To Excel in Improvement is the leading element of this conntry, he sewing machine in rapld strides of improvement. Among them th New Wilson Under. Feed Machine may be counted the leading one in thi pany that manufactures it, makes its improvement his constant study. Everything has been added to it that constant experimenting and scieace amily use. Light, rapld, beautiful, durable and perfect, the wilson hold the leading place among, the best sewing machines in une. Salesroom, , 0 .
Broadway. New York; also for saie in all other ctites in the United States.

Motesfeqmeries.

 prefer to elicit practical ansvers from our readers.
1.-Fly Paper.-Will any one give me a recipe for making作 paper that, if flee alight upon it, they stick to it?-T. W. S
2.-Strength of Citric Acid.-How much citric acid quals one dozen lemons?-T. W. S.
3.-Patent Leather.-What composition is used for aring patent leather, and how is it put on?-S. B. D.
4.-White India Rubber.-Is there any way in which ndla rubber

- M. H. J.
5.-Wire for Sieves.-What kind of a wire sieve will withstand the action of salt and guanop Iron sleves or wire will do only fora
few days; then they are rusted out and worthless.-A.C. S.
6.-Teeth in Wheels for Chain Belts.-Will some one inform me of a rulefor laying out or spacing off teeth in Wheels for chain
belts to run on? Different wheels require different spacing for the sam belts to run
chaln. - M.
7.-Grinding Lenses.-I wish to make a powerful lens for a microscope. The one I have is notstrong enough. Can some one tell
me how I can turn and polish the glass? ?-E. J. O.
8.-Centering Lathes.- How can the conical points of the centers of iathe arbors be ground so that thetr cross sections shall not
vary from circles by morethan one ten thousandth part of an inch?-G.
9.-Japanese Paper Ware.-Can any one tell me how is is made, or put me in the direction to acquire theinformation?-E.A.W
10.-Permanent Aniline Ink.-Can I make permanent nk from anilline colors? I dissolved rosaniline in alcohol, and to get the
proper tint, I mixed it with water and gum arabic. It is a splendid ink, but proper tint, I mixed it with water and
after a time it fades and washes a way.-
11.-Anatomical Specimens.-How can I prepare anato mical specimens such as are seen in museums? They look as if they wer dried.-G. $\mathbf{H} . \mathrm{J}$,
12.-Compressibility of Water.-Supposing you put water under a pressure of one, two, or three atmospheres; in what propor
tion does the volume of the water decrease and the specific gravity increase -L . E.
18.-Magnetic Currents.-Will Mr. John Wise the aero naut, or some other experienced phllosopher, inform me whether there is
any perceptilo variation in the line of magnetio currents, when we rise路
14.-Impure Water.-Owing to the continued drought the water in the storage lakes supplyligg our city has become very much re-
duced, and the water now has an unpleasant taste and smell. What can be
15.-Refrigerators.-Can any one give me general in formation as to refrigerators? I want to make one on a small scale for
famill use, and would like to know the materials used and their cost. Would family use, and would like to know the materials used and their cost. Would
the money required to build an ice house and the labor spent in flilingit be as well lald out in a refrigerator?-W. A.
16.-Engine for Gang Plows.-Could not an engine be oullt of small power with elevating screws for the boiler, to keep it on a
level, and so enable it to be controlled for the purpose of breaking prairie level, and so enable it to be controlled for the
with two or more plows in gang?-A. J. D.
17.-Power for Steam Yacht.-I am about to build a screw propeller steam yacht, 30 feet long by 10 feet beam. What is the small. est single evgine that can be used to run it 15 miles per hour? What ought
the diameter of the screw to be, and how many revolutions ought it to make per minute? -W. s. B.
18.-Drying Fruit.-Can the heat of the sun be stored up to beused during thenight? One ofthegreat wants of the West is a cheap
and convenient method of drying fruit. Could the sun's and the waste heat from the cooking stove be so stored that little fuel would be required?E. E.S.
19.-Coffee Used in Dyeing.-I saw a statement some time ago in a paper (now mislaid) that a large quantity of coffee was used
in the process of dyelng; it was submitted to a hot bath by which certaln properties were extracted, then dried and sold for food. Please inform me
20.-Fetid Water.-The water in my cistern has a very sagreeableodor; what can I do to remedy it? On standing a few hours in an open vessel, a scum rises to the top resembling iron rust in color. The cisternis new and so set as to receive no surface water; the roof is also
new and is not shaded by trees. Three ordinary ironpumpswhioh are used constantly are attached. The top is kept covered.-F. D. H.
21.-Tinning Iron.-Can any one, familiar with processes or tinning iron, tell me if glycerin will do for dibsolving sal ammoniac or from this preparation into the melted tin? I have used a solution of sal
ammoniac indilutedmurtatic actid, and dipped the articles in powdered osin before dipping into the tin. I have also used melted tallow instead of powdered rosin, but I wish to use something which is easy to remove from plate.-W. S. F.
22.-Priming of Boilers.-I have a boiler ten feet long with 40 two inch flues and a steam dome on top; the engine is estimated at 50 pounds, the water gushes out at the safety valve and the orlinder chokes Can you explain to me the trouble? I contend that the plpe from the en-
gine is too long; it is 12 teet, and consequently Ithink it gives room forthe gine is too long; it is 12 teet, and
steam to condense. - s. M. F.
23.-Red Ants.-In your issue of July 20 is an item informing the public that red ants throw out a liquid substance from their bodies. Now tell us, gentlemen, how we can throw out the red ants alto-
gether from our cupboards. Hov shall we be ridof the red ants themselves?
Salt has been sald to be an antidote, butt a trial of it proves that salt don't

