Susintss and texsmal

 The Chargeforo Inertion under this enead ts $81 a L$The Best Smutter and Separator Combined For Re-pressing Brick Machines, apply t
nderson Brothers, Peekskill, N. Y . Buy Gear's Improved Automatic Dovetail 1,000 Tons Grindst
1,000 Tons Grindstones to select from. Send
oz. sample, by mall, to Mitchell, Philladelphha, Pa. Glass Cutters ' 'rindstones, Mitchell, York
venue, Pnlladelpha, Pa.

Agents wan ted every where to Sell our Cir
cular Saw Mills, Separators, Horse Powers, mounted on 2 or 4 Heels, Wheel Horse Rases with, Seed Attan
ments, Self-Sharpening Grrst Mills, Plows, \&ec. \&c. Send Ments, Self-Sharpentng Grist Mills, Plows, \&c. \& \&
for Circulars. Taylor Mft' Go., Westminster, Md. Screw and Drop Presses, Fruit Can Dies and
Dies of every description. Thomas \& Robinson, Cinn., \mathbf{O} To Manufacturers of Pile Drivers and Hoisting Engines.-Send deseription, cuts, and prices to the
undersigned. B. M. Smith, Secy, King Brlage Com

pany, Topeka, Kansas.

You needn't be always behindhand with
nuts and bolts. Get a Grant Bolt Cutter and Drill Comnuts and bolts. Get a Grant Bott Cutter and Drill Com-
bined - smallest, only $\$ \$ 5$. . Machnes ars thorugly made, handsome and handy-capable of the very y
work. Wiley \& Russell, makers, Greenf feld, Mass. Gauge, scott, Nulling , and Whamton, N
Y . ood turning Lathes. Just published--Richards' Treatise on the
Arrangement, Care, and Operation of Wood-Working Machinees, 56 Enarevaning, only 81.50.
New York, and Booksellers generally.
New York, and Booksellers generally.
For Sale-Four Second Hand Iron Planers.
For dimensions and prices, apply to Pooole \& Hunt, Send postage stamp for Spon's new Cata-
logue of Mechanical and Scientifc Books, 730 Sansom Street, Philladelpha, Pa. Send for Geo. Gebie's Catalogue of ScienSend for Geo.
tince Architecura, and
Street, Philadel 1 inha, Pa.
Address for Seldeu's Steam Packing, Boston $\underset{\text { My new Patent Self. Feeding Hot Air Fur- }}{\text { Mapsets the principle of and is warranted } 20 \text { to } 60 \text { per }}$

New Garden Implement, patented March,
183. Rivit for sale. Ed Blanchard, Poolesville, MontHave your Shop fitted out by Gear, of Bos-
ton, Mass ton, Nass
No one person in. this whole country will
ever buy one of the painful metal spring Truseses after he has once seen the new Elastic Truss which retalns the
rupture under the nardest exerclse and the most sudden
strrain of the body,
 Elastic Truss Co., No. 633 Broad way, N. Y. City, who
send Circulars free on application- - N. Y. Independent,
March bth. 1873 .
W anted
tn Building, Repairing, and runnting Engines, a stiuation as Engineer in some irst class establishment, South or
West preferred. Flrst class References from present West preferred. Frrst class References from present
Employers, and others, If destred. Address Enginer,
care of Cupp $\&$ Sons, Jackoonville, Il care of J. Cupps \& Sons, Jacksonville, IIl.
Bartlett's " "Boolevard," Street and Park
Lamps ; also, Torch and Key for Ilghting street lamps in-
 Needles for Sewing, Mochines - General
depot established at Bartetets, 569 Broad way, New York. depot estabissed a
Rare Chance for firist clast class Mechanic. See
ard of M. Day, Jr., on advertusisg page. Thomas's Fluid Tannate of Soda removes
Scale from Steam Bollers. Saves Boilers and Saves Fuel. Price 10e. per ibin in inls., ybbls., or kegs. For Circular,
address N. Spencer Thomas, Emima, N. Y. Short's Patent Couplings, Pulleys, Hang.
ers and Shafting a specilaty. Orders prompty ers and shaftlig a specialty. Orders prompty filled.
Circulars free. Address Short Mf'b Co.,C Mills for. Arainess Paint, Ink, \&c. Ross Bro's,
williamsburgh, N. Y. Pat Damper Regulators and Gage Cocks-For
the best, address Murril \& Eelzer, Baltimore, Md.
 Millstone Dressing Diamond Machine-

