	NEW YORK, FEBRUARY 10, 1872

The Pennell and zimmer Dovetail and Shaping Machine.

This machine is designed to supply a want long felt by all zash makers.
The formation of the dovetail mortises on the stiles, and tenons on the check rails, of sash have heretofore been the cuost tedious and expensive parts of sash making, requiring skilled labor, and the use of at least fonr different machines, as well as from six to tew times handling the material to ac

NEW YORK, FEBRUARY 10, 1872.
$\left\{^{83}\right.$ Brantinnan
lever pin, C, is placed in the slot, L, (Fig. 2) and operated as for bottom rails.
For shaping circular sash or irregular moldings, the bolt, M (Fig. 3), is loosened, and that end of arbor, F, is dropped to the position indicated by the dotted outline bringing the bolt, M, into the hook, N, which places the arbor in a per feetly upright position. The belts are then put on the clutch pulleys, $\theta_{\text {, (Fig: } 2 \text {) the upper belt being crossed. The mo- }}$ tion of the arbor is reversed by a slight pressure of the foot

CHEMICAL EXPERIMENTS FOR YOUTHFUL READERS

From the British Photographic Journal Almanac

The series of experiments here presented are intended for the younger readers, for whose benefit they are presented in as attractive and even sensational style as possible, in th confident belief that no experiment here indicated will be performed by a youth without gaining by such trials an in sight, however small it may be, into some chemical action

THE PENNELL AND ZIMMER DOVETAIL AND SHAPING MACHINE.

complish the purpose. With this improvement, the work is all \mid on the lever, P, which connects with the clutch, Q. The $\begin{aligned} & \text { of which he previously may have been quite ignorant; and }\end{aligned}$
done on one machine, and more perfectly than is possible by done on one machine, and more perfectly than is possible by any method we have seen employed. An ordinary hand can, it is claimed, make at least ten dovetail mortises or tenons
per minute, or the joints for 1,500 windows per day, being per minute, or the joints for $1,500 \mathrm{wi}$
the work of some twenty skilled men.
the work of some twenty skilled men.
The rapidity of production, in comparison with the old
modes, is sufficient to attract attention to this machine, yet there areother advantages quite as important.
A shoulder is formed on the side of the stile which makes a perfect fit, and a much better and stronger joint. By a slight change, which requires but a few minutes, it is made to do the work of a shaping machine for circular sash or any irregular molding, thus obviating the necessity of a separate machine for that purpose.
Figs. 1 and 2 are front and rear views of the machine, and Fig. 3 is a detail view, showing the arbor, F , referred to below.
For dovetailing bottom stiles for check sash the carriage, A, is placed on the rails, D. The arbor, E , is adjusted to the bevel desired for the dovetail. On the arbor, \mathcal{G}, are placed two cutters, which form the straight side of the dovetail and the shoulder on the side of the stile, which is then laid on the carriage and passed through the cutters on E and G.
For top stiles, the cutterson the arbor, F Figs, 1 and 3, are adjusted to form the shoul der on the face side of the stile. The upper cutter on the arbor G being removed, the stile is passed through as before.

For bottom, check, and common meeting rails, the carriage, B, is placed on the rails, D, (as shown in Fig. 1) with the lever pin, C, in the lower branch of the slot, I, and the arbor E is adjusted to a perpendicular position. The rail is placed between the chipbreakers, K and passed through all the cutters. When returning, the car riage lever, C, is guided into the upper branch of the slot, I and the rail is reversed, with the shoulder placed to the gage, H , (which gives the length desired) and the operation is re peated.
For top check rails, the carriage, B, is reversed, and the
on the lever, P, which connects with the clutch, Q. The
cutters are so constructed that the work is done equally well with the arbor running in either direction to cut with the grain of the wood. It is claimed that by this machine are gained the advantages of rapidity of work, the obviation of the necessity of skilled labor, perfection and strength in the joints, and the means of manufacturing check rail sash as cheaply as common sash, with uniformity of work, so that parts may be made and laid away for future use and easily put to-
 hey will thus serve an educational purpose as well as con uce to the occasional spending of a pleasant hour. All the chemicals to be mentioned can be obtained readily

