Currespondeute.

The Editors are not responsible for the opinions expresed by their Corre

Small Fast stoam Propellers.

To the Editor of the Scientific American:
The men in our shop were much interested in your account, of vessels of this class now in use in England, in your issue of the 15th inst., having just completed a small propeller which has proved to be very fast, an account of which may interest your readers generally.
The stock yards of this Company being across the Mississippi river, five eighths of a mile from the station, access to them is had with a small steam propeller, the Robert Harris, almost exactly like that described in your paper. She is built of oak, 50 feet long and 7 feet beam, and locomotive boiler 11 feet long, with fire box $2 \frac{1}{2}$ feet by $3 \frac{1}{\frac{1}{2}}$ feet locomotive boiler 11 feet long, with fire box $2 \frac{1}{2}$ feet by $3 \frac{3}{3}$ feet
with 27 two inch flues 7 feet long. She has two direct actwith 27 two inch flues 7 feet long. She has two direct act-
ing vertical engines, cylinders 5 inch bore and 10 inches ing vertical engines, cylinders 5 inch bore and 10 inches
stroke. Her screw wheel is forward of the rudder, and is 4 stroke. Her screw wheel is forward of the rudder, and is 4
feet in diameter and has a quarter pitch. She has a small feet in diameter and has a quarter pitch. She has a small
Selier's injector as well as a force pump. The engines are Selier's injector as well as a force pump. The engines are
fitted with thecircular slide valve, recently advertised in your paper, and work with extraordinary ease, power and economy of fuel. She will carry 20 to 30 passengers very comfortably.
Originaily it was intended to use an upright boiler, such as is used by the steam launches in the United States navy, but the government inspector forbade its use after it was completed, and being pressed for time, a horizontal locomotive boiler was taken, with flues 3 inches apart as the law requires.
From the very limited fire surface and the very long time required to get up steam, an utter failure all round was confidently predicted by the knowing ones. On the contrary, however, our little vessel is a complete success. In speed, capacity, and economy of fuel, she cannot be excelled anywhere. A single shovelful of cual and a stick of wood will send her across the river in less than four minutes, and she will make ten miles an hour up stream or 15 miles down stream, all day, without any extra pushing. A few days ago, she ran a full mile with three shovels of coal and blew off at 100 lbs , as she landed with plenty of steam to carry her back to where she came from. The engineer reports that, though she is twice the size of the boat used last year, he can run her 50 miles with the fuel the other boat would burn in going 20 miles. To.day, interested by your paper we timed her twice crossing the river. With 55 lbs . of steam and 104 revolutions, carrying 16 passengers, she crossed in 7 minutes. Coming back, with 90 lbs. of steam and 140 revolutions, she came over in $3 \frac{2}{2}$ minutes.
Here I would like to say a few words in faror of two ex cellent devices, the water injector and the circular slide valve. The former, though an old invention, is much less in use than it ought to be. Every locomotive ought to have a pair of them. With this most useful machine, water may be kept up in a boiler without working the machinery at all, and it is really indispensable in every well regulated estab lishment using steam power.
The circular slide valve is a most promising invention. Exactly what it will do, in gain of power over the common flat slide valve, has not yet been ascertained, but it will cer tainly do even more than the inventor promises, a gain of one third to one half. The pressure on the valve is com. pletely removed by its use, and with it, the corresponding strain and friction on all the reciprocating parts. I have long been of the opinion that railway master medie ports and
gone to a most wasteful extreme with their wide huge barn door valves. If they really wish to know how much power and fuel they are wasting, and how much strain and fricion they are thereby creating, for nothing except to and fricion they are thereby creating, for nothing except to
make useless labor and expense, a trial of this device will make useless labor and expense, a
both surprise and undeceive them.
I would like to inquire, of some of your experts in build ing and running propellers, if such a speed as you name, 600 revolutions, is usual, or if it can be maintained any length
of time without rattling the machinery to pieces? High of time without rattling the machinery to pieces? High speeds and momentum in high pressure engines seem to be
the tendency of the day, but of course there must be a limit the tendency of the day, but of course there must be a limi somewhere
Should any of your readers happen this way, I would cordially invite them to inspect our quick, efficient and pow erful little craft, whose success has given us all such satisfac
A. GRAY tion.
A. Gray,
omotive De partment, Burlington, Iowa.

The Open Polar Sea.