 ${ }^{\text {rymbinet Makers' Machinery. T.R.Bailey\&Vail. }}$ Painters and Grainers sy the thousand do
their pest granting gulckly wth Pat. Perforated Metaltheir best graining quilckly whth Pat. Perrorated Metal-.
lic Graining Toools. J.J.Callow, manuu,, Clevelana, ohlo. For Hand Fire Engines, Price $\$ 300$ to $\$ 2,000$.
Address Rumsey \& Co, seneca Falls, N. Over 800 different Sty Style Pumps for Tan-
ners, Paper Mulls, and Frre Purposes. Rumsey $\&$ Co., eneca Falls, N. Y.
Stave \& Shingle Mach inery. T.R.Bailey \& Vail. Brown's Coalyard Quarry \& Contractors' Ap-
parritus for notsting and conveying materla by y ron cabie, W.O.Andrews\& Bro.414 Water st.N. Y.
The Beryman Hear and Repulator for
Steam Boilers-No one using Steam Bollers can arorord to be without them. I. B. Davis $\&$ Co.
Belting-Best Philadelphia Oak Tanned.
c. w. Arny, 01 and 303 cherry 5 street, Philadelphia, Pa. J.R.Abbe, Manchester,N.H.,sells Bolt V ises. Peck's Patent Drop Press. For circulars,
address the sole manufacturers, Milo. Peck $\&$ Co., New Haven, Conn.
Circular Saw Mills, with Lane's Patent Sets;
more than 1200 in operation. Send for deseriptitive pam. more than 12200 in operation. Send for desectiptive pam.
phlet and price list. Lane, Yitkina \& Brock, Montpe-
ier. Vermont. ier, , ermont.
Key Seat Cutting Machine.T.R.Bailey \& Vail. Tree Pruners and Saw Mill Tools, improve-
ments. Send for clrculars. G.A.Prescott,Sandy Hill, N.Y. Fivedifferent sizes of Gatling Guns are now
manufactured at Coit's Armory, Hartord, Conn. The
 Boring Machine for Pulle. Pulleys-no 1 imit
capacty. T. R. Balley $\&$ Vall, Lockport N. Y.

The Berryman Manuf. Co. make a specialty
of the economy and safety in working steam Bollers. B. Davis \& Co., Hartford, Conn.
Gauge Lathe for Cabinet and all kinds of handaugese
diles.
Vant.
Shaft Shafting and Pulleys a specialty. Smallor
ders slite on as good terms as large. D. Frisble $\&$ Co.
New Hew New Haven, Conn.
All Fruit-can Tools,Ferracute,Bridgeton, N.J. For Steam Fire Engines, address R. J. Gould, Hammer Dies and Heads, strong and durabe, cast to order by Pittsburgh Steel Castling Co. Al
 or 1thograph, etc.
Mining, Wrecking, Pumping, Drainage, or
rrigating Machnery, for sale or rent. See a vivertisement Andre W^{\prime} s Patent, Inside page
Hydraulic Presses and Jacks, new and
ond hand. E. Lyon, 770 Grand Street, New Tork.
Machinists- Price List of small Tools free
Gear Wheels for Models, Price List free ; chucks and Gear Whels for Models, Price List free; Chucks and
Drills, Price List free. Goodnow \& Wightman, 23 Corn Drill, Price List
hill, Boston, Mass
The Berryman Steam Trapexcels allothers.
The best 1 a 1 ways the cheapest. Address II B. Davis $\&$ Co.. Hartfora, Con
Covering for Boilers and Pipes. The nost
conometcal and durable article in une at Amerinan Institute Fratr Van vuyl Manufacturing
ampany, 528 Water Street, New York.
 For best Presses, Dies and Fruit Can Tools,
Bliss $\&$ Willams, 118 to 120 Plymouth St., Brooklyn, N.Y. A Superior Printing Telegraph In Instrument
(the Seldeen Patent), for private anct short lines a warded
 sition, 182 , for " "Best Telegraph Instrument for private
 Williamson's Road Steamer and Steam Plow,
with rubber Tres.Address D. D. Willamson, 32 BroadWith rubber Tires.Addar
way, N. Y., or Box 1809.
Lathes, Planer, Shaper, Shafting, 30 Boilers,

Humex Cuniss

J. B. asks: Is there anything poisonous
from a cast Iron furnace when wood ha used for fuel?
 I $\left.\begin{array}{l}\text { Iuse? } \\ \text { E. } \\ \hline\end{array}\right]$
E. T. C. asks: What kind of oil is best for a
blacksmith's bellows?
Is there anything not Injurious to the leather or potsonous that cany be used ind the oll,
that will prevent rats and mice from gnawing the that Will
leather?
R. H. D. asks: What advantage have turn-

J. Q. asks: What is the difference in the crushing weights of a atamp that weighs 500 ibs.,.with a
ace six Inches in diameter, and a wheel that 18 six feet

$\begin{array}{c}\text { rolling } r \text { rt } \\ \text { diameter. }\end{array}$

A. Z. says: I have a portable steam engine, 120 Ibs. power, 4 feet stroke, and 3% Inches bore; the
length of the boller is 6 feet, the diameter 38 tichese, with
 the plston to an ordinary wooden fy wheel with drum
of 5% feet dameter. The gin runs perfectly well with 70 1bs. of steam, but soon the speed dimitithes till 1 t runs
very slowly. What must be done to make tr run? What very slowly. What must be done to make It run? What
Is he reason to does not keep its ppeed? If attach two small fy wheels to the maln shaft of the gin, on one or
both sldes, do you think that it will help the steam to keep up a suftclent speed
A. M. says: I am running a circular saw Inch, friction feed; saw mandel is s, sied Inches cast steel running In self ollling Babbitt lined boxes. The box
next to the saw is hot all the time, but the box next to
 in different ways without success. I use 1 ard oill and
have changed mandels twice in six months. It will get not, whether the saw 1

 man connections to a ateam wheel) a 10 or 12 horsep pw.
er portable engine of 150 evolutions per m nute
T
 diameter of Whel, and speed of same. What size should
the shaft te to drive sald boat 3 miles an hour against a current of 3 mille
draw10 tiches ?