1. To make a milky liquid by the admixture of two colorless ones.-In one vessel, which ought to be made of glass, pour a little water, so as to half fill it, and add to it a few grains of common salt, which will speedily dissolve. In an other vessel, also half full of pure water, dissolve a few grains of nitrate of silver. Both liquids will be bright and colorless. Now pour one of them into theother, and the resulting mixture is thick and white like milk. When a solution of common salt, which is the chloride of soda, is mixed with a solution of nitrate of silver, the nitric acid of the latter salt combines with the soda of the former, forming nitrate of soda which is soluble in water, leaving the silver in combination with the chlorine, forming chlo ride of silver-a white powder which is insol uble in water, to which it therefore gives the appearance of milk. If paper were washed with one of these solutions, and then, after be ing dried, were brushed over with the other, the chloride of silver would be formed on the surface or in the texture of the paper. In this way is sensitive printing paper prepared.
2. To produce a yellow, cream-like liquid from two colorless ones.-To make cream in stead of milk, it is only requisite to substitute for the common salt in the previous experi ment a little iodide of potassium or any othe soluble iodide. The resulting precinitated pow deris iodide of silver When onidide of soluble kind is disolved in a clear varnish, soluble albumen or collodion a plate soch with or be of coated with such a body becomes of a dens yellow color when immersed in nitrate of sil-
ver. This is what takes place whenever a gether at any time, and an appliance for sheping circular \mid plate is sensitized

ash and moldings.