To the Editor of the Scientific American:
The subject of the polar sea is attracting much attention at this time, and I beg leave to submit the following as a sci entific consideration :
The whirling of the earth, causing the polar indentations, also drives the water from the poles with a centrifugal force towards the equator; as water, poured on a whirling grind stone or globe, inclines towards the largest circle in the plan of rotation. And as the surface waters are less oppressed by ly towards the equator than the under waters; and while 1y towards the equator than the under waters; and while
they ara passing towards the equator, it naturally creates a they are passing towards the equator, it naturally creates a
counter current towards the poles, for ever rising up at those counter current towards the poles, for ever rising up at those
points like some vast ocean spring, free from ice, till it points like some vast ocuro spring, free fea,
meets the frozen circle, surrounding the open sea, on its way towards the equator again. Of course this surface current,
as well as the under counter current, may be compared to an endless chain in a perpetual motion, for ever rising at the poles; which is, in my humble opinion, the great secret of the open polar sea.
Mr. Morton, of Dr. Kane's expedition, found, in latitude 83° N., open waters moving briskly southward; and the Dutch have lately found open waters warmer than the surrounding air. These facts induce the conclusion that the rapid whirl ing of the earth produces these two currents; and hence the open polar sea, or ocean spring, perhaps a thousand miles across.
The grand consideration that the whirling world so depresses the polar waters, producing these two wonderful currents and the open sea at the poles, commands our high
est admiration and veneration for Him who made all things. Paris, Texas.
J. H. Fowler.

Iron Ship Euilding in wilmington.

To the Editor of the Scientific American :
In an article in your paper for this week, entitled " Iron Shis Building in Wilmington," you state that the Christiana creek is a wide and deep stream which forms a junction with the Delaware River at Chester. The above description is wrong, as the Christiana enters the Delaware River at not less than eleven miles below Chester City, and the yards you mention are several miles up the said creek: But at Chester we have the "Delaware River Iron Ship Building and Engine Works" (formerly the Reaney Engineering Company), now employing between 700 and 800 workmen, with four large iron ships on the stocks, and one just launched. Two are for the Pacific mail service. The yard is the largest in
the country, and its business facilities are unequalled. It is the country, and its business facilities are unequalled. It is
situate directly upon the Dela ware, having a river frontage situate directly upon the Dela ware, having a river frontage
of 65 feet. The Delaware is, at this point, one and one half of 65 feet. The Delaware is, at this point, one and one half miles from shore to shore. The principals are John Roach and Sons, formerly of New York.
Feeling great pride in our rapidly growing city of 12,000 inhabitants, we do not like to be confounded with Wilming. ton or Philadelphia; but being just between the two, we in tend to stand on our own bottom and build iron ships agains he world.
Chester, Pa.
N. Rulon.

Molasses or Hydrochioric Acld for Flowers.

To the Editor of the Scientific American:

Several years ago I became passionately fond of flowers, and I purchased agreat many. I gave them all the attention I could possibly spare, and watched over them anxiously for a long time; but I found to my disappointment that before several weeks bad passed, they all suddenly assumed a poor and dying appearance.
I changed the earth, enlarged the pots, and did everything maginable, but they did not seem to improve at all. About this time, I removed the earth around the roots of a favorite geranium, and pouring molasses (the unrefined will serve the purpose well) around the rosts, I covered it up with earth, and waited patiently for a change. You would have really been surprised to have seen the great improvement in the flowers. I tried several others with the same result.
If any one thinks that molasses is too expensive to be used for such a purpose, I would assure him that hydrochloric acid answers equally as well. It should be diluted in wate (say one ounce of the acid to three or four quarts of water) and the flowers should be washed with it at the usual time If these simple facts are of any value to lovers of flowers, rust this will be made public.
E. S. G.

Philadelphia, Pa.

HORSE HAIR.