C. C. S. asks: How can I construct an ice
boat?
Answer: Read page 88 of our volume $X X V$. H. E. B. repeats B. W. C.'.s query. Answer
See our repiy oon page 171 of this volume. D. A. K. will find full directions for a bath
 Index of tiventions for which letters patent of the
United States were granted for the week; ending January 28,1873 , and each bearlin that date;", how can thls be
When you publish your paper and subscribers recelve it

 rect. A \& Co. say: We put a set of new tube
In a small upright boller ; and in eleven months the
you pleage inform us what Ingredients and what propor
tion we ought to put in our tank (which we pump from to prevent the corrosion in the boller? Would it be best
to use coper tubes? to use copper tubes? Answer: We should require
knowleage of the character of the impurtles of the feed wawlede of the charactier of the 1mpurtites of
water before we could give an intelligent reply.
A. H. M. says: In your paper of March 1
you inform A.B.s. that the back pressure on engine it
 have $\left.\begin{array}{l}\text { ster } \\ \text { standa a cls }\end{array}\right)$.
 wooden pipe, 3n ches bore, bet ween the pump and cistern,
of sumflelentlength to reach from the of fuflelentlength to reach from the ground to above
the top of the cistern. Itook the exhaust p ppe (11/ Inch gas pipe t Into the stide of the wood plpe, level whth the
engine, ten feet above, at the top of the wooden pipe. run a 2 inch plpe horizontally over the top of the e stster and turned 1 d down into the cistern, which 18 s 4 feetdeep,
within a foot of the bottom. The cistern 1 susuall yull. or naearly yoo of ocold water. The pipes were all alrtight
from end to end, except a hole, $\&$ Inch in diameter.
 exhaust pipe, Intended thet oft the condensed ream
Result: Upon tarting the engtine (pump), a stream of Result: Upon starting the engine (pump), a stream of
col water started from the smal opening with he force
of say anout 10 feet head. I enlarged the hole until of say about 10 feet head. I enlarged the hole until,
finally, I made it 1% inches in dameter, tnally, I made it 11 Inches 1 diameter, which had only
the effect of tincreasing the discharge of water. In fact, it made and mantataned a continual stphon whether the
pump was running or not. The speed of the pump did not appear to be affected, but it occasionally pounded as
from waterin the steam cyllnder. I tnally overcame from waterin the esteam cyllider. I thally overcame
the diffleulty by a valve in the top of the perpendicular pipe opening In wardly, but held closed bya silght spring,
Now when it toclines to draw the water over by the vacuum found in the stphon, the valve admits air which the next exhaust forces down into the cistern, keeptng
upa commotion at Intervals of say three to tuv strokes of the pump. If there had been the back pressure stated, could a vacuum have been formed suffcient to have made a a siphon? Answer: The arrangement described
forms a pretty effective condenser forms a pretty effective condenser, as frst made. As
modifled, our correspondent will tind, we presume, shoull he measure tit, back pressure ench as we stated,
so lon a a the min gled steam and arr are belng forced down Into the tank. With a astam enine exhausting
into its own feed water tank the frst eftect ito its own feed water tank, the frst effect, on starting
the engine, might be to produce a vacuum in a sim1 lar maner, but, as the ex haust ts capable of heating sev. eral times the welght of the feed to the boilligg point,
condensation would soon cease, the vacuum would be condensation would soon cease, the vacuum would be
destroyed, and the back pressure would become a load
$\underset{\text { W. S. S. S. Says. } \mathrm{I} \text { was with Mr. Le Van when }}{\text { whed }}$ Van found the iron reduced to three sixteenths in one
place, which was not where the boller burst from the stratin upon tit, but where the mud drum was orn off
His statement that the steam showed a pressure of 53 pounds is inccrrect, because there was but one gage in the min, and the boilier was
shut off from that one. There are today worse bollers In this myll working at from 60 to 125 pounds pressure. r saw one, this week, taken from the next furnace
the exploded one, with 18 patches on the fre fheets. heard the proprietor say last summer, in reply to the
englineer's optnion that they were carrying too much engineers oppinion that they were carrying too much
pressure, namely 100 to 110 pounds, that it was all non-
 pressure. The trouble was that they wanted one man to
do three men's work, and one man was dolng it for less din ree men's wort, and one man was doting tit for less
than one good man's wages, and he forgot to oven the
conectio withe ives was the result, with many more persons crippled Yor life. Please stata e at what pressure the safety y alve,
as described last weekr, would blow off. Answer: Such as described last week, would blow off. Answer: Such
an arrangement of steam gage has been a cause of quite a number of explosions of old and worn out bollers. T elort to obtain the labor of three good men by payling
low prise for the time of one man is another cause Which, perhaps, operates quite as often in producing ex Iosionsasalmost any cause appertaining to the boilier
itself. we fear it may be a long time yet before it shall have beomene a well recoginize fact that nethng 18 ever
saved in thelong run by attempting to obtain gervice of any kind without giving the proper equivalent. Shouls other explosions occur, as apprenended by W. S. B., he
will have the satisfaction of knowing that he has done duty in the premises by glving fair warning through the
ScrisM Tririo Amprrasin to those interested. We do not now to what safety valve he last paragraph refers.
J. W. S. says: I am firing a twenty-five
horse portable tubular bofler with soft coal. How much more fuel willit take to fre with the furnace door open
than with it closed? I run steam 1down hill to one 12 harse eacked with sawdust. Thinking that some of the power was lost il carrylng steam so far, we fitted on a steam gage on steam pipe at engline and found $\%$ pounds
more pressure than the gaze showed on the boiler more pressure than the gage enowed on the biner.
then placed our gages together on the boiler and found then placed our gages together on he boiner and found
them both alke, both standing at 80 bs. How does this loses one pound in passingthrough each ten feet of pipe. We also run steam up hill 300 feet, in $11 /$ Inches pipe to a
12 horse cngine. Placing the gage there it indcete 2i horse cngine. Plactng the gage there, it inacated
1bse. less than gage on booler. But the pipe runs under a road, and the dampness may condense the steam there Does it take more steam to run up hill than it does
down? What is the difference (if any) in the pressure on top of a bobler and on the bottom? Tate a vers light
carriage, somethin like velocipede only three wheeled
 4urredto propetitit one thousand yards, on level ground, in one minute, and how much on an iron track?
power is to be applled in the form of a welght.
C. E. G. says: : I want to know how the
lack glove finish 19 put on to such articles as harness buckles. Answer: Dissolvo three stcks of black sealing J. L. J. asks: What do you mean by excesthe cylinder of an engline by the steam, and it causes cyllider. Dry steam alone should be admitted to an en. glee. In answer to your other question : Yes, very cred-
J. B. F. asks: Why is there a star marked
in the constellation Lee (second star from point of
 while it is not to be seen there? Answer: This star
(called Rasacas in Procter's atlas is to be seen at any ime in the dest nated place.
Several correspondents have called our at-
tention to an om omsion in the paragraph relating to the
tention to an ont19sion in the pararapaph relating to the
cone pulleyon page 123 or the current volume of the
given. It should be made equal to the difference be N. C. M. Says: On October 15, 1872 , a short
time before sunset, I saw a spot upon the sun with my
 naked eye. Viewed through a \ddagger eld la lass of good power,
it was resolved Into two spots, very close to to
 sphere at that time was quite hazy. Were the sun spots
at that time remarkable for their size? Answer: No vember 10, 1872,ananthereeabo uts was a period remarkable for the size and number of the spots on the sun; one
double spot was to be seen as single with the naked eye.
 C. W. W. asks: When did the vernal equiOx fall back from March 2 t to March20? Answer: The
answer to the question in regard to the vernal equinox
 calendar; it may be found in any encyclipedida and
almost every
work on popular astronomy Lockyer's almost every work on popular astronomy. Lockyer's
"Elementury Lessons in At Astronomy" well discusses the subject, 的 the chapter on the measurement of time. Our or ever has been any positrve e tixed date for the occur.
rence of the equinoxes. It 1 s Impossible to avold some rence of the equinoxes. It 1s Impossible to avold some
varlations, as the time of the sun's revolution from one equinox to the same equinox agatn is not an exact num. ber of days. It has been the object of all calendars to so
correct theresultingerrors that the variations are kept withln as smalla a llimetras possible. By the system now年 use, Instituted by Pope Gregory XIII in 1582, the ver. This year it happens on March 20 .
J. W. P. requests us to publish information
about how to make good hard soap, and the chem1stry thercoof. Answer: To make soap, boll fatty or oleagin.
ous matter with a weak allaliline lye renderece caustic by and shame, the ebullition betng stl11 contInued untll these anclous compound, Which begrins to separate from the
Water; to promote thls separate Water; to promote this separation and the granulation
of the newly formed soap, some common salt and, the fre beting withdrawn the ontentrof of the boilier
are anlowed to repose for some hours in order that the are allowed to repose for some hours in order that the
soap may collect into one stratum, and solldify. When
 quite solld, cut Into bars. If the soap be made from the satiffy the thrifty washerwoman, but it can be prevent.
 tion of 5 per cent of fused sulphate of soda. Ure ayys
that this addition not only hariens the soap, but 1 m .
W. R.J., Jr., asks at what rate and to what wwer: Dulong and Pettr found that mercury expands

