
a Weekly jothnsl of practical information, art, SCIENCE, mechanics, Chenistry, and manufactures.
$\qquad$ NEW YORK, AUGUST 31, 1872.

## IMPROVED NAPPING MACHINE.

Our engravings illustrate an improved machine for rais ing the pile or nap on woolen and cotton fabrics. It appears to be well calculated for the intended purpose, and is undoubttdy a very ingenious invention.
In Fig. 1 is given a perspective view of the machine, which is intended to be run by steam or other power. It will be seen to consist essentially of a central cylinder and four sys tems of rollers, all of which are operated by the one driving shaft. The central, or napping cylinder, carries on its periphery the cards or teasles by means of which the pile is raised. Each system of rollers performs the duties of carrying in the cloth, presenting it to the operation of the napping cylinder, and carry: ing it away again to a fitting receptacle, as shown in the engraving. It follows, therefore, that as many pieces of cloth may benapped as thereare systems of rollers; and theirnumbermay of course be increased or di-
minisbed accord. minisbed accord. ivg to conve-
nience. As the nience. As the
operation of the operation of the
machine is complete in each system, an explanation of one will explain thewhole, and the rtader will now, therefore, please refer to Fig. 2, in which one system of rollers and the driving mechasirm of the machine are shown in detail.
A is the driving shaft. To it is attached the eccentric shown, by neavs of which the four arms which operate the four systems of rollers are actuated and made to oscillate and to advance and recede alternately; their motion is circumscribed by a fiftharm, which siides on a fixed bearing at the lower part of the machine, as delineated. On the shaft, $A$, behind the eccentric shown is placed a second eccentric, by which the gear wheel, B, is worked. This wheel, B, is liaited to an upward and downward and oscillating movement, by a contrivance similar to that $1 y$ which the movement of the arms is circum scribed. To the napping cylinder, C , is at tached the inner gear, $D$. They both run loose on the shaft, A , snd an intermitten revolving movement is produced in them by the action of the gear, B. The roll, E, whica is run by a band and pulley on the further f nd of the shaft, A , is arranged for keeping the napping cards, etc., clear. We will now examine the system of rollers The roller, $F$, is carried by the arm, $G$, th : further end of which is slotted and engages. with the shaft of the roller, H , in the man ner indicated by the dotted lines. The driv ing arm of this system (which is broken off in the engraving) has a rod, as shown, which passes through the slot, $I$, in the arm, $G$ The outer $\in$ nd of this rod is provided with a pivoted arm, J, which is adjustably at tached to a lever, the other end of which carries a spring pawl, which latter actuates a ratch $t$ wheel attached to the shaft of the roller, H. This ratchet actuating mechanism which is partly shown and indicated by dotted lines in Fig 2, is so fully shown in Fig. 1 as to require no further explanation, and it will readily be seen, on inspection thereof, how the outward movement of the rod results in a partial revolution of the roller, H. The ments in the opposite direction. At K is the cloth to be napped; it passes from the recess in which it lies round the
lower roller, between that and the roller, $H$, round the roller $F$, and th $\in$ nce between the roller, $H$, and the one above it wbence it passes over a small outside guiding roller into a suitable receptacle.
In the operation of the machine, on each revolution of the driving shaft. the napping cylinder is moved forward slight. ly in its revolution and brought again to a stand, while the roller, F , which presents the cloth to the napping cards, is moved eccentrically away fromand then towards the cards; at the same time the action of the ratchet device causes a partial revolution of the roller, H , and the cloth is conse-


LADD'S IMPROVES NAPPING MACHINE.
quently fed in by the lower pair of rolls, and withdrawn by the upper to the same extent. In this way evrry portion of oue surface of the cloth is presented to the nappers
By adjusting the ratchet mecbanism suitably, the roller, $F$, can be made to approach the napping cylinder more or less, as may be desired, and by this means the thickness of the layer of fabric raised into pile can be precisely determined, which makes the machine of peculiar value in the manufac ture of canton flannels, where the strength of the flannel is frequently jeopardized by the depth of the nap.
 perties above de tailed, and mos beautiful imitations can thus be made. The price of this
new material is not likely to surpass the price of fine plaster of Paris.
The process of manipulation remains the same; no novel ty of apparatus or handling requires to be introduced, whether the material be worked by an artist, by a skilled or common workman, and it is all those qualities combined wh ch render it of such very great imporcance as a substilute ior plaster of Paris for all arlistic works.
Another application of the same kind desdrvesmention, for it also possesses a high impor:ance. Any objact whatsoever of plaster of Paris dipped into a bath of the composition comes out covered with a kind of enamel, the mostminute details remaining uninjured. The solution in the bath, which is called liquid enamel, has the following properties:
It preserves and cleans plaster of Paris ob jects without altrring, affecting, or injuring their minutest details; it gives them a beautiful transparency, and they may be left dul or madelustrous at will. It has no smell, and is not affected by exposure to great heat.

