Mr. E. B. Decker, of Carrolton, Greene county, Ill., has made an improvement in gates, which we here illustrate. The invention appears a good one, and is likely to obviate a great many defects in other farm gates.
Fig. 1 is a view of the closed gate It Fig. 1 is a view of the closed gate. It is constructed of uprightslats and hori zontal rails which, instead of being firmly connected, ara riveted together so as to be able to move freely round the rivets. The position of the gate
is maintained by the brace, A , which is maintained by the brace, A, which
diagonally crosses it. This brace is diagonally crosses it. This brace is composed of two pieces, which are riveted together as shown in the engraving, the rear end being pivoted to the hinge slat, B, and the forward end being supported, by its rivet, in a notch in the front slat, C, and, at the same time, bracing the front slat, so that it cannot fall lower and bring the gate out of position. It is obvious that, if the front slat were raised, it would allow the brace to fall into the next notch, and so on until the gate reached the position shown in Fig 2 in which the postion would firmly. 2 , in which the brace would firmly hold it. The brace will thus admit of the gate being raised without being opened, to allow of sheep, cattle, etc., passing un-
der it and to clear the winter snow; der it and to clear the winter snow;
while agging is prevented in any position.
Patent is now pending through the Scientific American Patent Agency. Further information may be had by addressing the inventor as above

IMPROVED PUDMLING TOOL.

The process of hand puddling, in the ordinary reverberato. ry furnace used for the purpose, can be divided into four stages:
(1) Melting. The pig iron, together with a proportion of hammer slag, is charged on the bed, previously lined with either puddling mine, bulldog, or both, and plastered over with wet hematite ore. As the castiron gets softened by the heat, it is broken into smaller pieces and stirred up with the cinder. This is done by the band rabble, which has to be continuously moved over the whole surface of the bed. This stage lasts about thirty-five or forty minutes.
${ }_{(2)}^{(2)}$ In the eecond or boiling stage, the iron has to be violently rabbled in order to bring it into a state of ebullition-or boiling. In this operation, the puddler has to exert himself very considerably, working the rabble to and fro, and from side to side, over the bed.
(8) "Coming to nature." The iron now begins to thicken and to get tougher and tougher; the "boil" stops, and it "comes to nature" or begins to assume the consistency of heated wrought iron. The puddler works it in this pasty consistency from side to side of the furnace, separating it into different pieces.
(4) Balling. The wrought iron is now collected into balls, varying in weight and size, ready to be taken out of the furnace to be hammered or squeezed into blooms. This stage takes about ten minutes.
In the ordinary mode of puddling, should the pig iron get entirely melted on the b \rightarrow d, it is a disastrous circumstance for the puddler. The bath of metal, with its even surface hidden under the lighter cinder, offers very slight surfaces of contact to oxidation. To meet this, he is forced to very violently exert himself in stirring up tha metal and he is obliged to shovel in quantities of ham wer slag, cinder, or other sources of oxycen, which ources of oxygen, which cool down the metal and ower the quality of th product.
There can be no doubt that an unaided man' trength is insufficient for this labor. Dr. Percy, whose opinion as a metallurgist, chemist, and medical man is universally known to be of the very highest importance,states DORMOY'S REVOLVING RABBLE APPLIED TO COMMON FURNACES.
five and fijori y of pudalers"die between the ages of forty- quired by the furnace; the high emperature of which, with and fifty years; and, according to the returns of medical men to the registrar, pneumonia, or inflammation of the lungs, is the most frequent cause of their death. This is what might have been anticipated from the fact of their exposure to great alternations of temperature under the condiion of physical exhaustion" They are also liable to catar ct induced by the intensely bright light of the furme act, induced by the intensely bright light of the furnace and the forearms and faces of some pudders are also often scorched to a bright red tinge in a curious way. As Dr. Per cy observes, "it is not surprising that puddlers should man-
ifest a growing disinclination to bring up their children to his occupation, to which, as a general rule, their strength
the attendant rapid current of air passing through, must not be interfered with.
A glance at the accompanying illustration will render the shafting paratus intelligible. A common belt, driven from ly jointed at one end to the furnace, rotates the sheave, loose turning on a in held in the hand of pudder. To prevent any jarring action to his hand, the pin he holds may be wound round with spun yarn or gasket, embraced by a leath. ern or india rubber tube. The strap thus rotates the rabble, supports part of its weight like a suspension link, and acts as a universal joint, much as in the familiar instance of the
ceases to be equal beyond the age of forty-five or fifty." On rotating hair brush. The belt must evidently adapt itself the puddler more than Adam's curse seems to have fallen- with ease to the great variety of positions which have to be copious drops transpire, not merely from his brow, but from taken by the tool in every part of the furnace, to the necesall his almost naked body, while engaged in what Mr. W. sity for removal when too hot, and to the progressive changes Bridges Adams has termed " the absurdity of setting a num- in the metal

