6.-What is the cause of some dead wood burning into clnders, and 18 it a common occurrence? It has a close resemblance to that
Which we see at a blacksmith's furnace where common bituminous coal tis burnt.-J.N. s.
7.-I have heard that a large manufacturer of builders' hardware finishes with a brown "dip" that does not require baking. It is
kept a secret. Can any reader give mea aclue to the ingredients of that kept a secret.
ctp ?
R.
S. B.
8.-Could not a house be built much cheaper in the form of a square or oblong, than by following the plan given in sour paper for November9? And, if the roof was nearly fiat, would not
cooleie in the summer and warmer in the winter?-E. E. S .
9.-I hear many complaints of Wishataw oil stones being too hard. Will not some one inform me of the best method of mproving
12.-Owing to the frost getting into the iron of my engine Ifound it quite rusty. I have removed the rust, but cannot remove the

ITent wis

SPECLAL NOTE.-This column is designed for the generalinterest and inPECLAL NOTE.-This column is designedfor the generalinterest and in.
struction of our readers, not for gratuitous replies to questions of a purely business or personal nature. We woill publish such inquities, however, when paid foras ad,
af "Business and Personal"

$L L$ references to bact mumbers must be by volume and page

J. J. F., of Texas, says: Enclosed please find a small piece of ore. What it is we are unable to tell. Answer: It is pyrites or bisul-
phuret of fron, not avallable as an ore.
W. S. N. asks: What is the process of giving to small wires the same point that is put on hair pins? Answer: They are grmeraliy
pointed by grinding by contact with revolving grinding or nilling whenls. M. asks: Can iron be incorporated with a hair dressing? Is It harmless? Also, will sulphur prevent hairfrom turninggray? Answer:
Preparations of fron and sulphur are used in hair dressings to blacken the Preparations of iron and sulphur are used in halr dressings to blacken the
hair. These substances probablyinjuretre halr, but are not poisonou like the lead prepa netion in oo commonly used in hair dyes The
P. B. W., of N. J., says : Enclosed is a mineral which I think Is umber I send it to you for inspection. Is it of any value? The veln
is all just inke the piece that I send you; at first it was about six inches hick, and after digging three feet it was elghteen inches. The vein lays between slate rock. Answer: The specimen is an ochery oxide of fron or "umber" so called, and doubtless would make a useful plgment.
C. B., of Mich., says: I send you herewith three mineral pecinens from Kansas. No. 1. is the magnesian limestone, and I am re-
ueste i to inquire in regard to its suitabints for bullding a dam. Will it quested to inquire in regard to its suitability for building a dam. Will it
stand the action of the water? No. 2. What is it, what kind of rock and what is it good for? Asto No.3, the questions are, what is it, what is it
good for, and is it valuable? If so, what is its value? Answer: (1.) In good for, and is it valuable? If so, what is its value? Answer: (1.) In
our opinion is too soft for the purpose stated, and would not endure the our opinion is too soft for the purpose stated, and would not endure the
wear of the water like the more compact limestones and tough quartz wear of the water like the more (he is calcareous marl, the "chalk of America. (3.) Is ferrugl-
rocks. nous clas, of the same value as any other clay.
J. E. E. says: The enclosed mineral sample was sent to me some time ago from Arizona, and was described as a specimen of white
topaz. I am of opinion that it is nothing more than quartz crystal in a copaz. I am of opinion that it is nothing more than quartz crystal in a
molten state. It cuts glass very readils, as you will perceive. Answer: moten state. It cuts glass very readily, as you will perceive. Answer:
H. B. H. says: Will you please inform me of the compositions and materials used in fillingin between the outside and inside Hning of
safes? Also state the per cent of water contained in each ingredient that the above composition is made of. Answer: Different safe makers use different flling materials. Ordinary hydraulic cement is a very common flling. Plaster of Paris is another. Plaster and alum another. The
amount of water in the flling varies from 20 to 30 per cent of the space occupled by the filling.
J. M. S. says: If the levers of a horse power are lengthened so that the ends, instead of being fastened in the center of drive or bun
wheel, pass on and are fastened on edge of sald wheel, will there be Wheel, pass on and are fastened on edge of said wheel, will there be
powergained or not? My friend (who, by the way, is a subscriber to your paper) maintains that the power applied to the side of the wheel nearest the horses is the same in elther case, and therefore, the lever being fastened on the opposite side of wheel, all the power there applied is gained.
I, on the contrary, maintain that there is no power gained whatever, as I, on the contrary, maintain that there is no power gained whatever, as
the increased distance between the fulcrum and-weight. I suppose you the increased distance between the fulcrum and-welght. I suppose you
might say, will exactls counterbalance the amount of power applited to the side of wheel opposite to that on which the horses are hitched. Answer: The use of levers does not in any case increase the amount of