Estow. C. H. takes exception to our reply to a
Eorrespondent that the rotundity of the earth psitnches correspondencot that thu rotunatity of the earth 188 inche from the extremity of a line Whose other end 18 tangen.
tial to the curve. The common formuls is: 3 of the suare of curve. The common formuls is: 3 of the
squatane in miles will give the rotundity P. L. D. asks: Can any of your readers give trangparent, but the substance used must not prevent
the use of mucllage on the paper? Answer: Canada balsam and turpentine make a good preparation for
tracing paper. tracing paper.
L. E. H. asks: What ragions of the world Answer: Gutta percha comes chleffy from Borneo and
Other Ilandand of the East Indan archipelago and caoutchoucfrom South America and the East Indies.
W. F. C. S. asks: 1. What proportion ought
the tooth of a gear wheel to bear to the space between the tooth of a gear whel to bear to the space between
it and the next tooth?
2 . We have a six
 The engine when started with a tratn of cars would
cock up her front and duck her rear, as far as the rettipappay of the taws would allow. The fault was discovered पo be causea y front equalizer. How is
 will properly yary with clrcumstances. We have seen
 inch pitch. 2. With the second arrangement, the engtine
was tied down forward, while, with the tirst, as we un. derstand the two arrangements, the equalizers allowed
the main frames to take a position in line of dratt 3 Prectsely.
H. P. \& C. asks : In the construction of a from the ram to the place required be largerat the axle
nod or vice versa? Is tin Hined lead plpe preferable to ordinary gas pipe for that purpose? Answer: A plpe of
the same size all through will do. Tin lined plpe unae. ${ }^{\text {cessary. }}$
J. B.J. says: Youreplied to P.R. S. who want-
ca to know how much water it takes to run a ten orse power steam englie per hour; your answer is from 50 to 200 gallons per hour, according to quallty of ooller
and machine. Is the answer correct? Should it not be per day? Answer: Our reply reads as we intended it should. A good 10 horse power englne with equally
good boller shull require about 50 gallons of water per Tour. This 18 something over 300 pound, and wit would
ho evaporated by 3 pounds of coal. Three pounds of
De De evaporated by 30 pounds of coal. Three pounds of
coal perhorse power per hour is extraordinarily good workfor such hemall power. About 1, Too pounds, or 200 צallons of water requires frequently 200 pounds of coal
Cor tis evaporation, and a ten horse engtne has been known to reach this tigure on many occa slons.
W. . W. W. asks: How is petroleum applied
boriers to remove scales, I mean such as locomotive bollers, that canot be got Into? Is it not apt to make
the.polles prime? and just before flling it, put in the petroleum. Then
turn on the feed, and as the boller tulls, the ofl, foating on the water, reaches every
 3iver: We know of no recorded experiments on this
polnt. If our readers can give the information, we shall e pleased to recelve it. We think that some of our
friend of the EngineerCorps of the navy can enlighten
T. P. says: My friend argues that a chain
wound around a log and fastened toa plin in the log will roll up the skld poles on to a wagon more easily than it
will by simply runnigg the chatn once around the log
 airence where the end of the chaln 1s secured; the always on the top of the log. He contends that winding the chatn around the log helps to rollitit, as part of the chatin 1s pulling down
Answer:
T. P. 18 right.
M. D. asks: 1 . How long. is a knot , used
n estimating the run of a steamboat? 2 . What 1 s the area of a sphere or glo be for fer feet In didameter? Pleasee
give arule for the same. 3. H . much more water will a forty horse power boller evapopate with one pound on things remaning equal? Answers: 1. The knot or nau tical mile is about one sixth longer than the common statute mile. It is given by various authoritles as 6,07655
$6,086,6,120$
and 6,13975
feet.
Bowditch gives 6120. The United States standard and most generally accepted
value 186086.07 feet. value 186086 .07 feet. 2 . The surface of a aphere is calcu
lated by multiplying the square of its dameter by $3 ;$ or more exactly, by 3 .1418. The solid contents is meas
ured by the product of the cube of its diameter by ured by the product of the cube of tits dameter by \mathcal{y}, or,
to be precise, 0.5236 . For a a shere 4 feet in diameter, these palues are 50.265 square feet and 33 sin cublc feet. 3. In the inverse proportion of their total heats. If in both cases the boller was fed with water at a tempera-
ture of $32 \mathrm{~F}^{\text {Fanr., the proportion would be as } 1,148}$ to
"Anxiety" says: I have a brother fourteen inclination for books. I am without suffclent pattence to teach him, and I have found after schooling him $t w o$ years that he cannot spell the simplest woras, nelther
can he parse, or work out the eastest sum in arthmettc. Evdently the school should ehre but I write for your advice regarding a trade for him He can make a good plgeon house, ladder, and chicket ody about the house, and centers every to inerest plgeons and chickens. What must I do with him, mean, to have hilm out of my sight? Can I apprentic
him? Answer: In the firet place make up your mind to be really a brother to the poor boy; that 1 , be to him a
loving and devoted friend. B Bear w Ith his 1 nffrmitites, encourage the development in him of a good character by the exerclise of the most patient kindness on your part.
Take an interest in what jnterests him, and klndly en Take an Interestin what interests hm , and kind 1 l en deavor to help hm theretin. Poultry breeding, espectal
y of improved varieties 1 s not a bad occupation and quires the exerclse of considerablefntelligence. Suppl him with pictures upon the subject, tools, materials an specimens of poultry, that is if you have the means. He
will thus Insensibly acquire a taste for that kind of information and ability to make use of what he know and thus a stepping stone to improvementinotherdirec tions, mental and practical, will' be Insensibly gained Do not undertake to drive him out of your sight becaus guch you can improve and lift him up. But if there
ny body in the world who can be a better friend to hin than yourself, it might be your duty to encourage him $\underset{\text { M A. H. says : I have in view the improve }}{\text { mant of a mall water power; the fall is about } 38 \text { feet. }}$ The hight of dam will be 10 feet. I propose to use small turbine, and convey the water from dam to whee In a penstock. The whole length of penstock will be