## An Engineering Triumph

There is a German printing office in this city where the employees have adopted an ingenious method to gratity their Teutonic proclivity for good lager. The composing room is situated a good way up in the skies, far above sublunary things, indicating a cor responding intellectual elevation. It might be supposed that under these cirenmstances

Among the advantages claimed for this machine are the small space it occupies, the non-liability to get out of order, and the facilities it gives for inspecting the work as it is performed. Should the fabric not be sufficiently napped on passing one set of rolls, it may readily be subjected to the action of another set before leaving the machine; and if it is designed to nap both sides of the cloth at one operation, object is easily accomplished by passing it through second set of rolls in reversed order. Piece after piece of
cloth may be carried through the machine by simply sewing end of one piece to that of the next
The $\mathrm{d} \boldsymbol{\mathrm { v }}$ vice is patented, and further information in regard to it may be obtained by addreseing the inventor, Mr. Calvin P. Ladd, of the Ridgewood Works, BloomGeld, N. J.

## A New Molding Material.

Colonel Muratori. an Italian inventor, has recently discov ered a new composition corresponding to the gesso duro, stuc co duro (hard plaster of Paris, hard stucco), which was used by the Cinque Centisti in the 16 th century, and was subse quently unfortu nately lost."
Like plaster of used for casts. It hardens slowly, and the artis hereby has all the time he requires very hard, and no longer receive tains. Even oil dropped on it then does not discolo t. And it can be cleaned and washed withcut in any way injur ing the most mi nute and delicate details.
Its color is shite, dull, orlus trous, if so want trous, forany part of ed; forany part of
the surface is sus etible by sum ule friction, of as -uming a kind of crystalline enam el. Mixed with el. Mixed with ordinary colors it etainsall the pros

It has been well said that necessity is the mother of invention, and thisis an apt illustration of the saying.-Ss. Louis Republican.

The Manufacture of Textlie Fabrics at Pompell. Some interesting particulars of the ancient method of cleansing and finishing woven fabrics, as revealed by the ruins of Pompeii, are given by M. Beulé: who inspected the remains of a fulling and bleaching establishment in the buried city. The house in question was unearthed some time back, but the descriptions of its contents seem to have been conifined to the pictures.

The largest and best executed paintings representative of the art were discovered in 1820, in the house of a fuller, opening on one side on the street of Mercury, and on the other on a street called.after him, Fullonica. In the couri, a pillar covered with pictures was standing alongside a fount ain. This pillar has been removed and deposited in the Na ples Museum. In the lowest division, a woman, sitting, hands a piece of cloth to a little female slave. A workman, whose tunic is closely tied around the body, is looking at them, while at the same time caraing a white cloak with a purple border, suspended from a stick. Aunther workman is in the act of sitting down alongside a crate of wicker work on which the cloth is to be spread out; in one hand he holds a vase on which sulphur thrown on burning charcoal will develop a gas capable of bleaching the cloth. This is the same method, says M. Beulé, which is used to day. On an other face of the pular, arched niches contain large vata where the goods are soabed. Slaves stanaing in tioze vats
trample the fubric with their bare feet in the sime manuer trample the fubric with their bare feet in the sime manaer
af Arabiau women wash their linen by trampling them af Arabiau women wash their linen by trampling .them
againsy the rocky bed of a stream; this is what the ancients called "the fuller's dance" (saltus fullonicus). The artist Las painted with the same care the preas with its two $u_{F}$ rights, its two enormous screws, which were turned by means of cranks in order to flatten the cloth beneath the planks which imparted the necessary finish. Finally, the drying chamber is shown by long aticks hanging on chains from the criling. The linenis spread out on them; a slave hauds to a young woman an open fabric, while the wife of the fuller makes a note of it on her tablets. I have visited with particular curiosity the houses in Pompeii where these pictures had been gathered. I counted there in a cour tryen:y-iwo tanks constructed of stone, and at different lev lis, so that the water could run from one into the other Little benches in front of them served for the reception of the goods. At the other end of the court, seven smaller
tank served for fulling. The store room, $t$ with traces of tank served for fulling. The store room, ${ }^{4}$ with traces of ter, the heartbs, the drying chamber, may still be recognizad In other fullers' establishments, I bave seen very thick sheet lead lining the interior of vats made of cement Sometimes, also, we find jars full of sreasy earth, which must be the fuller's sarth of which Pliny syeaks, and which contributed as much to the whiteness of the goods as the fumigation with sulphur or the urine which was collected in vases placed at the corners of the streets. Thus, despite the differences of time and processes, it has been established, to our surprise, that moderns are but little inventive, or, rather hat the ancients had already discovered all that was