power applied. Levers are simply tools by means of which the power is power applied. Levers are simpls tools by means of which the power is employed,directed, or expended. In the case of a common lever horse powermachine, the longer the leversare, or, in other words, the further
their outer extremitles extend begond the center of the wheel, the more their outer extremittes extend beyond the center
cailly but more slowly the wheel will be turned.
E. S. C. asks: What per centage of water is returned to the boller by a condensing apparatus, and how many gallons of water would
suffice a 40 horse power bofler, for 12 hours, with a condensing attachment? Answer: The condensing engine requires from 15 to 85 time great a quantity of condensing water as of feed for the bollers. Each pound of steam condensed yields to the condensing water something over 1,000 units of heat. Each pound of condensing water carries away from 39 to 70 thermal units, this quantity varging with the temperature of the injection water and the condition and management of the con-
denser. Probablyfour per cent of the condensing water, as an average, goes back to the boller as feed with the ordinary condenser. A fair 40 horse power boller should evaporate 15,000 pounds of water in twelve horse power bonler should evaporate 15,000 pounds of water in twelve
hours, and would require its engine to be supplied, probably with at least
P. M. says: How can I ascertain the loss by radiation from an exposed bofler front, with steam at 70 lbs. by the gage? If posstble
let me know before the middle of January, as it will do no good after that date; a case at law is involved. Answer: To determine approximatels the loss by radiation from a metallic surface heated and exposed to the
air, the temperature of the air and of the metal remaining constant: 1 st. air, the temperature of the air and of the metal remaining constant: 1st.
The loss or gain of heat, of a body so exposed, Is proportional to the difference bet ween Its temperature and that of the surrounding atmosphere up to a limit which is, by some authorities, assumed at a difference o : 50 up to a hmit which is, by some authorities, assumed at a difference o 050
or 60 degrees Fah. Where the difference is greater, a correction is required for accurate work. 2d. Multiply this difference in tempera-
ture, in the case observed, by the area in square feet and bs $0 \cdot 3$. The proture, in the case observed, by the area in square feet and by 0.3 . The pro-
duct will be the number of units of heat lost. Consult Peclet's " 7 raite in an expert of known intelligence and integrity if anything further is in an exp
needed.
J. E. W. says: A dispute has arisen between us in regard to the speed of steam boats, which we respectfully refer to you for a de-
cision. The questionis, simply: At whatrate of speed per hour can still
water be displaced? Andis there not a limit beyond which water cannot
be displaced, notwithstanding the force that may be used; that is, can a steamboat be driven through still water at a rate exceeding 19 miles per hour? Another question is: Can a tapering log 40 feet long (2 inches d1ameter at one end, and 40 inches at the other), be towed through the wa
ter faster with the sharp end, than with the blunt end, foremost? The. er faster with the sharp end, than with the blunt end, foremost? The.
reason assigned in favor of the blunt end is that it encounters resistance only at one place as it enters the water, and nowhere else; whereas the sharp end encounters resistance at the point all along the log and then drags dead water after it. Answer: There is no known limit to the dis-
placement of water by the suitable application of power. Some of our North river steamboats have made from 22 to 25 miles an hour in-still water. Such a log as you describe will tow easier sharp end foremost. It takes but little power to displace water. To push it sidewise is like movThe principal resistance encountered by well formed vesselsin moving through the water is due to the friction of the water on the surfaces of
the vessels. Blunt vessels lift more water up in front, and are therefore the vessels. Blunt vessels lift more water up in fre
harder to move thaï sharp vessels, at same speed.
constant reader asks:-Will a one inch perpendicular pipe flled with water and inserted in a barrel filled with water, the plpe being twenty-if ve feet high, have the same pressure as a two inch pipe of the
same dength; and if not, what would be the difference in pressure? An. same length; and if not, what would be the differ
swer: The pressure will be the same in both cases.
V. McD., of Ohio, says:-The proprieters of the planing mill in which I work thought they could heat the carpenter shop from the exhaust steam from the engine. The size of the boiler is 20 feet long, 40 nches diameter, with two return flues. Thes had a galvanized ironpipe thick, leading from the engine through the room (about 20 feet), then in to a drum at the top. The drum is 201 nches in diameter and 4 feet long A 4 inch pipe leads from the bottom of the drum to the outside. The heat it gives off is just perceptible when we hold our hands or faces very close to the plpes or drum. Why does it not afford more heat, and what
