6.-What is the cause of some dead wood burning into clnders, and 18 it a common occurrence? It has a close resemblance to that
whlch we see at ablacksmith's furnace where common bituminous coal 18 burnt.-J.N. s.
7.-I have heard that a large manufacturer of builders' hardware finishes with a brown "dip" that does not require baking. It 18
kept a secret. Can any reader give me a clue to the ingredients of that kept a secret.
cup ?-R. S . B.
8.-Could not a house be built much cheaper in the form of a square or oblong, than by following the plan given in sour paper for November9? And, if the roof was nearly fiat, would not
cooleie in the summer and warmer in the winter?-E. E. S .
9.-I hear many complaints of Wishataw oil stones being too hard. Will not some one inform me of the best method of lmproving
12.-Owing to the frost getting into the iron of my engine Ifound it quite rusty. I have removed the rust, but cannot remove the

ITent wis

 SPECLAL NOTL.-This column is designed for the generalinterest and in.struction of our readers, not for gratuitous replies to questions of a
 hovever, when paid for as ad
ar " Business and Personal"

$L L$ references to bact nubers must be by volume and page.

J. J. F., of Texas, says: Enclosed please find a small piece of ore. What it is we are unable to tell. Answer: It is pyrites or bisul-
phuret of fron, not avallable as an ore.
W. S. N. asks: What is the process of giving to small wires the same point that is put on hair pins? Answer: They are grneraliy
pointed by grinding by contact with revolving grinding or milling whems. M. asks: Can iron be incorporated with a hair dressing? Is It harmless? Also, will sulphur prevent hairfrom turninggray? Answer:
Preparations of fron and sulphur are used in hair dressings to blacken the Preparations of fron and sulphur are used in hair dressings to blacken the
hair. These substances probablyinjure-the hair, but are not poisonous Hike the lead prepa mitions on commonly used in hair dyes The
phur does not preventerayhair, but helps to disgulse the
P. B. W., of N. J., says : Enclosed is a mineral which I think Is umber I send it to you for inspection. Is it of any value? The veln
is all just like the piece that I send you; at first it was about six inches hick, and after digging three feet to was eighteen inches. The vein lays hick, and after digging three feet it was elghteen inches. The veln lays
between slate rock. Answer: The specimen is an ochery oxide of fron or "umber" so called, and doubtless would make a useful pigment.
C. B., of Mich., says: I send you herewith three mineral pecimnens from Kansas. No.1. is the magnesian hmestone, and I am requested to inquire in regard to its suitability for building a dam. Will it
stand the action of the water? No. 2. What is it, what kind of rock and what is it good for? Asto No.3, the questions are, what is it, what is it
good for, and is it valuable? If so, what is its value? Answer: (1.) In good for, and is it valuable? If so, what is its value? Answer: (1.) In
our opinion is too soft for the purpose stated, and would not endure the our opinion is too soft for the purpose stated, and would not endure the
wear of the water like the more compact limestones and tough quartz rocks. (2.) Is calcareous marl, the "chalk of America. (3.) Is ferrug1nous clay, of the same value as any other clay.
J. E. E. says: The enclosed mineral sample was sent to me some time ago from Arizona, and was described as a specimen of white
topaz. I am of opinion that it is nothing more than quartz crystal in a topaz. I am of opinion that it is nothing more than quartz crystal in a
molten state. It cuts glass very readils, as you will perceive. Answer: moten state. it cuts glass very readily, as you will perceive. Answer:
H. B. H. says: Will you please inform me of the compositions and materials used in fillingin between the outside and inside Hning of
safes? Also state the per cent of water contained in each ingredient that the above composition is made of. Answer: Different safe makers use different flling materials. Ordinary hydraulic cement is a very common flling. Plaster of Paris is another. Plaster and alum another. The
amount of water in the flling varies from 20 to 30 per cent of the space occupied by the filling.
J. M. S. says: If the levers of a horse power are lengthened so that the ends, instead of being fastened in the center of drive or bun
wheel, pass on and are fastened on edge of sald wheel, will there be Wheel, pass on and are fastened on edge of said wheel, will there be
powergained or not? My friend (who, by the way, is a subscriber to your paper) maintains that the power applied to the side of the wheel nearest the horses is the same in elther case, and therefore, the lever being fast-