Horse hair is brought to this country from South America Siberia, and portions of Europe. The greater part of all imported comes from South America, being obtained from the immense numbers of horses, which, in a wild state, roam over hich die in that continent. The manes and popular sup osition, form but a small portion of the supply; the hair hus obtained is generally of poor quality, and unfit for use in the manufacture of hair cloth
The material is imported in bales weighing about on thousand pounds each. These contain either " mixed hair," that is, hair of different lengths, or else are filled entirely with ong hair. The former variety is the cheapest, costing in the bale from thirty-five to forty cents per pound in gold; the raw state is in a tangled and dirty condition, the first process through which it passes is sorting, during which the different colored hairs are placed in separate heaps. This work is colored hairs are placed in separate heaps. This work is
done by boys, and its objsct is to facilitate the subsequent done by boys, and its objuct is to facilitate the subsequent
dyeing, as the black stain used is much more readily impart dyeing, as the black stain used is much more readily impart
ed to hair that is naturally of a dark color than to that of the ed to hair that
lighter shades.
The bundles of sorted hair are then hackled, by which pro cess the hairs are made straight and the foreign substance reat care is taken not to break the hair, as upon its length its value depends-long hair being much more scarce than the shorter varieties and consequently far more costly.
A number of tufts of hackled hair are next placed between the teeth of a couple of cards. The latter, as our readers are doubtless aware, consist simply of flat pieces of tough wood on which pointed spikes of steel of about three inches in length are inserted. One of these cards is placed on its back on a table and the bundles of hair laid side by side betwsen its teeth; when this card is full, the other one is placed upo it, points down, so that the bundles are firmly held by the
double set of spikes. The hair, it must be remembered, is still of different lengths, and it is the object of this carding o arrange the long and short hairs in separate bundles.
The workman, therefore, begins by pulling sut, from the bundles between the cards, all of the long hair in the ends nearest to him, and then keeps on removing more and more, until the set of extremities at which he is working are perfectly even, no one hair projecting more than another. Then he fastens the ends, removes the upper card, reverses the bundles and repeats the same process with the other extremities. When he finishes, the hairs between the cardsare all of exactly the same length, and the separate tufts are now ready either to be made into curled hair, to be sold to the ready either to be made into curled hair, to
brush makers, or to be woven into hair cloth.
Curled hair is the material generally used for stuffing mattresses, cushions, etc. Other substances are occasionally employed for the purpose. Moss, sponge, sisal, (a species of Manilla hemp), African fiber, excelsior, (a fancy name ap. plied to a preparation of wood shavings), tow, and a vegetable fiber from California known as eureka, are the most common; but none is as durable, cleanly, or elastic as pure curled hair.
The process of curling is begun by making the lengths of hair which are found to be too short for other uses into a rope. The workman, taking a bundle of loose material in ward, altaches it to a revolving hook and, walking back strand continually adding more hair, spias a long, tigh when find of these strands are twisted into a cond boiled and immediately afterwards baked, this process setting the "kink" in the hairs, rendering them thoroughly elastic. In this condition, curled hair is sold to the trade; it only remains to untwist and pick out the rope by hand to obtain the desired quantities. The present price is for the pure material from forty-five to sixty cents a pound, according to quality. In the manufactory, one workman can makeup from two hundred to two hundred and fifty pounds of curled hair per day.
Hair cloth, principally used for covering furniture, is manufactured from the longer and better qualities of hair. The bundles of hair, destined to be made into cloth after being carded in the manner above described, are removed to the dye house. There they are attached to a large iron grating which, when filled, is lowered into a vat of boiling dye, in which it remains for about five hours. The hair is then detached, and is ready for weaving.
This work is done by girls. The wapp of the cloth is of black cotton thread. Linen thread is a better material, but makes a stiffèr and harsher fabric, less suited for upholsterers' uses.
The hair composes the weft, and its length depends upon the width of cloth to be made, the usual proportion being a thirty-five jnch hair to a thirty inch cloth. Each hair is in roduced separately, being caught in a long shuttle or rod the end of which terminates in a catch hook. The shuttle entersthe shed of the warp, and the weaver, with her lefthand hooks the hair into the catch hook which draws it througk to the other side. The batten is then driven home, and a new shed opens. These movements are made with great rapidity and as the threads of hair must be fastened to the shutter bar with mechanical regularity, it is only after long practice that the requisite skill is attained. Formerly, two weavers were required to every loom, one to hand the thread and the other to fasten it to the shuttle; but the improved machines at present in use are easily managed by one person. We learn that still further improvements have been lately made so that one workman can attend to six machines, the thread being attached to the shuttles, and the other work now done by hand accomplished entirely by automatic appliances
After leaving the loom, the cloth is pressed between hot metal plates, and afterwards rubbed to give it the necessary polish. As furnished to the trade it is generally black, and its principal use is, as we before mentioned, for covering furniture. A very fine variety is sometimes made for sieves, and another quality is used by ladies in order to give volume to ertain portions of their attire
In price, hair cloth averages about one dollar per yard, va rying from forty-five cents to two dollars and seventy-five cents. In width, it is manufactured in all sizes between four teen and thirty-two inches. It is largely imported into this country, although it is estimated that the home manufactur amounts to over $20,000,000$ yards, yearly.

A Lecture on Thomson's Galvanometer
 ed to a bingle pupil in an alcovemith drawn curtain

 The lamp light falls on blackened walls, And streams through narrow perforations;The long beam tralls 0 'er pasteboard scales, Wie long beam tralls o'er pasteboa
With slow decayiog osclllations.
Flow, current ! flow! set the quick light spot fiving !
Flow, current! answer, light spot! fushing, quivering, dying. O look! how queer! how thin and clear, This gliding fire, with central wire The fins degrees distinctly showing.
8wing, magnet! swing ! advancing and recoding;
Bwing, magnet ! answer, dearest, what's your fing
O love! you fail to read the scale
Correct to tenths of a division, Correct to tenths of a division; To mirror heaven those eyes were gi
And not for methods of precision.
Break, contact! break! set the free light spot flying
Break, contact ! rest thee, magnet ! swinging, creeping, dying,
$\frac{d p}{d t}$ in Nature.
Extensive deposits of crystalized salphur have been dis. covered in the Beaver Mountains, three hundred miles from Salt Lake City.