would be the best remedy? Answer: The temperature of sour exhaust e is probably but little above 210° Fah., and the exposed surface fcult to warm where the source of heat has so low a temperature. Put lghtly loaded valve on the discharging end of the heating pipe, or else draw steam direct from the boller. Probably the latter method would be J.G. Says:-I am building a large ice house, 100 feet square over lager beer cellars; the joists used across the walls are oak, 6×12
inches, 20 feet in length, 20 inches apart; a 2 inch strip is nalled on the nches, 20 feet in length, 20 inches apart; a 2 inch strip is nalled on the
lower edge of ach joist to support a 10 inch pine board between. I now lower edge of each joist to support a 10 inch pine board between. F Ithen want to fill between the joists, level with the top of each, win the salt works that are impregnated more or less with salt; or I can get saw dust or tan bark. The object in filling between joists is to protect the ice from exposure below. Λ floor is then laid over thewhole, this is felted on this fioor to meceive the ice whichiarto a roof; a rack is then placed ing to the immense, weights those joists have to carry, it becomes neces sary that the filling should be something that will not rot the timber ver soon. Now which of the three, ashes, saw dust, or tan bark, would you advise? Answer: Your ashes, containing salt, will be certain to absor molsture rapidly, and the weight and increased cond activity of hea
consequent will be seriously objectionable. The sawdust, if perfectly consequent will be serlously objectionable. The sawdust, if perfecti
dry at first, and if it can be kept dry, would be probably beat as it is light an excellent non-conductor, easily handled, and cheap. If, and we pre sume it will be the case, there is a probability that the filling around you ice house is inkely to get moistened from exterior or interior, or both, we should advise tan bark. It is a good non-conductor, not liable to heat in consequence of dampness where the ice is removed, and the tannin re maining in th
tact with it.
Seneca says:-I have had a dispute with a learned friend and he will be ruled by your decision. . He has a windmill onhis farm, cularly, stopped at every revolution of the wheel; he says that as the rod takes its movement from a circular motion (the wind wheel), ther can be no stoppage at all as long as the wheel turns. Please state how the matter stands. Answer: There is a cessation of motion at either end of the throw of the crank, but it is of indefinitely short duration. The perio or rest is inappreciable and immeasurable by finite power. Seneca an A nold subscriber writes us to state the names of some cheap Hquids, not of an olly character, which are not frozen by our coldest win water and form o compound not easily frozen. Answer: Pure alcohol ether, bisulphide of carbon, and glycerin do not freeze at any tempera ture to which they have ever yet been subjected. Ammonia freezes a about 45° below Fahr. zero, and pure nitric acid at about the same point Mercury freezes at - 39° Fahr., sulphuric acid and some other substance require also a temperature far below the zero of Fahrenheit scale to pro
duce solddification. The union of any Hquid, which itself remains fuid duce solldif cation. The union of any liquid, which itself remains fluid a ment will best determine what hquids and what proportions will answe the purpose.
R. and W. say :-Raffirms that a bal ance or fly wheel if in standing balance or each side of equal weight need not be at righ ${ }_{t}$
angles to the shaft, to run fast without affecting the steadiness of the shaft. Also that it may be keyed on at even 45° to the shaft
without affecting tt , except so far as the air may do so, as shown in the engraving; w. a serting the contrary. The ne mistaken is to pay five years subscriptio to your paper for the beneft of him whose premises prove correct. An-
swer: If a balance wheel is accurately balanced and is perfectly symmetrical in form, and if it is keyed firmly on its shaft in any position excep with its plane at rightangles to the line of the.shaft, it will always tendito urn itself until its axis shall coincide with the center line of the shaf This effort willbe a constant one, tending to bend the shaft but does no necessarily produce unsteadiness in the shaft, as will be readlly seen if the
experiment be tried. R.is right. We shall be happy to settle many controversies like the above on the same conditions. The loser certainly does the handsome thing in supplying the Scientifio Amerioan for five sears to his friend.
I was troubled with angle worms in my well, as " E . L." was
with his, until I had a wood house buift over it.-s. B., of Conns Keep the fur or woolen articles in paper boxes; paste strip of paper joining the box and cover tightly. It is not
moths' eggs to be laid through paper.-R. S. B., of Conn.
W. C., query 4, page 345, can silver brass by dissolving one unces distilled water; let it stand until clear, then pour it in hat ounce phials, each being two thirds full of learls white: apply with a brush, and polish with a soft cloth.-F. S.B., of Me.
To T. J. S., query 26, page 314.-You may bleach broom corn In a solution of sulphurous acid gas (produced by burning roll sulphur) in A. G., Jr., query 7, page 345, should learn the art of lithoor photolithography must fall. Lithographic printing ink is used.-W. N., of N. Y.