DECKER'S FARM GATE

ber of human beings to stir up a metallic pudding in crder to throw off the scum."
To Mr. Edward Hutchinson, of Messrs. Pease, Hutchinson \& Co., Skerne Ironworks, Darlington, England, belongs the merit of having first invented and experimented with the revolving rabble. His trials were very successfully carried out as long ago as 1865, being, however, relinquished during the same year, and without having been published in any way. M. Dormoy quite independently took up the same idea nd has been perseveringly w rking it out since 1866 .
Any puddling machinery must be essentially simple and non-liable to get out of order by the roughest and most care
less usage. This simplicity required less usage. This simplicity, require ${ }^{\text {A }}$ by the men, is also re
 ing on the shaft; or the puddler could the ordinary way. If kept well greased, however, the belt lasts from three to four months without renewal. Any dim. nution in speed can be obtained by slightly relieving its weight off the belt-thus allowing more or less slip. On he other hand, any unusual resistance can be overcome by the puddler pressing the tool down on the belt. Simply by crossing the strap, the rabble can be rotated from left to right, or vice versâ, alte rnately, as required. The tools, in pite of their extra weight, are easily removed from the fur ace by taking them off the strap, by means of a hook on light chain suspended near the furnace from the roof, and aying them on small tre stles about eighteen inches in hight and width. The rabble can thus be changed in thirty seo onds. There is no chance of the tool disturbing the fettling, as it merely rests loosely with its weight on the bed, just as in hand working. Experience has shown that the revolving rabble involves no change either in the plant of the works or in the habits of the workmen: it could be adapted in a couple of hours to any common furnace: and the author has designed an apparatus that could be at once applied. The thing is also singularly cheap, as can be seen at the first glance; and cheap tackle-it can scarcely be called a ma-chine-means also cheap repairs.
A tool like this would do for the puddler what the slide rest has done for the metal turner. While actually increasing the demand for his labor, the slide rest has raised the metal turner from an overworked drudge to a skilled opera tive, able to work at his trade from youth to old age Even if the ironmasters were to use the revolving rabble merel to relieve their men, and without requiring a great. er number of heats from them, they would gain :-
(1) A great improvement (1) A great improvement in the quality of the iron produced; (2) a great diminution in the number of ruinous "cobbles" or " wasters;" (3) the capability of working up very gray or also inferiorkinds of pig, without uring "fined metal;" (4) dimi. nution of loss in mill nution of loss in mill Perhaps the the rolls. Perhaps the most im. portant truth which has been lately elicited touch. ing mechanical puddling is its effect in improving the quality of the puddled bar. Mr. Danks has worked np almost every kind of American and

British pig metal with excellent results as to quality. Mr. Adam Spencer has in his revolving furnace produced excellent iron from Middlesbrough metal containing 2 per cent of phosphorus. As already noticed, experience with oscillating rabbles points to more or less improvement in the quality. Mr. Hutchinson, as we have seen, improved the quality of Cleveland iron with his revolving rabble. M. Dormoy has pudded with success some old cannon balls the Turks left taining such a large quantity of arsenic as to be utterly intractable by the ordinary process; he has also operated at Zeltweg, in Styria, upon pig metal alloyed with copper and sulphur; upon the sulphurous pig metal of the Loire and
that of the Moselle-the latter containing very large per centages of phosphorus. In every case, perfectly tough iro and steel, often rolled into the most difficult special shapes have been produced. It is clear to the eye of the mechanic that all rise otherwise very differing apparatus are alike in one particular, namely, more or less thoroughly stirring up the first broken, then molten, and lastly pasty, metal, to gether with the fettling on the bed. The infinite variety of chemical conditions formed by the different kinds of pig and fettling, under which t :ese results have been obtained in Engiand, the United States, in France, Styria, Hungary, and Austria, clearly debar us from searching for any recondite chemical cause; and it is evident that, whether this thorough etirring be obtained by exhausting manual labor, or by an imperfect oscillating rabble, or by a revolving bed or a rerolving rabble, the mechanical effect must bs the same That is to say, the molten cast iron has to be continuously stirred up in order, in the common furnace, to expose it to the oxygen entering at the door and contained in the fettling in Mr. Danks' and Mr. Spencer's furnaces to the oxygen in the latter only.
There thus seem to be three principal reasons why me chan cal puddling, or, in other words, good puddling, pro duces such good iron. The operation is (1) completely car ried out; (2) the puddled bar is really homogeneous; (3) the multiplication of the surfaces of contact intensifies the puri fying chemical reactions.

Nevada Silver.