about 200 feet; about 120 feet of it will be on a level with base of dam and the last 8ofeet will be bullt down a stee The wheel Is sald t water per minute. The diameter of penstock when at-
tached to wheel 1 s 12 inches. What I want to know is Shall I get the benefit of the whole fall if I make the to construct the portion on a level with base of dam of 16 Inches dameter and the remalning part 12 inches? Also
which would be cheaper, water or steam power? the tables giving power and quantity of water for tur inesbe relled on? Auswers: 1. Make the penstock of
section at least as great as the wheel and of unlform siz The effect will be that:due the whole fall less the mod-
erate friction of the pipe. 2. Where it is uniform reliable throughout the year or that portion of the year durlng which it may be required, water power is cheap-
est. The advantage of steam power liesin its reliability and unlformity and the privilege which it permits of proximity to market nay make it desir ble. 3. The tables of power of turbines are often une-
liable; consult only those which are known to be base upon actual tests of the whels themselves II a mann-
facturerwill consent to allow a test of bis wheel before位chase he can ericently be trustea
F. H. D. Says: 1. How far is it practicable pressure with pipe well protected? 2. How high vertic Inch plpe under same pressure? 3 . Will coal tar do to
palnt tin roofs? 4 . With 10 feet fall of water, what per cent of same coula rised 90 feet with hydraulic ram? Answers: 1. By very carefully protecting the
pipe with non-conducting and non-radiating covering nd providing for the trapplng off of water of condensaout great loss. Always make a steam pipe as short as possible, nevertheless. We have seen steam conveyed economical steam englnes which have come under our observation have had short steam pipes. 2. We know of
no experiments on this polnt directly. The Glffard injector has been made to force water into a steam boile Fhile supryg but half the pressure of the first. We should from this fact, judge it possible for a well proportioned steam siphon to lift water to a hight of nearly 120 fee with 60 lbs. steam. We should make the pipe large tarding force. ${ }^{3}$ force, with a fall of 10 feet, about flve per cent of the $\underset{\text { stance of the water leaving a steam boller and coing into }}{\text { A. }}$ stance of the water leaving a steam boller and golng int steam pump? If so, what was the cause and what th
remedy? There has been a case of the sort brought to my notice, and know of co cause unless it was becau It was a new boiler, and that there was animal grease
enough about it to make it foam badly. The boiler is connected with seven others, slx of which are old boil ers and neverknown to foam. It has always happened in the night time, when the rest were making little o be cleaned first, so that there is not much fre under it
before cleaning the others, it has ceased to trouble. An
filled a a plee as ase decribeded, by condensation, where little
fir or no current was passing through. Other cases ar
often often met with tn which so greata velocity has occurree
as to take over sumflelent water mechandcall - by Ing-to choke a plpe. Our correspondent can judge for
himself to which class of phenomena the case which Ives
E. R. D. Says: I have charge of a 20×48 the side of the cylinder, there are two $\%$ Inch globe valves for attaching a n Indicator. Can you tell me why
get strongelectric shocks when I open elther of the valves? Isito owingto the friction of theescapingsteam,
ar to superheated steam let in from the superheate Let me ask, as to my letter, peblied on pae 144 of ther. volume: Were the fres caused by electricty or super heated steam? I will add a little more tinformation
About 20 minutes before stoppling, the last fire is put o consisting of shaving bs and cobise screening gsmixed. Five till the water is sixix tnches above the top gage cock Twentyminutesafter stopplng and shuttlig offall valves
team rises from 40 to 100 ibs., and will continue to rise If more cold water is not let into the boiler. Answer by the friction of particles of water, mingled
 proved that perfectly dry steam would not produce thi
effect. Superheated steam therefore, is not the cause in this case. It is very probable that the fire referred to
nayhave been due to electrical sparks, which are quit capable of igniting very inflammable substances.
C. asks: If it is 14 feet from the rim of one how wide should the tire of the driver be to remain o the track going around a 14 degree curve? 2. Is it, o
sit not, atmospheric pressure which rise in a pump to flll the vacuum caused by the valve Answers: 1. Lay it down on paper and determine it for
yourself. You will be better satisfled than with a mere
W. S. H. asks: Which is the best form punch for thin hamm
 lowed, as at C? Answer: The straight punch will be
preferable, as the others will be more easlly broken. F. says: There are two lines of heavy shaf ach other of each other of 330 . I wish to communicate 100 hors
power from one to the other. The common mode, I am ware, is with gears, but in this case the notse is a ser
ous objection. The driving shaft runs at a speed of 10 evolutions. Hooke's unversal jont can be used
successfully up to 15°. Can you inform me whether is practicable to use three of Hooke's universal joints of
11° each, and in thls way make the angle of 33°, commuicating 100 horse power, and dinving the second line o
inafting? Will it work? Will the percentage of loss power be greater than it would be if gears are used
Will the motion of the shaft driven be irregular? Th ize of shaft used $1833 /$ inches diameter. Answer: Thre Hookes jonss woula be hayl give trouble by the them. The motion would be slightly irregular. Ther clalmed to work well at any angle. If practicable, belt led around guide pulleys would probably give mos Hooke joint will give regular motion. In this form, an intermediate shaft is connected with each main line b. Hooke joint at each or thend.
J. C. C. says that our answer to J. H., as to
sild coning, the flanges would last but a short time. The proposition of J. J. C. will not convince any rallroa
man that confng is an injury, from the slmple fact that