## Hints for the Country.

In preparing grounds, it should be remembered, says the Gardener's Monthly, that grase and trees are not only re quired to grow therein, but that they must grow well. The top soil of the lot is often covered by the soil from the excavations, trusting to heavy manuring to promote fertility. But this is a too slow and expensive process. The top surface sil should, in all cases, be saved, and replaced over the base the top soil should be saved to place over again. The depth of the soil is an importan ${ }^{+}$matter, both for the trees and the awn. It should be at least cightten inches dete. In shal low soils, grass will burn out under a few days of hot sua In a soil eightén inches deep, a lawn will be green in the should be not only deep, but rich. If from thirty to forty oads of stable manure to the aure could be appropriated, it would be money well rpent. Life is too sikort for it to be an object to wait too long for trees to grow, and planting
lange ones is an expensive as well as uniatisfactory busiaes. A tree in a rich and deep soil will grow as much in ne year as in five in a poor one. So in preparing a lawn it is fortuante that, while aiming at the beat effects, we are helping our trees also. It is generally betzer to sow for a lawn than to sod, where much of it has to be done. The aeatly raked over and cown. The beat kind of grass to b employed in seading is a disputed point, and it will, doubt, depend in agreat measure on the locality. In Pailadel phia and north ward, the perennal rye grass is excmlent. It commences to grow very early, aud lias a peculiar lively shiniug green. South of Piniladelphia, it is very liable to get busned out in summer, and the Kentucky blue grass would be nuch better. It is much the best to have but one kin of grass for a lawn, provided it is suited to the locality. A mixture of kinds is apt to give a spotted and variegated
character, not at all pleasing. Some people life to see white clover growing thicily in a lawn and others object to any thing but green. However, it a good grass rake ia employed freely in summer time, the heads of these fiowers may be kept from expanding. Where there is a prospect of a month of growing weather, lawbs may still be sown with grass seed, the clover, where used, to be kept for sowing in April
or March uest. A small quantity of rye should be thinly sown with the grass, which, by the shade it affords, will pre-
vent the grass from being thrown out by the frost. The vent the grass from being thrown out by the frost. The rye must, of course, be clo
the grass to getahead of it.