Buguter to Correspandenta.

 when patd for
and Persona."

Madras Water Works.-J. S. L.'s Madras atheneoum has A Shower of Pollen.-A. V. P., of Mich., says: We had a
 Is that itit suiphur. One person claims that 1128 the sulphur that wowna have been burnt up had the cloud beenaccompannedby llghtnlng. I hav
tried to burn it, but it doees not burn ; therefore 1 conclude that it is no sulphur. Thlnking you might be interested, I send a aspmple. Answer
The substance sent is the pollen of a secies of pline. Arepresentation or The substance sent is the pollen of a spectes of pine. A representation on
the particles as they look under the microscope may be been in Wood the partcless as thes look ander the microscope may be been in Wood's
"Botany," page 108, Fig. 367. Showers of pollen and inf fusoria are not uncommon, and are always interesting phenomena. The dally papers re.
 durlig a rall. But It was prohably pollen, as abové.
Mineral Specimen.-Enclosed 1 send you a stone, of something elee found among hatdrods of others in a emall stream of
water. They are not all alike. It is very hard Indeod. Is if of ans Falue? Answer: The specimen is a quartz pebble. No stone which will yleld to the file and grindstone can be damond. Quartz pebbles, wh Utah Obsidian,-I see a littlo nditer
the African dia mond filds. Please tell me whether, in those fielde, Mr. Pateron has
seen multtudues of the dark colored stones of mhlce 1 send you heremth specimen. When I found them (on top ground like gravel, and plentifui), thought. of Brazillan diamond felds. I Have alse geen them on marly yoil
and metamorphous clay slate shales and green eandstone, mixed with and metamorphous clay slate shales and green sandstone, mixed with
blendish formations of all colors. I had no time to lose, or I would nave blendish formation of all colors. I had no trme to lose, or 1 would have
spant a week to dit and wash the marly ground. But if there be such
gtone

 origin. The black is bobsidan or black ploses lava, which often occurs in
nodules in river Band in Mexico and elsewhere. The other 18 a known va. nodules In river sand in Mexico and lise where. The other is a known va.
rlety. They are interesting to the mineralogitt, and are sometimes use rlety. They are interesting to the mineralogist, and are sometimes used
for Jewelry, but they have an Indifferent value. We were not aware that or jewerry, but they have an indifferent value. We were
Mr. Pateroon found obsidian in the Arrican diamond felds
Steam and Compressed Air.-To C. B. B.-Compressed
Heating Feed Water for Locomotites.-To A. M.-Sev eral devices have been employed for the pu
which would be most suitable for $\begin{aligned} & \text { your engline. }\end{aligned}$
boiler Scale, etc.-S. M. P. should consult our advertisIng columns. As an "Englneeer's Gulde," Bourne's" "Catechism of the
Steam Engine" is a good authorty, and may be studled by beginners. tag horn Beetle.-I send you a horned bug for inspec
 such thngs occasionally. These bugs are numerous towards night.-J.
F. W. Answer: The bug is the stag horn beetle or tucanus dama. It G. H. C., of Conn., sends some mineral specimens, requesting to know their character. We reply: The golden spangles in the quart tragment is too small for safe determination. Solid and Hollow Iron Shafts.-Which would sustain the greater welght, a solld cyllnder of iron two inches in dameter an two feet in length, or a hollow cyllnder of two Inches external and one
inch internal dlameter of the same length? Each is aupposed to rest horizontally, supported at the ends, and the welghtrests upon, or is sus.
 average castiron be the material employed, the quulescent breaking load of
a solld cyllnder of the specifled dimensions would be about 5, aso pounds
 L. S. F., of 0 . -The issue of June 22 d closed the volume 25 numbers commencing January 1st. The next issue was dated July 6