The machine is on exhibition at the S. A. Woods Machine Co's. salerooms, 91 Liberty street, New York, and 67 Sudbury street, Boston. For further particulars, address Van Gilder \& Goodlander, agents for the United States, Williamsport, Pa.
plate is sensitized.
3. To make smoke issue from two empty tumblers.-Mois en the inside of one of the glasses with strong ammonia and treat the other in a similar way with strong hydrochloric acid. Keep the glasses thus prepared at a distance of two or three feet from each other. Now, taking a juggler's li
cense with facts, direct the attention of the spectator to the perfect emptiness of the glasses, and, taking one in each hand, hold them up and bring them together slowly mouth to mouth. When a few inches apart from each other, smoke will be seen to issue from them ; and if they are held closely together, they will be seen to be filled with a dense white vapor, which will soon condense in the insides of each glass in the form of a white powder. This is a capital experiment for astonishing a few friends; but in performing it as a " trick," care must be taken that the pervious preparation of the glasses is not shown. Rationale: The vapor from the hydro. glasses is not shown. Rationale: The vapor from the hydrocal vapor, also invisible, and produces, by their combination, chloride of ammonium, or sal ammoniac, in the form of a white powder. If, instead of being moistened with the hydrochloric acid, the glass be filled with chlorine gas, the effect will be somewhat better.
4. To make a liquid that is blue when the bottle containing it is open, and colorless when corked.-Fill a small bottle with liquor ammonia, and place in it a few turnings or filings of copper, corking it immediately. It will remain colorless as long as it is closed, but after the cork has been removed for an hour or two, the liquid will have become of a blue color. Recork the bottle and it soon again becomes colorless; reopen it and it becomes blue as before. Ammonia has no action upon metallic copper; but when the copper is oxidized by exposure to the air it becomes soluble, the blue color being the result of a solution of oxide of copper in ammonia. When the bottle was again corked, the re mainder of the metallic copper extracted the surplus oxygen from the portion that had been oxidized and dissolved. It
is ouly when copper is highly oxidized that it produces a is ouly when copper is highly oxidiz
blue color in the above circumstances.
5. To produce fluids by the rubbing together of solid bodies. -Iriturate an amalgam of lead with an amalgam of bismuth, and a fluid like mercury is immediately produced. By the trituration or rubbing together of any of the following pairs of solid bodies, a tluid will also be formed: Sulphate of zinc and acetate of lead; sulphate of soda and nitrate of ammonia; or sulphate of soda and carbonate of potash.
6. By the mixture of two highly odorous bodies to produce an inodorous one.-The pungent odor of ammonia is too weil known to need comment. In'o a bottle containing some of this liquid pour, some hydrochloric or nitric acid. The odor of each vanishes, the result ng mixture being quite in odorous. Muriate or nitrate of ammonia is formed admixture, and these salts are quite free from smell.
7. By mixing two inodorous boties to form a highly odorous one.-Mix together in a mortar equal parts of sal ammoniac and quicklime. Ammoniacal gas is disengaged, which has a powerful and pungent odor.
8. To preduce a very hot liquid by mixing two cold ones.
-Half fill with water a small bottle capable of being easily -Half fill with water a small bottle capable of being easily held by the grasp, and then pour sulphuric acid slowly into it. The mixture will soon become so hot as to compel the person holding it to set it down. Th
too, will be found to have diminished.
9. A fine solid green pigment made by mixing together a blue and colorless solution.-Have two solutions made, one of them being of sulphate of copper and the other of carbonate of soda. Pour a little of the latter into the former, and the richly colored paint known as French green will be imme. diately formed and precipitated. Remove the liquid by fil tration. By this mixture, subcarbonate of copper, the pig ment above named, is formed.
10. To convert two clear and colorless liquids into a solid mass.-There are several ways of performing this experi ment, which never fails to excite intense wonder in those who are unacquainted with the working of chemical miracles. Here is the appearance presented by one of them, as I once saw it performed by a parlor magician. On the table stood two bottles containing apparently water, a glass tumbler, and
two glass rods for stirring with. The "Professor" first poured into the tumbler a portion of the contents of one of the bot thes, and then followed with some from the other, stirring the mixture briskly for a few seconds, when, to the surprise After this had been thoroughly examined by the astonished spectators, the " Professor," uttering a few meaningless words spectators, the "Professor, uttering a few meaningless words
from the jargon of jugglery, touched the mass with the end of one of the glass rods, and immediately the whole was con verted into a clear liquid. Explanation: One bottle contained a saturated solution of chloride of calcium, nud the other
a saturated solution of carbonate of potash. When they a saturated solution of carbonate of potash. When they
were mixed together, they were decomposed, chloride of po tassium and carbonate of lime being formed; and as the lat ter absorbs the whole of the water of solution, a solid body is maintained. The cause of its becoming fluid on being af terwards touched with the glass rod is simply this: One of the rods was a hollow tube, and contained in its interior a little nitric acid, which, having been adroitly poured on the solid mass, immediately converted the insoluble carbonate of lime into the soluble nitrate of lime. There are other compounds by which results of a similar nature can be produced. To a saturated solution of chloride of calcium, add a few drops of sulphuric acid. Salphate of lime (plaster of Paris) drops of sulphuric acid. Salphate of lime (plaster of Paris)
is formed by the reactions. One other method we give: Pour a saturated solution of caustic potash into a saturated solution of Epsom salts, and a similar result will follow. In this case, the sulphuric acid of the Epsom salt (which is sul phate of magnesia) leaves the magnesia to combine with the potash, the magnesia being precipitated as a white powder.
11. To produce an exceedingly intense light.-Into a dish like a child's saucer, put a small heap of saltpeter (nitrate of potash) that has been finely powdered and well dried. In potash) that has been finely powdered and well dried. In
the middle of this make a nest, in whitl place a bit of phos
phorus the size of a small marble. Now turn down the lights in the room, and apply a lighted match to the phosphorus, which will then burn with a light so intense as to burning eyes of those present. The heat caused by the the oxygen thus libecomposes the nitrate of potash, and rus to become intensely luminous. The room in which this experiment is tried must be well ventilated, as the fumes of phosphoric acid are noxious.
12. Experiments with iron.-(a) Write or draw on paper with a solution of sulphate of iron. Whendry, it will be in inisible; but if a sponge moistened with a solution of gallic acid or pyrogallic acid be passed over it,the previouslyinvisible writing is made as visible as if written with ordinary black ink. The sulphate of iron and the gallic acid react on each other forming gallate of iron, which is of a black color. Writing ink is made from this mixture. (b) If, instead of the gallic acid mentioned in the former experiment, a solution of prus siate of potash be employed, the invisible image will be developed as a fine blue color. By mixing solutions of sulphate of iron and prussiate of potasl, Prussian blue is formed; hence the blue color as the result of the experiment. (c) Make a rod of iron very hot (a white heat), and then apply the end of the rod to a piece of sulphur. The iron will immediately be fused and fall down in large drops, which must be caught in a vessel of water. If some of these drops be placed in a
little sulphuric or nitric acid, they will readily dissolve, but in doing so a smell of an extremely offensive character will be emitted. This smell will be immediately recognized as similar to that for which decayed eggs are so justly noted The hot iron combines with the sulphur when melting, forin ing sulphuret of iron. This dissolves in the acid with great readiness, attended by a copious liberation of sulphuretted
hydrogen, the offensively smelling gas alluded to. To the hydrogen, the offensively smelling gas alluded to. To the
presence of this gas in mineral waters is due their medicinal prosence of this gas and yet few gases are more poiscnous. Before leaving this gas, here is a pretty experiment that can be performed with it: Draw on paper any invisible figures with sugar of lead, nitrate of b° smuth, or nitrate of silver. These are invisible at first; but if a current of sulphuretted hodro gen be passed over the surface, everything is brought to light with the r tmost distinctness in a beautiful dark brown color If a current of the gas be passed into a bottle of ammonia the liquid is converted into sulphide of ammonium-a substance of much use in chemistry.