## Hilgard's Magnetic Survey.

It is a fact well understood by the unlearned as well as the learn that, in determining the true nort line, surveyors and civil engineer, are accustomed to make certain allow. ances for what is called "the variation of the magnetic needle," or in other words, it is well known that the mag. netic needle does not point due north. The extent of this variation differs with different periods of time, and also in different localities on the earth's surface.
Another well known fact connected with the opera tion of the magnetic needle is that, when suspended upon a pivot, instead of assuming an exact horizontal posi tion, it has a slight dip toward the north, and that the extent of this dip likewise varies with the time and place. In view of these well known facts, it b comes a subject of great
practical importance, as well as a matter of great interest to science, to determine the true north line of different points of the earth's surface, in order to know to what extent the what ext the needle dips at different localitie
When the true north line is once eatablished at $\dot{\text { o }}$ Wht it will hen be an easy matter to note, froin time in in the forme to me, the shi h in dimiution, of the variation of the neeale from this true line
from year to year. The true north line is found by an asfrom year to year. The true north line is found by an as-
tromomic observation, and the process of ascertaining the tromomic observation, and the process of ascertaining the
true meridian lines and medsuring the intensity of the mag. netic force which controls tise variation and dip of the needle is called a magnetic surver.
Such a survey of the United Sates, says the St. Louis Re ublican, is now being made by Dr.1. C. Hilgard, under the uspices of the American Academy of Science. Dr. H. has stablished a station at Compton Hill, St. Louis, and is locating stationsin other parts of the country. The variation as well as intensity of the magnetic force is determined by means of a tabular magnet, horizontally poised on a atirrup hich is suspended by a single cocoon tbre in line with the clamped; the optic arrangement on a position sideways is perceiv d on the scale of the magnet. This is effected by having a microscopic scale at one end, placed in the focus of lens at the other end of the magnet, causing all the ray of a mark to proceed parallel, but at an angle with the paral rays of every one respectively. The angle or "dip" of nclination is found by placing the asles of a delicate mag etic needle upon polished agate supporters, approximately in the center of the graduated vertical or "dip" circle, and the magnetic meridian. In order to remove eccentricities of axis, imperfections and irregularities in the distribution of ead with direct and reversed magnetism, and with reversed asles as well as reversed circle, making sixty-four readings on record in all. This gives a very precise means, by eliminating all the inevitable inequalities or instrumental imper ections. The Smithsonian Institute will publish the resul of these surveys for the general benefit of the commnnity.

Lima and Oroya Rallway in Peru
This road, which is to master the altitudes of the Andca chain, is building for $27,000,000$ reals, by Henry L. Meiggs Commencing at Callao, on the coast, it will cross an alcitude of over 15,000 feet, and terminate at Oroya, 12,200 feet above the ocean. The center of supplies is at Yauli, at 14,000 fee altitude. Grading has been fluished 18 miles, and the work of tunneling the crest of the Andes has begun from bot ends, with 1,400 Inca Indians engaged on it. The tunne will be 3,000 feet long, and elevated nigher than the summi of Mont Blanc. It is distant from the western terminus on he Pacific only 60 mies. The gradient for the railroad is 11 feet per mile-called therea four per cent grade. Forty miles from Callao, it has been necessary to resort to a Vurntable and switch, where the ralriad takes an up grad in reverse sirection for several miles, and again returns,
forming almost a figure 8 . The mule trail, by which mate ials are carried over, passes an alticude of 16,500 feet, amid a cluster of peaks covered with perpetual snow. It is hope by this road to develop the silver wealth of the Cordilleras Viith the exception of some coal, rudely taken out and trana ported on the backs of llamas, at $\$ 25$ per tun, nothing can be btained for fuel except dried turf, " buffalo chips," ( 25 cent sack), and dried llama dung. Such items wis the fact that this worl is one of the greatest events of thes age.

NitrooEhanmen New Substance.
By the action of ethylic iodide upon argentic nitrite, Meyer ud Stuber have obtained a new substance isomeric with ethylic nitrite. When ethylic indide is poured upon argen ic nitrite, violent eballitio ensues. To complete the re ction, the mix ure may be hesited for some hours with a re veratd conden 3 er. On distillation, a misture of ethyli odideand nitrite passes over at first; af ierward the $n_{c} w$ sub stance, which boils at 111 or $113^{\circ} \mathrm{C}$. Theauthors give this
body the name of nitro-ethan. It is a purfectly co orless clear liquid of a peculiar a greeable, etherial odor. Its densiy at $13^{\prime \prime} \mathrm{C}$. is $1 \cdot 0582$ (caken with reference to water at th ame temperature ;) it is iusoluble in water, does not explode on heating, and burns with a pale flame. When nitroethan is heated with iron filings and acetic acid, a violent reactio ensues, which must be moderated by plunging the flask int
cold water so that the liquid does not boil. On enbeqquent distillation with caustic potash, ethylamin passes over, in large quantity and in a state of great purity. Hence it appears that nitro.ethan corresponds to the aromatic nitro-com pounds. A solution of caustic potash dissolves nitro-ethan which appears to possess weak acid properties. Sodium attacks it with evotution of gas and formation of a white powder, which explodes on beating.