Pinting Questions.-To M. W. Z.-Twe of yonr questions are basiness enquirles, and could not be dennittely answered by us or our correspondents. Every maker will recommend his own goods, and
prices vary consididerably. Pay a falr price to a reputable manufacture and stick to him as long as he eends you the tight thing.
aquaridm Cement.-R. C., of Ill,, will find a good recipe on

av
Metal Lining in Cabt Iron boxes--
Let w. A., query 12 , on page 416 of Vol. XXVI. drin a Aeen holes at an angle on the inglde or
boxes, partuall through the metal. The melted
 place and be tight until worn out.--s. G. s. s., ofnct \bar{Y}
Taking Impressions on Paper.-Query 19, page 10.-Impressions can be taken by coating a plece of thick paper with on and
olding t orer the flame of a cande or lamp untll 11 t 18 molesed black. Any kind of oll will answer, though linseed is the best; little oll should Force of Falling Bodies.-In view of the difference be tween the two answers to J . E., query 12 , June 8 , and of my own deas,
somewhat different from either, I would aay $:$ The striking force of a mov. ing body, in whateverdirection it moves, is its momentum. Its momen. tum is the joint result of itt quantity of matter and its velocity. The ratio of this momentum to that of other moving bodies 18 compoanded
 or its velocity at the instant in question. Its momentum, therefore,
not welght any more than it 1 s space or time, and it cannot be expressed by pounds, in the ordinary sense of that word, any more than by feet or
by seconds, nor 181 expresead by any two of those terma. To obtaln by seconds, nor 1 itit expressed by any two of those terms. To obtaln a
statement of the momentum of a body for the purpose of comparison:
 by the number offeet 1 t would move in a second 1 fit thould proceed for
second at the rate for the instantin questlon. The velocity ofa fallug bod Is continually accelerated, and it increases not as the space fallen over but as the square root (quers? ED.) of that space. Therefore to multiply the weight by the pace fallen over will not give the momentum. The velocity ofa fallung body at the end of one second of its fallis $821-6$ feet per sec
ond, and it has fallen one half that distance. It wwll fall 41 - 88 feet $t \mathrm{n}$ h
 ty at four feet descent 1 t nearly the same, but more exactly 1816.0312 feet per second. This multiplied by the welght In pounds gives the momentum. The general formula 1s: The square root of (64.38 maltiplifed by the dis. tance fallen) -the velocity, and the velocity y multiplited by the welkht $=$ the
momentum. So much for determinng the momentum. The extent of change produced by the blow of a hammer has a compound relation to the force e the blow and the ablilty of that which it strikes to resist. Some obstacle resist in proportion not only to intrinstie power, but also to the time dur.
ing which the oxert their resistance, and their resistance to a blow io
 less as the velocity of the blow is greater. Such are the different at
tractive, repuldive, and expasostry forces, and sach is substant ally tractive, rappubivive, and expassitve forcess, and sach is substantially the
case where eprings are to be bent and where many forms of cohecion are
to be overcome. In such cases, the change produced 18 as the welght mulweight multiplied by the distance fallen. Other resilstances are independent of time, and are in proportion to the space over which the resistance operates. Such is substantially the case of friction. Here the change is at the momentum of the blow. It is of in the case of bodies resisted by the comentum or Inertia of other bodies,or, as in greater or less degree 18 the
case of a body moving through llquilds; of the particles of boodes. The case of forging with a hammer preseats a compound of both these kinds of resistance, varying in thelr proportions with the nature of materials, degree of heat, and other considerations.-G. M. T.

Under tuts heading wee stall publish weeckly notes of some of the more promt.