of equal diameters, that is, the parts of the treads bear ng on the rail (see engraving) as at A, curve to the lef near the flange, travels a greater distance in the same
number of revolutions than it does at figure 3 , allowing t to curve without grinding the flanges, that 1s, 19 comes to a straight track, the bearings on the rail become of equal diameters, and the least tendency to vary If J. J. C. will examine a pair of driving wheels with the coning worn off, he will find the flanges half ground of
1so, that is if the drivers are run very long after the become cylindrical or nearly so.
W. T. asks: Will you please give me the
calculationforhorse power practically in use under the ollowing conditions: 10 inch cylinder, 2 feet stroke, cut of at end of stroke. Steam enters through about 10 feet revolutions, 90 . I do not know what to allow for fric-
tion and loss of pressure of steam in transmission tion and loss of pressure of steam in transmission; and
the calculation without allowances gives so much that it would seem to require a considerable deduction to ac cord with our ideas of what we are using. Answer: A ten inch cylinder has $483 /$ Inches area of piston; steam
entering through 10 feet of $2 \% / 2$ inch pipe from a boller carrying 100 pounds steam should reach the cylinad With a prossure of, probably, not less hine making 90 revolutions per minute. Themean pressurewill be reduced somewhat in the steam ports
and, it maybe, very greatly. We can tell nothing about it withoutseeing an Indicator card. We can only guess that the averagepressure on the pistoninsuchan engine, under such circumstances, will not exceed 60 pounds per $882 \times 60 \times 90 \times 1 \div 33000=511$ This $78 \frac{8}{3} \times 60 \times 90 \times 4 \div 33000=51 \frac{1}{3}$. This, our correspondent mu
remember, is merely an estimate. An engineer a remember, ts merely an estimate. An engineer a
customed to the use of the indicator can settle the ma
er at once. The steam plpe is large enough. Thevalve
should not be allowed to follow full streke. It would save fuel and give more power if cutting off at \%. An
engine following full stroweusually gives an tndicator
card like No. 1 , while if cutting off at a diagram like No 2 , giving equal or greater power wit