communications received.

The Editor of the Scientific American acknowledges with much pleasure, the receipt of original papers and con ributions upon the following subjects:
On Cheap Microscopes. By T, B.
On the Transmission of Motion. By L. S.
On a Method of Conveying Water to the Roofs of Buildings Case of Fire. By W. C.
On Queer Freaks of a Leyden Jar. By N. E. F.
On a Premium Acre of Corn. By W. R. S.
On a Method of Constructing Cheap Fireproof Safes. By 8. Ov-the Prevention of Fires. By W. C. D.
On Ball Lightning. By H. B. S.
On Marine Life Saving Inventions. By J. A. A.
On the Origin of Storms. By J. H.
On the Modern Atomic Theory. By R. D. W.
On the Formation of an Association to Assist and Encqurge Inventors. By R. H. T.
On the Effect of Lightning upon Trees. By J. C. S.
On What Constitutes Credible Testimony in Regard ton Scientific Questions. By J. H. P.
On Religion and Sciences. By J. F.
On Milk Sickness. By O. S. M.
On the Manufacture of Cotton Goods at the South. By E. J. C. W.

ectent sucticat and fortign eateuts.

nder this heading we shall publisi nent home and foreign patents

Medicated Confection.-Ntcholas Saltabassi, New York city.-This in
vention relates to a new and useful tmprovement in the une of confections medicated in such a manner as to make it not only pleasant to the taste, but valuable as a promoter of digestion and a atrengthener of weak digestive organs. It consists of equal quantities of grapes and Zante.currants reduce to a pulp by heating, pressing, or macerating, or in any manner to form a homogeneous mass. The seeds and skins are then separated therefrom by quaining or mitering, and the pulp reduced to a semi-1iquid state. Equa of about one ounce of the extract to one pound of the above described pul or sirupare then added. Before cooling, the composition may be run int "drops," and before or after cooling it may be divided into pleces of any form convenient for use, after which it is put up into bozes or packages for
sale. Other ingredients, in addition to those named, may be added to give sale. Other ingredients, in additi
the confection any desired flavor
Stere obcope.-Antonio Quirolo, New York city.-This invention relates o stereoscopes, and consists in a jointed handle permanently attached to strumentis thus supported is the desired manner without requiring the handle to be detached.
Animal Trap.-George Barr, Clatekanie, Oregon.-This invention has for its object to furnish an improved trap for catching and destroying nife, prings, levers, and wheels whereby, on touching the bait, the animal is thed, and the trap automatically resets itself.
CEMENT.- Willam McKay, Ottawa, Canada.-To produce a hard, durable, and quicklysetting cement the inventormakes a compound of martor oys-
ter shells, clay, road dust, wood or coal ashes (or equivalent alkalies), sand, soluble or other glass, or any one or more of the slliclous in bredients, any one or more of the metalic oxides, carbonate of mag With the exception of soluble glass and ashes or alkalies, are mixed cogether with water and ground to a powder in a mortar mill or byany con
venient process, after which the whole is brought to a liquidstate ddition of water. The compound is is brought to a liquidstate by the cipitate. When the precipitation has taken place, the excess of water is withdrawn, and the ashes or alkalles are added and thoroughly mixed and ncorporated with the compound. The whole is then dried eltherby arti fcial heat or in the open alr, after which it is thoroughly calcined and
ground to an impalpable powder in a flour mill or by any other process. The soluble glass, previously powdered, is then added and incorporate With the compound, which
Oil Cake Trimmer.-Washington Hawes, Port Richmond, N. Y.-This inention consists of an endless cutter and a press clamp with a table for clamp, arranged in such suitable apparatus for working the cutter and under the clamp mas be trimmed completelyall around the edges at one op eration of the cutter. This invention also consists of a receiver for the
trimmings and breaking apparatus combined with the trimmer, and adapt rimmings and breaking apparatus comblned with the trimn.
machine for making Bungb.-Charles Abel, Morrisania, n. y.-This inention relates to a machine for manufacturing bungs for barrels and keg and for similar purposes, and consists in a revolving tube, through which he. Wher is automatically fed in a movable tapering cutter head and spin . When the bung has been turned and tapered a saw is brought down corner of 1 ts large end. The operatlons of sawing off and beveling the cor er are simultaneously perforned.
Ha x LoADER.-Anthony Garver, Lime Spring Station, Iowa.-This inven Hon has for its object to furnish an improved device for loading loos
grain, has, etc., upon a wagon rack which shall be so constructed as to en able the loading to be done easily and rapidly, thus avolding the necessity of binding the grain, and thereby greatly diminishing the la bor and expense pathered by the fingers or teeth, up which and up the platform it is assiste by the raker with his rake. As the grain or hay passes upon the rack, it is received and arranged by the loader. A lever extends up in such a position from the ground in passing obstructions, etc. Whe the toad has from the ground in passing obstructions, etc. When the load has been
completed the device is detached and left in the feld, or attached to a sec ond wagon while the first is belng unloaded.
Flodr Bolt.-John W. Johnson, Evansport, Ohio.-This invention con-
ists of a reel with spiral ribs inside of the ordinary longitudinal ribs, the
. sists of a reel with spiral ribs inside of the ordinary longitudinal ribs, th former arranged as wide apart as the width of a strip of bolting cl
the cloth arranged spirally on said ribs and nalled upon the inside.
Cartridas Box.-Polydore S. Thomson and Frank M. Thomson, of Hud-
son citr, N. J.-The object of this invention is to make cheaper boxes and rovide a better and to increase the capacity of the box. It is a cartridge box consisting of a wooden block having holes of the same length as the cartridgeg to be in-
serted, and any elastic perforated sheet, both covered completely by the serted, and any elastlc perforated Bheet, both co
leather body and all arranged compactly together.
Furrow Staff.-George H. Comer, of Indiana, Canada.-The object of his invention is to provide a simple and practical instrument for determin !ng the depth of furrows in millstones, so as to insure their equal depth
throughout. The invention consists in the arrangement of a sort of sled, carryng a vertcaly adjustable furrow starr, which, in use, is painted the more plevated portions of the furrow by leaving paint thereo
show