ened on the opposite side of wheel, all the power there applied is gained. ened on the opposite side of wheel, all the power there applied is gained.
I, on the contrary, maintain that there is no power gained whatever, as I, on the contrary, maintain that there is no power gained whatever, as
the increased distance between the fulcrum and-weight. I suppose you the increased distance between the fulcrum and-weight. I suppose you
might sas, will exactly counterbalance the amount of power applied to the side of wheel opposite to that on which the horses are hitched. Answer: The use of levers does not in any case increase the amount of
power applied. Levers are simply tools by means of which the power is mployed, directed, or expended. In the case of a common lever horse powermachine, the longer the levers are, or, in other words, the further their outer extremities extend beyond the center
casily but more slowly the wheel will be turned.
E. S. C. asks: What per centage of water is returned to the boller by a condensing apparatus, and how many gallons of water would
suffice a 40 horse power boller, for 12 hours, with a condensing attachment? Answer: The condensing engine requires from 15 to 85 times great a quantity of condensing water as of feed for the bollers. Each pound of steam condensed yields to the condensing water something over 1,000 units of heat. Each pound of condensing water carries away from 39 to 70 thermal units, this quantity varging with the temperature of the injection water and the condition and management of the con-
denser. Probablyfour per cent of the condensing water, as an average, denser. Probabisfour per cent of the condensing water, as an average,
goes back to the boiler as feed with the ordinary condenser. A fair 40 horse power boller should evaporate 15,000 pounds of water in twelve horse power boller should evaporate 15,000 pounds of water in twelve
hours, and would require its engine to be supplied, probably with at least
4,
P. M. says: How can I ascertain the loss by radiation from an exposed bofler front, with steam at 70 lbs. by the gage? If posstble
let me know before the middle of January, as it will do no good after that date; a case at law is involved. Answer: To determine approximately the loss by radiation from a metallic surface heated and exposed to the
air, the temperature of the air and of the metal remaining constant: 1 st. air, the temperature of the air and of the metal remaining constant: 1st.
The loss or gain of heat, of a body so exposed, is proportional to the difference between Its temperature and that of the surrounding atmosphere up to a limit which is, by some authorities, assumed at a difference o : 50 up to a hmit which is, by some authorities, assumed at a difference o 0 ! 50
or 60 degrees Fah. Where the difference is greater, a correction is re-
quired for accurate work. 2d. Multipls quired for accurate work. 2d. Multiply this difference in tempera-
ture, in the case observed, by the area in square feet and bs $0 \cdot 3$. The proture, in the case observed, by the area in square feet and by 0.3 . The pro-
duct will be the number of units of heat lost. Consult Peclet's " 7 raite in an expert of known intelligence and integrity if anything further is in an exp
needed.
J. E. W. says: A dispute has arisen between us in regard to the speed of steam boats, which we respectfully refer to you for a de-
cision. The questionis, simply: At whatrate of speed per hour can still
water be displaced? Andis there not a limit beyond which water cannot
be displaced, notwithstanding the force that may be used; that is, can a steamboat be driven through still water at a rate exceeding 19 miles per hour? Another question is: Can a tapering log 40 feet long ($($ inches d1ameter at one end, and 40 inches at the other), be towed through the wa
ter faster with the sharp end, than with the blunt end, foremost? The. ter faster with the sharp end, than with the blunt end, foremost? The.
reason assigned in favor of the blunt end is that it encounters resistance only at one place as it enters the water, and nowhere else; whereas the sharp end encounters resistance at the point all along the log and then drags dead water after it. Answer: There is no known limit to the dis-
placement of water by the suitable application of power. Some of our North river steamboats have made from 22 to 25 miles an hour in.still water. Such a log as you describe will tow easier sharp end foremost. It takes but ittle power to displace water. To push it sidewise is like movThe principal resistance encountered by well formed vesselsin moving through the water is due to the friction of the water on the surfaces of
the vessels. Blunt vessels lift more water up in front, and are therefore the vessels. Blunt vessels lift more water up in fre