N. T. P. says: I propose to bore a hole 8
nches 1 diameter about 8 or 9 feet into permanent tom, and then fill the hole nearly to the top with small Answer: The ground connection which you propose nuch betterthan the common practice of merely stick ing the extremity of the rod int the ground for a sho n the quantity of conducting material which is intro. duced between the extremity of the rod and the earth
The greater the quantity of the conducting material ne better. Scrap iron is good
J. M. M. asks: Is there any liquid that can
be prepared to black stoves with and not burn off, difierent from common blacking? Answer: There is nothing
W.McC. asks: Can you tell me whether will be cheaper than extracting them with a machire Answer: Removal by the machine would be more effec tive than blasting, probably also cheaper. We have seen
It stated that a good method is to bore the stumps ancl pour to petroleum. pour in petroleum. In a few days the oll will have pen-
etrated the stump, which is then set on flre and will burn J. W.
J. E. W. says: I have two shaf ts parallel to each other, distance from center to center three neches.
desire to transmit positive motion from one to the ther, both to run at the rate of from 3,000 to 3,500 revo Please tell me the most practical, durable and econom
 o inches from center to center. Fit
on end of each a face plate. C D, and connec with links, E F, each
three inches from center to center, making
both links of same
length by drilling the holes for pins stinult neously, clamplng them together during the operation,
and drilling in face plates, with equal precislon, holes o take the pins. Then assemble as in the next
igure. The face plates must be of such size that the ceed the iength of links ove ceed the ength of links over
all, as otherwise they could uot pass each other while revolv-
nrind the plas to fit. fthis will not do, try friction
earing, if the work is light

T. A. claims that January 1st, 1901, is the
rst day of the twentieth century. H. claims that January 1,1900 is
Which Is right
Wm. H. Seaman, Lecturer on Botany, How University, Washington, D. C., says in reply toE. Who asked ow to preserve the morning glory pollen a
a microscoplc object : By mounting it in a cell flle Fith a mixture of glycerin, distilled water and alcohol you can keep it in a natural condition. The proportion
of the Ingredients must be varled according to the n ure of the object. The density should be that of the sap tion of glycernd. If it is required to preserve color, but very little alcohol must be used, and a drop of carbolic actd to a dram of fluid is a useful addition. Verril's so