Progress of Submarine Telegraphs.

Among the cables brought to a completion in 1871 are the China cables. These were, first from Singapore to Saigon and Hong Kong, and again from Hong Kong to Shanghai, from Shanghai to Nagasaki, and from there to Wladiwostock, where the company's lines join the Russian system. It
will be seen that by these extensions we have two routes to will be seen that by these extensions we have two routes to
China, the one by the Great Northern line through Russia, China, the one by the Great Northern line through Russia to Singapore and China
The completion of the submarine cable from Java to Port Darwin. in Australia, has been too recent to admit of our ob taining details; but it is unq :estionably the fact that we are at length telegraphically connected with our antipodes. How soon it will be before communication is established with the southern and most inhabited portions, we are una ware, but in all probability the difficulties of erecting the verland line have been found greater than was anticipated Among the other completions are the Holyhead and the several West India cables. The majority of the islands have
been connected, and are now in telegraphic working order, been connected, and are now in telegraphic working order,
but the largest extension, that from Jamaica to Panama, is but the largest extension, that from Jamaica to Panama, is
still incomplete. It may be remembered that, in the attemp to lay this section, the cable broke, and, after some time spent in grappling, was temporarily abandoned, while the urther extensions were proceeded with.
The principal of the new cables manufactured and laid during the past year are the German cable from Borkum (Emden) to Lowestoft, a four wire cable (Willoughby Smith s mproved gutta percha) of very heavy construction ; the cabl several cables for the French Government.
The Cbannel cable, it may be remembered, was prevented rom departing by the Government, who had the opinion that t was a breach of the neutrality law. The cable and ship were, however, released, and the cable was laid for the
French Government; but some little time after the war was ver, a part of the cable was picked up to be used elsewhere The Mediterranean cable was a greater undertaking, and was successfully laid between Marseilles and Algiers, over the route of the old cable, which had been speechless for nde years. A fault, however, occurred after the laying by Mr. F. C. Webb. On this occasion, grappling was done in 1,000 fathons, and the cable recovered, a great feat, considering the rough bottom of the Mediterranean.
A small amount of cable was laid in the Hebrides by the Post Office. This amount would have been increased but for the disastrous fire, which took place at the Silvertown Cable Works and destroyed a large amount of cable and ma factory has been for some time again in working order A large amount of cable will be noticed as being mat A large amount of cable, will be noticed as being manufac-
tured for the Anglo-American and Falmouth and Malta Telegraph Companies; this was for repairs and alteration o routes. The Atlantic cables (both) were broken down during the early part of the year; and were not repaired until
June. The 1866 cable, being found to be in very bad ground, as was imagined, was removed further south, and an extra amount of cable -xpended; they have since remained in good
working order, and it is hoped they will remain so. The only othre Atlantic interruption occurred on the Duxbury section of the French Atlantic cable. This was soon repaired, no interruption to communication being caused by it. The repairs to the Lisbon and Gibraltar section occupied some time, and they not only included the removal of a portion of the cable from bad ground to a better place nearer the shore, but also laying a duplicate cable from Gibraltar, some Jittle distance above the coast towards Lisbon.
Of the other lines, no interruptions have occurred except to the Great Northern, China, and Japan extensions, the Hong Kong cable having to be repaired; and the Japan section is now again in working oider.
The Spanish Government have had their connection with the Balearic Isles renewed, and the Dutch Government have had a cable laid in the Straits of Sunda. The traffic from the West Indies to America has been found sufficient to allow of the duplication of the International Ocean Company's line from Punta Rossa to Key West (Florida).
From present appearances, the progre ${ }_{3 \text { s }}$ of submarine telegraply this year will be small. A company appeared for the extension of a cable from Spain to the Cape de Verde Isles and to Brazil, but as several parties appeared to lay equal claims to the concessions, the project has for the present fallen through.
The silence for so long of two of the Atlantic cables seems to give talk of the laying of a fourth cable, and also of the ossible acquisition by the British and American Govern ments of the existing cables. The laying o
we believe, is very likely to come to pass.