harder to move thaï sharp vessels, at same speed.
constant reader asks:-Will a one inch perpendicular pipe filled with water and inserted in a barrel filled with water, the plpe being
twentry-ive feet high, have the same pressure as a two Inch plpe of the twenty-if $\begin{aligned} & \text { feet high, have the same pressure as a two inch pipe of the } \\ & \text { same dength; and if not, what would be thedifference in pressure? An. }\end{aligned}$. same length; and If not, what would be the differe
swer: The pressure will be the same in both cases.
V. McD., of Ohio, says:-The proprieters of the planing mill in which I work thought they could heat the carpenter shop from the exhaust steam from the engine. The size of the boiler is 20 feet long, 40 nches diameter, with two return flues. Thes had a galvanized ironpipe thick, leading from the engine through the room (about 20 feet), then into a drum at the top. The drum is 201 nches in diameter and 4 feet long A 4 inch pipe leads from the bottom of the drum to the outside. The heat it gives off is just perceptible when we hold our hands or faces vers close to the plpes or drum. Why does it not afford more heat, and what
would be the best remedy? Answer: The temperature of sour exhaust the pipe is of to but little above 218 Fah., and flcult to warm Where the source of heat has so low a temperature. Put a
lightly loaded valve on the discharging end of the heating pipe, or else lightly loaded valve on the discharging end of the heating plpe, or else
draw steam direct from the boller. Probably the latter method would be draw stent
best.
J.G. Says:-I am building a large ice house, 100 feet square over lager beer cellars; the joists used across the walls are oak, 6×12
inches, 20 feet in length, 20 inches apart; a 2 inch strip is nalled on the nches, 20 feet in length, 20 inches apart; a 2 inch strip is nalled on the
lower edge of each joist to support a 10 inch pine board between. I now lower edge of each joist to support a 10 inch pine board between. F
propose to tar those joists all over, together with the board, with hot tar. romething that the salt works that are impregnated more or less with salt ; or I can get saw dust or tan bark. The object in filling between joists is to protect the ice from exposure below. Λ floor is then laid over thewhole, this is felted ond this fioor to receive the ice, which will be from 12 to 15 feet thick. 0 ing to the immense weights those joists have to carry, it becomes necessary that the filling should be something that will not rot the timber vers soon. Now which of the three, ashes, saw dust, or tan bark, would you advise? Answer: Your ashes, containing salt, will be certain to absorb molsture rapidly, and the weight and increased cond activity of heat
consequent will be seriousls objectionable. The sawdust if perfect consequent will be seriously objectionable. The sawdust, if perfectl an excellent non-conductor, easily handled, and cheap. If, and we pre sume it will be the case, there is a probability that the filling around you
 should advise tan bark. It is a good non-conductor, not liable to heat in consequence of dampness where the ice is removed, and the tannin re maining in the
tact with it.
Seneca says:-I have had a dispute with a learned friend and he will be ruled by your decision. : He has a windmill onhis farm cularly, stopped at evers revolution of the wheel, he sass that as the rod takes its movement from a circular motion (the wind wheel), ther can be no stoppage at all as long as the wheel turns. Please state how the matter stands. Answer: There is a cessation of motion at elther end of the throw of the crank, but it is of indefinitely short duration. The perio or rest is inappreciable and immeasurable by finite power. Seneca and
his friend are approaching too closely the mistyregions of metaphysics. A nold subscriber writes us to state the names of some cheap Hquids, not of an olly character, which are not frozen by our coldest win water and form \& compound not easily chemical which will unite with
frozen. Answer: Pure alcohol ether, bisulphide of carbon, and glycerin do not freeze at any tempera ture to which they have ever get been subjected. Ammonia freezes a about 45° below Fahr. zero, and pure nitric acid at about the same point Mercury freezes at - 39° Fahr., sulphuric acld and some other substance require also a temperature far below the zero of Fahrenheit scale to pro-
duce solddification. The union of any Hquid, which itself remains fuld at duce solidification. The union of any liquid, which itself remains fuid at
a very low temperature, with water will raise its freezing point. Experi ment will best determine what liquids and what proportions will answe