## Intelligent monkeys.

Professor Cope describes a monkey in his possession. He an admirable catcher, seldom missing anything, from a large brush to a grain, using two hands or one. His cage dgoris fastened by two hooks, and these are kept in their places by nails driven in behind them. Ho generally finds means sooner or later to draw out the nails, unhook the hooks and get free. He then occupies bimalelf in breaking up various objects and examining thair interior appearances, no doubt in se rech of food. To preventhis escape, Professor Cope fastened him by a strap to the side of the cage,tbut he soon untied the knot, and then relieved himself of he strap by cutling and drawing out the threads that held the flap for the buctile. He then used the strap in a novel way. He was accustomed to catch his food (bread, potatoes, fruit, etc., with his hands, when thrown to him. Sometimes the piece fell short three or four fett. One day he se:zed his strap and began to throw it at the food, retaininghis hold of one end He took pretty correci; aim, and finally drear tue piecres to within reach of his hand. This performance he coustantly rep.ats, hooking and pulling the articles to him in tures and hops of the strap. Sometim:s he lossa his holi of the strap. If the poker is handed him, he uses that with some skill, for the recovery of the strap. Whan this is drawn in, he secure his food as before. Here is an act of intelligence which must have been originated by some monkey, since no lower or ancestral type of raammais possess the hands neceseary for its accomplishment. Whether originated by Jack, or by some ancestor of the forert who use
After a punishment, the animal would only exert himgel a this way when not watched; as soon as a eye was directed to him, he would cease. In this he displayed distrust. He also usually exhibi:ed the disposition to accumulate to be quite superior to lunger. Tbus he always appropriated al the food within reach before beginning to eat. When diff: ent pieces were offered to him, he transferred the first to hi hind feet to make room for more; then filled his mouth and bands, and concealed portions behind him. With a larg piece in his hands, he would pick the hand of his maste lean before using his own, which he was sure of.

## Photographs of the Freckied.

Concerning the photographing of treckled or discolored faces, so as to hide such blemishes: while bromised collodion may be a very excellent thing, there is something else tha ought to have a place in the dressing room attached to every udio. I allude not to the puff bos, but to a kind of whit quid cosmetic much used by the fair sex when dressing for he opera, a ball, or an evening party. I was on one occasio order to say how it could be prepared. I made a misture of a very similar kind by rubbing up a little oxide of zinc with glycerin, and thinning it with rose water until it was of creamy consistency. I know of nothing better that this for creamy consistency. I know of nothing better that this for
applying to a lady's face previous to photographing her; for, when properly applied by means of a bit of sponge, it leave the face of a delicate white color, and masks the freckles an other discolorations. Its value will be properly appreciated
if a portrait of a lady with well developed freckles be taken if a portrait of a lady with well developed freckles be take arst with the face in its natural state, and again after the ponge, woistened with the above cosmetic, has been passe all over it.-British Journal of Phoiojraphy.

## Snufi ulpplug Factory Girls

The Lowell (Mass.) Courier says: "There is a good deal of nutf dipping going on in Lowell, especially amoog one clas of our mill operatives. A woman, who ca?led at a house Where severai of these girls lived the other night, found the nuff and which wert occasionally rubbed on the teeth and gums, intosication. The visitor was socially off red a rag, but she declined. I' is said that the 'dipping' may be seen at some places in the mills, and suuff selling is an important branch of busiuess with some traders." This practice has long been known to exist in the large manufacturing cities in Eagland and in Lawrance, Loweli, and Fall Rivar, it has been incro duced principally by the foreign hands.
Aldol.-Wurtz has obrained a new polymer of aldehyde having the formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, to which he gives the name of aldol. It is a perfectly colorless liquia, which after cooling becomes thick iike a pure solution of sugar. It is so viscid at $0^{\circ}$ that the tube containing it m$\times \mathrm{y}$ bo inverced without an flıw of liquid. When gently heaied, it becomes as fluid as
watsr, but it regains its viacid character oniy some hours watsr, but it regains its viacid character only some hours
atter ccoling. Its density at $0^{\circ}$ is 11208 : it has a strong aromutic add bitter tasts, and mixes in all proportions with wat r and a'cohol. When heaced to $135^{\circ}$, aldol is resolved into crotonic aldezyde and water.
The Panama Stas: and Herald ricords the first arrival, on April 2, at Pauama, on its annusl eastern migration, of the beautiful sphimx moth ( Urania leilus). The immensy fights of this moth, and the extreme reguarity of their recurrence year by year, have repeatedly bean dwolt upon by the s:a and much interest has been excited as to its starting place and ultimate destination.