Abgatd Layp Burner.-Joseph Ravoux, of New York city, assignor to
 are adapted for the reception of annular wicks, and has tor its object to Improve the name by a more perfect system of admission of air. It con-
sists in admitting air at the base of the flame of an argand burner by neans of perforations in the concentric tubes which enclose the wick. The apper enas of the tubes are bent apart-the inner one inward and the outer
one outward-to allow free pasaake to the air. Brind's Ness.--John A. Deknatel, New Tork city.-This invention far-
nikhes an turned out of a slagle plece of wood, and japanned both inside and outside. Panstri's Palertrs.-The improvement in this invention consists in adjustably attaching to the palette a clamp, by means of which it can be nd ornamental paintling. ixture and thereby rendered more useful in sign manner. Oscar Le Roy Andre ws, of Boston, Mass., is the inventor of this mprovement.
Cbll Cover for Sewirg Madine Table.-George Alfred Wheeler, ewing machine or other tables, in a row, and providing them with sllding covers which adjoin and all sllde in the same direction when belng opened r closed. A spring acts on one end cover, and through that communicates motion to any or all of the others so as to close them.
automatio bill rineine apparatus for locomotives.-James s. amar, Augusta, Ga.-This invention consists of a crank shaft which is ounted on the locomotive and provided with a friction wheel or a gear of the axles. The bell is connected to the crank by a cord and is rung automatically when the locomotive is in motion; thus saving the labor of ring. ing it by hand, which is considerable in large town
along which the bell is required to be rung are long.
Saw Guide.-James arthur, anoka, Minn.-This invention produces saw guide which can have ios jaws adjusted while the saw is in operation
withont exposing the operator's hands to dangerous contact with it, and in which, furthermore, elther jaw can be adjusted independently of the other. Wheel Plow.-Guy Tozer, Jackson, Mo.-This invention farnishes an mproved plow whichis designed more particularly tor tightclay solls, but which may be used with advantage in other solls. It is so constructed as to open the bottom of the furrow so as to drain off surplus water from the
roots of the grain and prevent them being ehilled by it in cold weather or roots of the graln
calded in warm.
Rotart Stian. Enaine.-George H. Whitcher, South Brookiyn, N. Y.to glve a constant and steady motion, and which may also be uged as pump, if desired; it consists in combining two steam cylinders with two ther smaller cyllnders eccentrically shafted within them, and a horizonta piston. The construction, which would not be understood from a verbal
explanation alone, insures the rotation of the inner cylinders and thielr explanation alone, Insures the
hafts when steam is admitted.
Portable Hovsr.-Harvey W. Forman, Centralla, Kan.-The invention
elates to an improvement in that class of house whose parts are detachable order to admit of belng packed and transported conventently and cheaply from one place to another. It consists in a new arrangement of parts wit view to increased lightness, strength and durability of the structure. hatchear Guards.-Edward H. Ball, of New York city.-This invention rinishes an lmproved guard for elevalor and other hatchways which is $8 o^{\circ}$ hatch is opened. When shut down, it is secured in place by a spring bol hatch is opened. When shut down, it
which is released by the rising hatch.
Lifting Jaok.-Charles Maynard, of North Topeka, Kas. - The object of his invention is to render more nseful and effective the ordinarylifting jack or wagons and other wheeled vehicles; and it eonsists in connecting the ports so as to cheapen, slmplify, and imp any material alteration in form.
Hedidia Connzotion for Looms.-Thomas K. Mcintyre, of Warner, N .-In this invention, metal straps are used for connecting the various part oi looms instead of the ordinary leather ones. They are cheaper and mor
urable. The strap is made in two toothed pleces which are joined by leeve which is drawn over the parts where the teeth mesh. By this con truction its length is easlly adjustable.
Milix Staniner.-Rticharta. Kendall, of Fairweather, Ill.-Thisinventio
elates to a aseful improvement in milk stralning buckets or palls, and con
 sists in a new mode of making the stralners detachable from the bucket, bo
that they may be changed or removed with facility. The stralners are made Fexce.-Israel L. Landis, Lancaster, Pa.-This invention is an improve in combining, with the pins that pass horizontally through the posts and sup port the panels in an upright position, other pins that pass transversely through bottom strips of the panels and prevent the panels being raised by mall stock in its effort to pass under the same.
Fritit Drysr.--Judson Allen, of Everett, Mo.-In this improved dryer an
air chamber is arranged below the drying chamber and above the heating ir chamber is arranged below the drying chamber and above the heating
chamber,which receives air from the sides of the case, and delivers it through its perforated vertical side walls to the drying chamber above, , 0 as to pre vent too mach heat radiating through the bottom plate. At each corner o thedryer is a hot alrconductor, which can be adjusted elther to turn the heatin to the dryer, or to allow it to escape through the top. On the front
of each conductor are deflecting plates which cause an equal distribution of of each conductor are deflecting
the heat in the drying chamber.
Medioaldompound for Heart Disease. - Michael D. Britten, of Eaton, Mich.-This invention rela and consists in a compound composed of the pitch of pinus origide beech bark and the heart of the iron-waad tree, all steeped in alcohol moderately for several hours.
Fruit Cratre--Elijah B. Georgia, Clifton Station, Va.-The invention consists in a frait and vegetable crate consisting of top ain
ed and connected by slats nalled to their inner sides.
adjertable Stand.-Matthews Stahn, Baltimore, Md.-This invention oonsists in a triangalar stand for photographer's use, formed in two hollow windlass, and held by clamp screws.
WATER WEBRL.-John Frank, Chester, O.-The invention consist in adjustink a water wheel vertically by means of slotted uprights, a tenoned
ridge tree, and an adjustable wedge support; in attaching the buckets by mortise and tenon to a central hab and then holding it by a single band and bolt to each bueket; In giving a gradaal curve, then a quilek rise at the nd, and then a relatire hikht and width to the buckets; and in ally, in
making the cup in sections, detachably held by crossrods on the inside and