EARTH CLosert,-Henry Clark, Baltimore, Md.-The invention consists
Arst, in providing the vibratory shaft of an earth closet hopper valve with a first, in providing the vibratory shaft of an earth closet hopper valve with a
spring-retracted horizontal rod. It consists, secondly, in the peculiar con spring-retracted horizontal rod. It consists, secondly, in the pecullar con-
struction and arrangement of a lock bar and catch in connection with the struction and arrangement of a lock bar and catch in connection with the
hopper. The case of the earth closet is made in the form of a washstand or hopper. The case of the earth closet is made in the form of a washstand or
oureau. The lower part of the front of the case is made in one piece, Is hinged at its lower edge to the forward edge of the bottom of sald case, and has cleats attached to its inner side to serve as ways or guides to the re-
ceiver when being drawn out and pushed in. The lower or small hopper is celver when being drawn out and pushed in. The lower or small hopper is
supported from the case in such a position that its bottom may be just above the receiver when said receiver is pushed \ln, and the discharge-opening of the said hopper directly above the opening in the top of said receiver, so that the earth from the said hopper may pass directly into the said receiver. The discharge opening of the hopper is closed by the door or valve,
which may be closed and opened by turning a shaft. This shaft Which may be closed and opened by,turning a,shaft. This shaft is connected with a rod which projects at the forward side of the case in such a position
that the door, when closed, will strike against it and force it back, opening the valve and allowing the earth in the hopper to fall into the receiver. The discharge-opening in the bottom of the upper hopper is closed by a door or plate, so that when the said hopper is fully pushed back the said discharge opening will be closed, and when the hopper is drawn forward a little way
the discharge-opening will be opened sufficiently to allow a small quantity the discharge-opening will be opened sufficiently to allow a small quantity of earth to pass down into the small hopper. The hopper has a bar so
arranged as to draw it forward to supply the small hopper with earthby
opening the door.
ETE GLABs.-Lucius B. Winslow, of New York city.-This invention consists in so forming the joints of the glass bows and arranging the connecting spring therewith that the screw for fastening the ends of the bow and securing the glass also fastens the spring to the bow, and holds it so that
caa be adjusted to lengthen or shorten it and therebyvary its tension. Car Cotpling.-Robert Neisch and Charles G. Hirner, of Allentown, Pa.-This invention has for its object to furnish an improved car coupling so constructed as to couple automatically as the cars are run together,
even though the cars to be coupled should differ in height, and which may even though the cars to be coupled should differ in height, and which may
readily be so adjusted that the cars whll uncouple as they are drawn apart. readily be so adjusted that the cars will uncouple as they are drawn apart.
Λ block or heavy plate is inserted in a seat in the frame work of the car, to Λ block or heavy plate is inserted in a seat in the frame work of the car, to
which it is secured by bolts which pass through slots. Rubber springs, inwhich it is secured by bolts which pass through slots. Rubber springs, in-
serted between the inner edge of the block and the edge or shoulder of the frame work, are designed to diminish the shock when the cars are rum together. As the cars are run together, the end of the coupling link esters one or other of the spaces between the plates, according to the hight of
the adjacent car, and pushes back a lever, which allows the coupling pin to the adjacent car, and pushes back a lever, which allows the coupling pin to
drop into place. By pressing down one end of a levertre movable parts of drop into place. By pressing down one end of a lever tre movable parts of
the coupling may be raised into place, and by pressing upon the other end
the sadd parts may be lowered, releasing the lower end of the coupling pin of the coupling pin drawn apart, the hole in the block through which the pin passes being
elongated into a slot to allow the lower end of the sald coupling pin to be drawn apart, the hole
elongated into a slot to allow the lower end of the sald coupling pin to be drawn outward. The pin is held in place in the forward end of sald slot by
a spiring, placed in its inner end, and which is so formed as to be compressed a spring, placed in its inner end, and which is so formed as to be compressed
and allow the pin to take an inclined position when its lower end is released the said frame, so that the lever may be conveniently operated by tho brakeman with his foot.
Smdt Macirine.-George W. Grant, Middleport, Ohio.-This invention
consists of certain novel combinations and arrangements of screening, sepconsists of certain novel combinations and arrangements of screening, sep-
arating, scouring, and fau-blowing spparatus. The hopper has a bottom arating, scouring, and fau-blowing spparatus. The hopper has a bottom
composed of wires extending from the rear to the front, and diverging so composed of wires extese in width toward the front. Said spaces at the rear are too close together to let the grain fall, for allowing the sand and other small matters to escape to the spout below and be discharged through it,
the coarse matters passing off at the front escape through a spout. The rear end of the hopper is arranged in the concave form shown, for breaking the force of the grain discharged against it, and a short distance infront of this back is a valve, which is swung up by the flowing grain in passing along
the wires. This valve has longitudinal grooves in the side against which the grain comes, which grooves are designed to so act on the straws, sticks, and other matters having conslderable length, as to turu them at rigtte angles to the wires before letting them pass, to prevent them from falling through
the wires. Along the middep portion of the bottom the grain falls through, between adjustable gates, into the hopper below, At the lower end of the bottom of this hopper is a gate which checks the descent of the grain and tion of the separator to the space below, to be exposed in such fall to a blast of air by a fan, to deflect the lighter grains and other matters inward to be separated into two grades by gates, which may be shifted to vary or regu-
late the separation. The first grade, consisting of the heavy grain, falls on late the separation. The first grade, consisting of the heavy grain, falls on from which it is conducted to the scouring frame. The second grade fall ing between the gates passes into the oats and cockle separator, consisting of the concave metal plate aud the wire brush or cushion wheel. The brush will have a slow rotary motion. From between the scouring devices the
grain passes out into the case, between the blades, to the scouring action of grain passes out into the case, between the blades, to the scouring action of
which it is subjected for a considerable time, and is then forced up by them to the deflectors, where it in again subjected to a blast to have the scoured Eng rating and Carting Maceine-Thomas W. Minter, New York
-Thisinvention relates to a new machine for engraving and carving, die sinking, cameo and intaglio cutting, and similar fine and delicate work, in stone, steel, or other material, with the object of enabling the exact and ar-
tistic imitation of suitable deaigns. It consists, first, in fastening the entistic imitation of suitable designs. It consists, first, in fastening the en-
graving orcarving tool in a spindle which hangs on a vibrating beam, said graving orcarving tool in a spindle which hangs on a vibrating beam,
beam being also provided with the feeling or pattern pin. The chief novel ty in this feature is in fastening the tool in a spindle which hangs horizon-
