together during the operation
and drilling in face plates, with equal precision, holes o take the pins. Then assemble as in the nex
agure. The face plates must be of such size that the istances. E E and F F shall ex aed the iength of links over
all as otherwise they could uot ass eachl other while revolv-
ing. Grind the pins to fit. If this will not do, try friction
earing, if the work is light

T. A. claims that January 1st, 1901, is the
rst day of the twentieth century. H. claims that January 1,1900 is the first day of the twentieth centur

Wm. H. Seaman, Lecturer on Botany, How ard University, Washington, D. C., says in reply to E. S. a microscopic object: By mounting it in a cell flled with a mixture of glycerin, distilled water and alcoho
you can keep it in a natural condition. The proportion of the ingredients must be varled according to the na ure of the object. The density should be that of the sa tion of glycerin. If it is required to preserve color, but
 actd to a dram of fluid is a useful addition. Verrill's so

COMMUNICATIONS RECEIVED

The Editor of the Scientific American

 acknowled ges, with much pleasure, the re ceipt of original papers and contribution upon the following subjectsOn the Million Dollar Telescope. By S.V.C d by S. L. D.
On the Creeping Rail Problem. By M. S. M On Small Pox and its Remedies. By A. B. On Steam Launches. By J. T. B.S.
On the Atmosphere and the Milky Wa By H. A. C.
On the Motions of the Sun. By C. H. B. Also enquiries from the following J. D. N.-C. W. H.-W. I. L.-J. F. E.F.C. J.-W. C.- R. C. L.--H. B. M.-F. B. M

- D. E.-J. E. R.-J. A.-S. D. N.-G. R J. N. B.-C. W. J.-W. D. P.-S. \& Co. W. B.-H. W. A. - H. A.-F.H. L.-R.H. B —R. A. D.-R. C.-A. C.B.-J. C.-J. C. H -H. A. V.-W. H.T.-J. S.T.-N. M. L.J. S.-A. B. \&
A. D. H.-R. H lsothosehaving goods for sale, or who want to find mouns, should send with their communications an he head of " Business and Personal," which 1s special
[OFFICIAL.]

Index of Inventions

 FOR whichLetters Patent of the United States
were granted for the week ending

March 4, 1873

and each bearing that date.

Alcohol and ozone for vinegar, R. D. Tur
Annunclator, magnetic, W. Humans. .
Auger, earth, J. B. Smith
Auger, die, S. A. Smith.

Banjo, H.C. Dobson...........
Barrel support. F. W. Claussen
Bed bottom
Bed bottom, Ogborn \& Kendrick
Bed bottom, C. A. Tousley
Bed bottom,
Bed bottom, S. Dunlap............
Beds, head rest for, B. F. Walton
Bedstead, etc., C. May..
Billiard cue, L. Nemet
Boiler, sectional, Pancoast \& Maule
Bolt, tlour, C. A. Harper....
Boot, lasting, J. C. Wightman..........
Boot heels, etc., pricking, C. W. Glide
Boots, shank for, J. M. Watson (r).
Bottle stopper, W. Dick.......... Bottle and stopper, H. Naylor... Bracelet, F. M. Sweet (r).
Brickmachine, D.J. Irvin. Brick and tile machine, G. Baldwin
Bridge iron W Wellers. Bridge iron, W. Sellers.
Bulldings, construction
Bung, W. F. Class.
Burial casket, A. N. Atwo.......
Button fastening, N. B. Smith
Can, ofl, A. P. Quinby.
Can for ol and paint, J. T.
Car coupling, J. W. Jones.
Car coupling, C. Porter...
Car coupling, s. B. Replogle...........
Car, railway, H. Buck..
Car starter, N. J. Wilkinson..
Car wheel, G. W.\& L. W. S
Car axle box, J. M. Dodge.
Car axle box, S. Ustick.
Carriage gear, J.L. War
Carriage axles, Schirct
Carriage axles, Schirck and Snit

Cigar thp, W.M. Herron
Cigars, bunching, H. B. Bunster.
Cigar molds, clamp for, s. Wilmo Cigars, etc., treating, J. Cudd
Comb, band, E. Brown
Cooking vessel, W. F. Thoms
Croquet mallet, E. A. Ross.
Culinary press, etc., G. B. Fowler
Cultivator, L. M. Ganong
Cultivator, E. Wiard.........
Cultivator, w. Willerton.
Digger, potato, H. J. Norton...............
Docks, building, Thompson \& Pattison
Door spring, G. Geer
Door and gate spring, Bean \& Mills.
Doors, etc., relishing, F. D. Green...
Drill teeth, s. Black
Elevator, water, Erwin \& Shoulters
Excelsior machine, W. H
Fences, stretchtng, J. T. Mangha
Fiter, water, W. M. Conger.
Fire kindler, C. A. Nisbett
Fireproof building, A. K. Holt
Float, peg, P.A. Schoellho
Food, artificial, H. C. Morris.
Furnace and door, B. R. Hawley.
Furnace, reheating, H. Chisholin.
Furnace, etc., B. R. Hawley......
Furnace lining, S Danks........
Frarniture, school, J. L. Riter.
Gas illuminator, J. B. Van Patte
Generator, ozone, R. Heneage.
Generator, ozone, R. Heneage
Grain, etc, protecting
Harness, loop for, W.Parson
Harness hames, guard for, C. H. Alley, G. w. Van Gorder
Harvester dropper, J. B. Gathright
Hatchet blank die, J. Yerk
Head rest, O. M. Mitchell.
Heater, gas, C. H. Prentiss........................
Hogsheads, etc., moving, F.o.J. Burr
Holder, tool, I. F. Murch..............
Horseshoes, calk for, J. J. Mervesp.
Hose coupling, G. Westingho
Hub, vehicle, Royer $\&$ Rouse.
Hydrant, T. Ragan..........
ron, smoothing, A.B. Wimpena
ack, lifting, T. w. H. Mosely
ar, fruit, H. Hering...
Kiln, brick, Walsh \& Taylor
Enife and fork folding, H Schume.....
Enife and putty box,
Lamp, G. H. Simmons,
Lamp, White \& Knight.....
Lamp, street, F.Hartmann