R. and W. say :-R afflirmsthat a bal ance or fly wheel if in standing balance or each side of equal weight need not be at righ ${ }_{t}$
angles to the shaft, to run fast without affecting the steadiness of the 8 shaft Also that It may be keyed on at even 45° to the shaf
without affecting it , except so far as the air mas do so, as shown in the engraving; W. as serting the contrary. The one mistaken is to pay five gears subscription
to your paper for the benefft of him whose premises prove correct. An wer: If a balance wheel is accurately balanced and is perfectly symmetr FIth its plane at rightangles to the line of the.shaft, it will always tend;to turn itself until Its axis shall coincide with the center line of the shaf This effort willbe a constant one, tending to bend the shaft but does no necessarily produce unsteadiness in the shaft, as will be readlly seen if the
experiment be tried. R.is right. We shall be happs to settle many con troversies Hke the above, on the same conditions. The loser certainl does the handsome thing in supplying the Scientifio Ambrican for five sears to his friend.
I was troubled with angle worms in my well, as " E . L." was Keep the fur or woolen articles in paper boxes; paste strip of paper joining the box and cover tightly. It is not
moths' eggs to be laid through paper.-R. S. B., of Conn.
W. C., query 4, page 345, can silver brass by dissolving one unces distilled water; let it stand until clear, then pour it in hal ounce phials, each being two thirds full of laris white: apply with a brush, and polish with a soft cloth.-F. S.B., of Me.
To T. J. S., query 26, page 314.-You may bleach broom corn In a solution of sulphurous acid gas (produced by burn
water at a temperature of from 70° to 80° Fah. - A. \mathbf{o}.
A. G., Jr., query 7, page 345, should learn the art of lithoor photolithography must fall. Lithographic printing ink is used.N., of N. Y.