tally on the beam, and in revolving said spindle by belt connection the same as a lathe spindle, so that the tool can be used to the very same advantage as that to which it isat present used on the lathe only. The next feature of novelty consistsin fastening the pattern and the article to be cut upon platforms which can be tilted into a suitable inclined position. The tool can
thereby be made to work at any suitable angle on the material to be cut, and consequently to incisions of all kinds, not only straight up and down, as in the present engraving machines, but also inclined, rounded, etc., as maybe necessary for the making of reliefs for cameos or depressions for intaglios. The mechanism for thus inclining the pattern and the work is so united that both will be moved in exactly the same degree and offer the same angle of fected by worm wheel segments applied to the supporting platforms of the pattern and work, and matching both into the thread of a screw, which, when turned, inclines them. Furthermore, the invention consists in making and applying disks to the aforementioned platform which are jointly rotating and longitudinally adjustable in equal degree, and in providing the nuts that embrace the longitudinally adjusting screw, jointed to permit their be hanging the screw which causes the joint rotation of the platforms in ver tically sliding boxes, so that it will accommodate itself automatically to the greater or less hight of the platforms duringtheir tilting motions.
Paper Cutting Maching.-Edwin R. Sheridan and Theodore W. Sheri-
dan, New York city. \rightarrow This invention has for its object to improve the construction of paper cutting machines. The knife bar and knife are moved up and down by the movements of the lever, which is connected with sald
knife bar by an adjustable connecting rod. The lever is pivoted and knife bar by an adjustable connecting rod. The lever is pivoted and is attached the lower end of a chain, the upper end of which is attached to the shaft or to a drum placed upon and secured to said shaft. In the shaft or drum is formed a spiral groove into which the chain is wound as the shaft or drum is revolved in one direction, so as to raise the lever and draw the knife bar and knife down upon the paper to make a cut. The spiral groove
in the shaft or drum keeps the colls of the chain parallel with each other, in the shaft or drum keeps the colls of the chain parallel with each other,
and thus prevents the coils overlapping and the chain fromkinking while being wound and unwound, so that the movement of the knife may be steady and uniform. A block moves upand down loosely in grooves or ways in the frame and guide block, and is so formed that as the lever approaches the up
per limit of its stroke it may strike against and raise the said block. The
upper end of the block is inclined so that, as it is raised by the lever, it may move the free end of the lever outward, and thus allow the lever to descend by its own weight, raising the knife bar and knife to make another cut. The
lever should have an adjustable weight attached to it, to enable its rapidity of descent to be regulated as desired. As the lever approaches the limit of its downward movement it strikes a spring attached to the lower part of
the lever, which checks it, prevents rebound, and at the same time moves a second lever which is pivoted to the frame, and its upper end is connected with one end of the brake band or strap, which passes over the hub of the gear wheel, or a brake wheel attached to said gear wheel, so that the first lever as it reaches the lowest point of its descent, may apply the brake, and top the movement of the gear wheels, until motion is again given by rung a claton hio gear.
Gang Plow.-Joseph Lane, Eugene, Ind.-This invention consists in cer-
in improvements in gang plows in which the plows are tain improvements in gang plows in which the plows are adjustably pivoted
to the supporting frame, and connecting rods are used for connecting the plow beams with the evener, so that the draft on the evenerforces the points in the ground and keeps them in; and one or more of the plows may be kept out of work while the others are at work, or some may be worked deeper than others, and all may be ad justed higher or lower; and in which olling colters for cutting the sod, anda gage wheel for regulating the depth of cut and for supporting
it off the horses, is used.
Potato Digaer.-Robert G. Dayton, North Granffile, N. Y.-By suitable nals of the axle. To the shaft are attached spur or chain wheels aroun which passes the endless carrier, which also passes around spur or chain wheels attached to another shaft, that revolves in bearings in the lower forward part of the scoop flanges a little below and in the rear of the rear
edge of the scoop. The carrier is formed of slats hinged to each other at their edges, and having flanges formed upon their lower edges to carry up the soll and potatoes more surely. From the carrier the potatoes and soll fall upon the shaker, through which the soll passes, and from the rear end of
which the potatoesfall to the ground. By suitable construction the shaker is moved bothlaterally and hongitualnally as the machine is drawn forward A plate or apron is placed upon the forward part of the shaker in such a po-
sition as to receive the soll and potatoes from the carrier. The apron is held in position by rods, the lower ends of which are attached to the ends of the saidapron, and the upper ends of which are connected with the carrier shaft, so as to keep the said apron always in the same position with respect the rear end of the carrier.
Earth Auger.-Thomas C. Harris, Dresden Deep River, Iowa, assignop to himself and Amos Taylor, of same place.-This invention comprises certain The inventor proposes to make a large portion of the disk in appara The inventor proposes to make a large portion of spring steel plate, and attach said parts to the thicker parts rig daly, by riveting them or otherwise, by which a much more efflcient and dur able, as well as cheaper, arrangement is obtained than that in which the
corresponding parts of thick and strong metal are hinged to the parts. In this case the spring plates yleld suffciently to allow the large stones to pass up with the earth raised by the bits, and they return to and retain their po
sition for holding the earth when the auger is lifted out of the well much
. sition for holding the earth when the auger is lifted out of the well much
better than the hinged parts. These plates are curved inward and attached to the inner sides of the braces, so that the earth forced back on the auger will pass and not obstruct the turning of the auger, as it would if allowed to come against thefront of said braces. These braces are made of gis tube
or other like tubing, and the disk has holes where they are attached, so that ir can flow down under the auger to prevent the forming of a vacuum be low when the auger is raised; and below these holes the bow shaped spring cap plates are placed, so that they can sllde back and forth as sald caps ect them from clogging, and spring away again to open the holes and admit he air as soon as the auger is slightly lifted.
Bridge.-Hamlin G. Russell, of Lincoln, Ill.-The Invention consists in arrangingthe bridge floor so as to leave a space between it and the lower chords, and so as to be below, or in the same horizontal plane with, the under side of sald chords. It also consists in the arrangement of vertical tie and durable yet comparatively light and inexpensive bridge skeleton is ormed.
Latee Dog.-Lorenzo P. Whiting, of Poughkeepsie, N. Y.-The object of this invention is to provide convenient means for holding bolts which it is piecess of machinery; and it consists in an adjustable dog in which eact jaw is acted upon by a separate rib or scroll, and the ribs are placed at an angle which moves the jaws very quickly and saves time. The scroll plate plate. The scroll plate is rabbeted for the center plate. By means of screws the dog is attached to the face-plate of the lathe, and by suitable means it may be adjusted to any distance from the face or side of the face
plate, according to the length of the center in the lathe spindle. An orifice is provided through the plate, through which the center passes, and is al.
lowed to come in contact with the bolt head with the point or center of the lathe.
[OFFICIAL.]