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American

 acknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjectsOn the Million Dollar Telescope. By S.V.C nd by S.L.D.
On the Creeping Rail Problem. By M. S. M On Small Pox and its Remedies. By A. B. On Steam Launches. By J. T. B. S.
On the Atmosphere and the Milky Wa By H. A. C.
On the Motions of the Sun. By C. H. B. Also enquiries from the following
J. D. N.-C. W. H.-W. I. L.-J. F. E.
F.C. J.-W. C.-R.C. L.- H. B. M.-F. B. M
J. N.B.-C. W. J.-W. D. P.-S. \& Co-
W. B.-H. W. A. - H. G.-F. H. L.-R. H. B -R. A. D.-R. C.-A. C. B.-J. C.-J. C. H -H. A. V.-W. H.T.-J. S. T.-N. M. L.J. S.-A. B. \&
A. D. H.-R. H 1sothosehaving goods for sale, or who want to fin mounts, should send with their communications an he head of "Bustiness and Personal," which 1s spectall
[OFFICIAL.]

Index of Inventions

FOR which
Letters Patent of the United States
were granted for the week ending

March 4, 1873

and each bearing that date.

Alcohol and ozone for vinegar, R. D
Annunclator, magnetic, W. Hum Annunclator, magnetic, W. Humans. Auger, earth, J. B. Smith
Auger, die, S. A. Smith
Auzer, die, S. A. Smith.
Banjo, H.C. Dobson.... Barrel support. F. W. Claussen Bed bottom, Turnbull \& Webb Bed bottom, C. A. Tousley
Bed bottom, Beds, head rest for, B. F. Walto Bedstead, etc., C. May.
Billiard cue, L. Nemet
Boller, sectional, Pancoast \& Maule Bonler, wash, C. D. Reinkthg Boot, lasting, J. C. Wichtm Boot heels, etc., pricking, c. w. Glidde Bottle stopper, W. Dlck. Bottle and stopper, H. Naylor... Bracelet, F. M. Sweet (r).
Brick machine, D. J. Irvin. Brick and tile machine, G. Baldwin Bridge iron, W. Sellers. Bung, W. F. Class..............
Burial casket, A. N. Atwood Button fastening, N. B. Smith Can, oil, A. P. Quinby..................
Can for oll and paint, J. T. William Car coupling, J. W. Jones.
Car coupling, C. Porter.. Car coupling, s. B. Replogle Car, railway, H. Buck.
Crar, roof, J. C. Wands. Car starter, N. J. Wilkinson..
Car ventilator, C. C. Gerhardt. Car wheel, G. W. \& L. W. Wny Car axle box, J. M. Dod.
Car axle box, S. Ustick. Carriage gear, J.L. Ware............. Cartridge, metal, etc., W. H. Tooth
Caster, Cigar tip, W.M. Herron Cigars, bunching, H. B. . . anster.
Cigar molds, clamp for, S. Wilmo Cigars, etc., treating, J.Cudd Comb, band, E. Brown.
Cooking vessel, W. Y. Thoms
Croquet mallet, E. A. Ross... Cullnary press, etc., G. B. Fowler Cultivator I M. Ganon
Cultivator, E. Wiard....
Cultivator, w. Willerto
Digger, potato, H. J. Norto
Door spring, G. Geer.
Door and gate spring, Bean \& Mills Dovetalling machine, J. E. Haskell.
Drill teeth, S. Black
Elevator, water, Erwin \& Shoulters
Engine, etc., sllde valve, J. Nesbltt
Excelsior machine, w.
Fences, stretchtng, J. T. Mangha
Filter, water, W. M. Con
Firer kinaler, C . A. A. Nisbett.
Fireproof bullding, A. K. Holte.
Float, peg, P.A. Schoellhorn.
Floor clamp, J. J. Foster
Food, artifictal, H. C. Morris.
Furnace and door, , , Haw
Furnace, botler, M. A. Foster
Furnace, reheating, H. Chisholin.
Furnace lining, S , D. Danks....
Furniture, spring, H. Hard.
Gas illuminator, J. B. Van Patten..
Gear cutting machine, J. W. Foster
Generator, ozone, K. Heneage
Generator, ozone, R. Heneage
Generator, steam, O. W. Ketchum....
Hand rest, J. Belford.
Harness, loop for, W.Parsonn
Harness hames, guard for
Harrow, sulky, G. w. Van Gorder
Harvester dropper, J. B. Gathright
Hatchet blank die, J. Yer
Head rest, O. M. Mitchell.
Heater, gas, C. H. Prentiss................
Hogsheads, etc., moving, F. o.J. Burr
Holder, tool, I. F. Murch.
Hose coupling, G. Westinghouse, J
Hydrant, T. Ragan.............
Ice cream freezer, S.S. Fitch Iron, smoothing, A.B. Wimpe
Ironing apparatus, R. A. Tyler
Jack, lifting, T. W. H. Mosely
Jar, frult, H. Hering...
Ketlle, tea, C. D. Woodruff
Kiln, brick, Walsh \& Tyylor
Enifing and forkine, folding H. our........
Knife and putty box,
Lamp, F. A. Flanegtin
Lamp, G. .h. Simmons.
Lamp, White \& Knlght...
Lamp, street, F. Hartman