communications received.

The Editor of the Scientific American acknowledges with much pleasure, the receipt of original papers and con tributions upon the following subjects
On Cheap Microscopes. By T, B.
On the Transmission of Motion. By L. S.
On a Method of Conveying Water to the Roofs of Buildings Case of Fire. By W. C.
On Queer Freaks of a Leyden Jar. By N. E. F.
On a Premium Acre of Corn. By W. R. S.
On a Method of Constructing Cheap Fireproof Safes. By B. Ov-the Prevention of Fires. By W. C. D.
On Ball Lightning. By H. B. S.
On Marine Life Saving Inventions. By J. A. A.
On the Origin of Storms. By J. H.
On the Modern Atomic Theory. By R. D. W
On the Formation of an Association to Assist and Encourge Inventors. By R. H. T.
On the Effect of Lightning upon Trees. By J. C. S.
On What Constitutes Credible Testimony in Regard ton Scientific Questions. By J. H. P.
On Religion and Sciences. By J. F.
On Milk Sickness. By O. S. M.
On the Manufacture of Cotton Goods at the South. By E. J. C. W.

ectent sucticat and fortign eateuts.

nder this heading we shall publisi nent home and foreign patents

Medicated Confection.-Ntcholas Saltabassi, New York city.-This in
vention relates to a new and useful tmprovement in the une of confections nedicated in such a manner as to make it not only pleasant to the taste, but raluable as a promoter of digestion and a strengthener of weak digestive organs. It consists of equal quantities of grapes and Zante.currants reduce to a pulp by heating, pressing, or macerating, or in any manner to form a homogeneous mass. The seeds and skins are then separated therefrom by
straining or flitering, and the pulp reduced to a semi-liquid state. Equal graining or Altering, and the pulp reduced to a semi-1iquid state. Equa of about one ounce of the extract to one pound of the above described pul or sirupare then added. Before cooling, the composition may be run int "drops," and before or after cooling it may be divided into pleces of any form convenient for use, after which it is put up into bozes or packages for
sale. Other ingredients, in addition to those named, may be added to give sale. Other ingredients, in additi
the confection any desired flavor
Stere obcope.-Antonio Quirolo, New York city.-This invention relates o stereoscopes, and consists in a jointed handle permanently attached to strumentis thus supported is the desired manner without requiring the handle to be detached.
animal Trap.-George Barr, Clatbkanie, Oregon.-This invention has for its object to furnish an improved trap for catching and destroying nifee, prings, levers, and wheels whereby, on touching the bait, the animal is illed, and the trap automatically resets itself.
CEMENT.-Willam McKay, Ottawa, Canada.-To produce a hard, durable, and quicklysetting cement the inventormakes a compound of martor oys
ter shells, clay, road dust, wood or coal ashes (or equivalent alkalies), sand, soluble or other glass, or any one or more of the slliclous in bredients, any one or more of the metalic oxides, carbonate of mag With the exception of soluble glass and ashes or alkalies, are mixed cogether with water and ground to a powder in a mortar mill or byany con
venient process, after which the whole is brought to a liquidstate bs th ddition of water. The compound is is brought to a liquidstate by the cipitate. When the precipitation has taken place, the excess of water is Withdrawn, and the ashes or alkalles are added and thoroughly mixed and
incorporated with the compound. The whole is then dried eltherby articlap ground to an in the opable air, after which it in a flour mill or by any other process The soluble glass, previously powdered, is then added and incorporate draulic or plastic cements.
Oil Cafe Trimmer. - Washington Hawes, Port Richmond, N. Y.-This in ention consists of an endless cutter and a press clamp with a table for clamp, arranged in such suitable apparatus for working the cutter and under the clamp may be trimmed completely all around the edges at one op eration of the cutter. This invention also consists of a receiver for the
trimmings and breaking apparatus combined with the trimmer, and adapt rimmings and breaking apparatus combined winn the to break and pulverize them forbeing worked over again.
Machine for Masing Bunab.-Charles Abel, Morrisania, N. Y.-This in ention relates to a machine for manufacturing bungs for barrels and keg and for similar purposes, and consists in a revolving tube, through which he. Wher is automatically fed in a movable tapering cutter head and spin . When the bung has been turned and tapered a saw is brought down corner of 1 ts large end. The operatlons of sawing off and beveling the cor er are simultaneously perforned.
Ha x Loader.-Anthony Garver, Lime Spring Station, Iowa.-This inven Hon has for its object to furnish an improved device for loading loos able the loading to be done easily and rapidly, thus avolding the necessity of binding the grain, and thereby greatly diminishing the la bor and expense sathered bs the fingers or teeth, up which and up the platform it is assiste by the raker with his rake. As the grain or hay passes upon the rack, it is recelved and arranged by the loader. A lever extends up in such a positio from the ground in passing obstructions, etc. Whe the toad has bers from the ground in passing obstructions, etc. When the load has been
completed the device is detached and left in the feld, or attached to a sec ond wagon while the first is belng unloaded.
Flodr Bolt.-John W, Johnson, Evansport, Ohio.-This invention con-
ists of a reel with spiral ribs inside of the ordinary longitudinal ribs, the
. sists of a reel with spiral ribs inside of the ordinary longitudinal ribs, the former arranged as wide apart as the width of a strip of bolting cl
the cloth arranged spirally on said ribs and nalled upon the inside.
Cartridge Box.-Polydore S. Thomson and Frank M. Thomson, of Hud-
oon city, N. J.-The object of this invention is to make cheaper boxes and
 to increase the capacity of the box. It is a cartridge box consisting of a wooden block having holes of the same length as the cartridgeg to be in-
serted, and any elastic perforated sheet, both covered completely by the serted, and any elastic perforated sheet, both co
leather body and all arranged compactly together.
Furrow Stafr.-George H. Comer, of Indiana, Canada.-The object of his invention is to provide a simple and practical instrument for determin !ng the depth of furrows in millstones, so as to insure their equal depth
throughout. The invention consists in the arrangement of a sort of sled, carryng a vertcaly adjustable furrow starr, which, in use, is painted the more portions of the furrow by leaving paint thereo
show