Index of Inventions

For which Letters Patent of the United States were granted.
For the week ending November 19, 18\%, and each bearing that date.

SCHEDULE OF PATENT FEES:

On each Caveat...... On each Trade-Mark.

On fling each application fora Patent (seventeen years)
On Issuing eachoriginal
On Issuing eachoriginalPatent.
On appeal to Examiners-in-Chief.
Oa appeal to Commissioner of Patents
On application for Reissue.
On granting the Extension
On fling a Disclaimer
Onan application for Design (three and a half years)
On an application for Design (seven years)...
On an application for Design (fourteen years)
Alloy for hardening iron, Macker and Marston
Amalgamation, preparing ores for, A. B. Paul
Animal matter, treating, sillar and Raw
Animal matter, treating, sillar and Rawson
Augers. finishing the lips and points of, W.
Barrels, forcing beer from, J. Devlin
Basket handle, metallic, O. A. North
Bath tub, portable, G. Whee
Bed bottom, W.Graham.
Bed bottom, W.Graham.
Bed bottom, Frankfor
Bed bottom, Frankfoder and McGeorge
Bed, folding box, A. G. Bayles
Bed, folding box, A. G. Bay
Bee hive, J. G. Staunton.
Bell, door, A.L. Swan.
Bessemer plant, A. L. Rothman
bler, agricultural, Haviland, Cronk and Antisdel.
Boller and furnace, steam, G. W. Lascell.
Boller feed regulator, steam, R. Berryman
Bolt machine, A. A. Wilder..............
Bolt machine, A. A. Wila
Boot, gaiter, C. Hersome
Boot and gaiter fronts, machine for flting, T. Lincoln.
Boot and shoe soles, wire for riveting, H. H. Bigelow...

```
Mosquito net frame, W. M. White....
Music stand clamp, I. H. K. Downes-
```


Nail making machine, Miles and Lawrence, (relssue).........................152, 5,153
Nozzle for hose pipes, hydrants, etc., I. o. Endicott
Nut lock, T. E. Rhine.
Oil can, transportation, J. C. Moore..
Oil tank, incased, Shea and Campbell
Ordnance, cartridge extractor for, N. Thompson.
Ore crusher, G. Mitchell....
Ores, reduction of, A. T. Ha
Ores, reduction of, A. T. Ha
Organ, reed, B. E. Riggs.
Oyster opener, J. H. Stari
Paddle wheel, G. W. Tinsley
Padale wheel, G. W. Tin
Pump, J. W. Whitaker...
Pyroxyline, manufacturing, I. S. and J. W. Hyatt.
Pall, dinner, A. Nevin.
Pall, dinner, A. Nevin....
Paint restoring compound
Paint restoring compound, W.O. Bradstre
Painter's striping brush, P. Feeck.
Painter's striping implement, Lyndon and H
Paper pulp, machine for grinding wood for, J. G. Moore...
Pipe tongs, A. Gomersall.
Plane, bench, J. Lehnoc..
Planter, corn, N. Mendenh
Planter, corn, N. Mendenhall
Planter, corn, J. Campbell..
Plow, S. C. Baughn.
Plow, gang, M. s. Curtiss.
Plow, subsoll, Myers and
Plow, subsoil, S.E. Fletcher.
Printing press, J. M. Jones....
Pruning shears, P. M. Gilbert.
Pruning shears, P. M. Gilbert....................
Pulleys to shafts, securing, D. K. Overhiser...
Pump, H. Spear..............
Hoe, weeding, J. G. Harriman. .. 133,256, 133,
Hoisting apparatus, hydraulic, J. R. Ritter...133,152
Hops, apparatus for curing, N. E. Hinds.................
Horseshoe, B. P. Hutchinsoin.................
Hose, vulcanized India rubber, D. C. Gately
Hose, vulcanized nda rubber,
Ice cream freezer, A. L. Platt.
India ink
India ink slab, J. Speyer.
Ink, Indelible, E. W. Brig
Ink, indelible, E. W. Briggs................
Inlaying metale with rubber, B. L. Rowley

Bottle lock, J. Dugan, (rilis
Bottle packer, R. T. Penick
Bottle fllling apparatus,;C, A. Gregor
Bottle flling appar
Bracelet, w. Edge
Brick machine, H. B. Ramsey
Brick kiln, R. A. Smith..............
Brick kiln, R. A. Smith......
Bridge shoe, trus
Bridge shoe, truss, M. Lassig.
Brine, apparatus for evaporating,
Brush, painter's striping, P. Feeck
Burial case, C. C. W. Morgan..
Burial case, C. C. W.
Butter tub, F.Holt.
Butter tub, H. Holt.
Button, S. B. Lane.
Button, S. B. Lane...........
Button, lacing, D. Heaton..