Pyroligneous Products.

One hundred kilogrammes of wood subjected to destructive distillation give 50 kilogrammes of a crude product containing: 2 kilogrammes of methylic alcohol, 3 of crystallizable acetic acid, 10 of tar, 15 of water, 20 of carbon remaining in the retort.
To obtain from this the acetic acid, requires a long and tedious process, consisting in saturating the acid with lime precipitating this lime as sulphate by the use of sulphate of soda, which leaves acetate of soda, crystallizing this out and igniting it to drive out the tar, crystallizing and recrystalliz ing; and finally distilling with sulphuric acid, which gives the acetic acid. In manufacturing pyroligneous acid, the product of distillation is simply allowed to remain in contact with iron turnings until the acid issaturated. To purify the crude article, the author offers a new method, by which the acid may be sufficiently purified to be made to unite with soda, alumina, copper, etc., while the alcohol is saved. By distilling the wood with ten per cent sulphuric acid, the acetic acid may be readily separated; also by this method a yellow compound, insoluble in water cooled below 15°. On distilling dry wood at a high temperature (about 700°), gaseous pro ducts and an oil of extraordinary illuminating power are ob tained. The method to be used is not precisely stated, but the author claims that a profit of over 18 francs can be made on every 100 kilogrammes of wood, by his process.- M Maiche.

How to Bend class Tubes.

It is well known that it requires some tact to bend a tube with an even curve and without collapsing its sides, and many chemists never do succeed in bending them skillfully. Although having no particular skill in this matter, I neve fail to bend them perfectly satisfactorily by using a flame different from the one usually employdd; the flame is on given by the Bunsen burner, described in my article on alkal determination in silicates. (See American Chemist, Vol. I page 407.) Use a Bunsen burner, having the extremity flat tened out so as to give a short and thin but broad flame something like the flame of an ordinary gas burner. The tube is placed in this flame and turned round and round until a good heat is given to the tube; it is then withdrawn from the flame and bent, when it does so with a perfect curv nd no collapse of the sides of the tube. Of course this is of an inch and more smaller tubes, but a thus bent very readily.-J. L Smith.

The San Gregorio Meteorite
Six meteorites from this region have been thus far noticed five of which have been analyzed by the writer. Of the sixth no specimen has as yet been detached. They were found witian or very near the boundaries of the Mexican Desert which is about 400 miles in width by 500 miles inlength, and situated in the provinces of Cohahuila and Chihuahua.
Professor J. Lawrence Smith advances the conjecture, based upon his analysis and examinations, that five of these meteorites were derived from the sameoriginal mass, moving over the territory from northeast to southwest. Two of these pounds respectively
The San Gregorio meteorite has an extreme length of six and one half feet, is five and one half feet high and four feet thick, and is estimated to weigh about five tons. An enaly sis gave: Iron, $95 \cdot 01$, nicke], 4.22 , cobalt, 0.51 , copper, a minute trace, phosphorus, 0.08.
The West Bloomfield Gas Well.-Prof. S. A. Lattimore, of Rochester University, has recently made a careful photometric test of the illuminating power of the gas of the West Bloomfield well, and found it to be $14 \cdot 42$ candles. He estimates the flow of the well to be 800,000 feet per 24 hours. The main to convey the gas to Rochester is being rapidly laid d ρ wn, and it is thought that the city will, before long, derive ail its light from this well. Who knows but gas wells
ape to play a more important part in the world than oil wells?