Calculating machine, E.
Careóupling, M. Disney
Caréúpling, M. Disney
Car coupling, D. Walter......
Car coupling, J, w. Radebaug
Car coupling, J, W. Radebaug
Car coupling, D. Sutherland
Car seat, J. F. D. Hollings...
Car roof. J. Garry, (reissue)
Car spring, railway, T. F. Ally
Car sprarter, s. H. Kenney
Car starter, D. W. Garst.....
Car starter, W. E. snedker.
Carriage, child's, F.H. Way.
Carriage, child's, F' H. Way
Chair, J. Lewis.
Clide
Cider mill, H. L. Whitman.

Cock, self acting

Colk, self acting basin, s. C. Went
Crought iron, C. s. Smith
Column. wrought iron, C. s.
Connecting rod, s. N. Wate, J
Cooking apparat
Cooking apparatus, portable, D. F. Jauss
Corn sheller. J. Hutchison..
Corn stalks, cutting and pul
Corn stalks, cutting and pulverizing, W. M. Taylor.
Cotton gin, R. McKe
Cotton gin. J. M. Clough.
Cradle, crib, and standing
Cradle, crib, and standing stool combined, C. E. Nurse.
Desk, adjustable, E. Dummer
Doors and gates, device for
Doors and gates, device for closing, Grifinn and Harrod Dovetailing machine,
Drawers, J. Bellamy
Drawing knife, J. C. Smea
Eave trough, J. R. Baker
Eggs, pan for poaching, M. M. Crutchfleld
Engine, reciprocating, J. Scott
Engine, rotary, T. s. La France
Engine, rotary, T. s. La France................
Fan, rocking chair, O. Matzke.
Fence, H. McMullin................
Fence, portable, D. K. Peterson
Fire plug and lamp post, combined, D. z. and J. H. Johus.
Floor cloth from straw boar
Fluting iron, S. D. Hubbard.

Frurnace, cans, mplement for open

Furnace, hot air, W. H. Harris...........
Furnace for using the waste heat under bollers, met
Gas, manufacture of, A. N. Wilkinson. (reissue)
Glass furnace, H. R. De Mant
Glass furnace, H. R. DeMonthureux.
Glass, etc., cutting and polishing, J. P. and C. Colné.
Glass, etc., cutting and polishing, J.
Governor, steam engine,
Granary, C. T. Moorman.
Granary, C. T. Moorman...................................... Harrow, A. B. Depeny.
Harvester, corn, J. Bowers...
Harvester reel rake, C. Youn
Hoisting apparatus, hydraulic, J. R. Ritter
Hops, apparatus for curing, N.
Horseshoe, B. P. Hutchinsoin.
Hose, vulcanized India rubber,
Ice cream freezer, A. L. Platt.
India ink slab, J. Speyer...
Ink, indelible, E. W. Brigga
Inlaying metel
Inlaying metals with rubber, B. L. Rowley
Iron, steel, etc., manufacture of
Iron and steel dirrect from the ore, process and furnace for making
gas and, T.J. Chubb......
Ironing table, B. Schoonmak
Ironing table, B. Schoonmaker.......................................
Journa1s, bearings, etc., graph
Key way gage, J. Donaldson....
Knitting machine, H. A. House
Lamp, W. M. Mar
Lamp, w. M. Marshall......
Lamp, J. S. Fish, (reissue).
Lamp, carbureting, J. W. Post.
Lantern, advertising, s. Kuh..
Lantern, advertising, S.
Lathe for turning regular forms, J. Moessinge
Leather, pattern for channeling, s. Glocher
Logs, machine for turning, G, w. Baker....
Looms for weaving irregular fabrics, take up mechanism for, H.
Carstaedt (reissue)........
Lubricator, w. T. Garratt.
Lubricator, W. T. Garratt...
Lunch box, w. H. Van
Lunch box, W. H. Van Allen...
Masonic emblems, apparatus for display of, Lyon and Rand
Medical compound, A. B. Dorman.
Middling separator, J. G. Birely
Middling separator, J. G. Birely..
Mitten, J. L. Whitten
Nail making machine, Miles and Lawrence, (reissue)...........................152, 5,1
Nut lock, T. E. Rhine....................
Oil can, transportation, J. C. Moore.
Oil tank, incased, Shea and Campbell.................
Ordnance, cartridge extractor for, N. Thompson.
Ore crusher, G. Mitchell.........
Ores, reduction of, А. т. Hay..
Organ, reed, B. E. Riggs.
Paddle wheel, G. W. Tinsley
Pump, J. W. Whitaker.
Pyroxyline, manufacturing, I. S. and J. W. Hyatt.
Pall, dinner, A. Nevin...........................
Painter's striping brush, P. Feeck.
Painter's striping implement, Lyndon and Halsey.........
Paper pulp, machine for grinding wood for, J. G. Moore.
Pipe tongs, A. Gomersall.
Planter, corn, N. Mendenhal
Planter, corn, J. Campbell
Plow, S. C. Baughn.
Plow, gang, M. S. Curtiss.............
Plow, subsoil, Myers and Gummow
Plow, subsoil, S. E. Fletcher.
Printing press, J. M. Jones...
Pump, H. Spear.

...