At the recent meeting of the American Institute of Mining Fagineers in New York, the President, R. W. Raymond read an interestivg paper on the silver mines of Nevada from which we talse the following:
The Euraka district stands now third in rank of the silve producing camps of Nevada. During most of the year, four and sometimes five furnaces (combinations ef the Rachette and Piltz) have been in blast. Late last year, and in the earlier months of the present year, the Eureka Consolidated Mining Company discovered immensely valuable and ex. tensive bodies of ore in the Lawton tunnel. Raby Hill is a spur of the diamond range. The openings of the Eureka Consolidated, as well as those of the Richmond and Tip Top are on the western and the new ones on the eastern slope. The strike of the ore body is nearly east and west, and it dip about 45 degrees to the northeast. For this reason ore was rirst discovered on the western slope of the hill, where the vein crops out.
The Lawton tunnel is now in over 600 feet, and passes 120 feet to the north of the Keyes shaft, between it and the windsail shaft. At its end, it is in ore. The Keyes shaf is now 175 feet deep and serves as the main hoisting shaft for the old works. 'These are the largest extant in broken quartzite.
The approach to the vein matter is distinguished by a yellow color of the first dense, afterwards broken, limestone; next by a stronger impregnation of pulverulent brown and yellow iron ore and stripes of the first; finally, the ore body proper-brown iron ore, with impregnations and bands of carbonate of lead or lead ocher, is reached.
While on the western slope, besides the yellow memetele large masses of solid carbonate of lead, with so called "black carbonate," which is probably a new mineral, and little gralena were found. The ores encountered on the eastern :l)pe in iron stained masses, which are poorer in lead, are principally highly argentiferous galena and "black carbon. ate" in lumps and nests of often over 100 pounds weight. For this reason, there is now much more base bullion praduced than formerly. Seven tuns of ore now produce one tun of lead, while formerly it required tea or twelve tuns. At Richmond, the best and most profitable smalting works in the State are building energetically. All signspoint to the enormous industrial increase during the coming year, especially if capitali.ts should take up the Prospect Hill mines.

The total product of bullion of the Eureka Consolidated, during 1871, was about 3,172 tuns. The average contents in mated as $\$ 250$ per tun. Adding $\$ 100$ per tun for the lead we have a gross value of $\$ 1,110,314 \cdot 10$. The gross value of the total produc ion of gold, silver, and lead, during 1871, by the various companies, including the Eureka Consolidation in Eureka, was $\$ 2035,5880$; the total quantity of bullion Elipped was 5, ifis tuns, 1,074 pounds.
All the base metal mines in the district have the same character as those previously described, and vary less in the classes of ores occurring in them than in the size of the ore bodies.

Window Sasies.-The most convenient way, to prevent loose wincow sashes from rattling when the wind blows, is to make four one sided buttons of wood, and screw them to
the stopes which are nailed to the face casings of the the stopes which are nailed to the face casings of the window, making each button of proper length to press the
side of the sash outwards when the end of the button is turned down horizontally. The buttons operatelike a cam By having them of the correct length to crowd the sash outwards, the sash will not only be held, so firmly that it cannot rattle, but the crack which admitted dust and cold air will be closed so tightly that no window strips will be required The buttons should be placed about half way from the upper to the lower end of each stile of the sashes

The Adrialic, a new and splendid ocean steamer, recently made the passage from Queenstown to New York in seven days and sixteen hours,--the quickest westerly voyage ever zuthe across the Atlantic.

Testing Telegraph Insulators.

Insulators usually undergo a most careful visual investi. ration at the factory, and all such insulators as are free rom mechanical defects subsequently have to pass through most delicate system of electrical testing, in order to prove that they are electrically sound, and are really insulators In spite of all the precautions taken, however, bad insula tors do show themselves on land lines. Whether they hav escaped the searching tests or have become bad after being put up, such is the case, and a great loss of the electric cur rent is due to the presence of bad insulators on a line-con ributing to much bad working.
These defects have made themselves seriously felt on some of the Indian lines, where the insulators adopted are porcelain, protected with a galvanized iron cover; and in order to detect the iaulty insulator without the necessity of emoving it from a pole, the following plan has been ar anged by Mr. Louis Schwendler, of the Indian Telegraph Department, and is presented in Engineering
The principle of the plan is to produce a seriés of electro magnetic currents, pass them through the defective insula

tor, and to measure these currents by the effect they pro duce upon the body of the person engaged in the testing operation. The annexed diagram will show the arrangemen of the wires and the details of the test.
M is a small magneto electric machine connected from one pole by No. 1 wire on to the insulator to be tested, and from the other terminal to the upper part of the small key, K, and also to the platinum stud f in C. The lower part of the key is connected to the insulator bolt and bracket; by pressing the metallic key with its platinum stud f^{\prime}, contact is broken between the points at b.
It is necessary that the wire No. 1 should be well insulat, so that no leakage beyond that due to insulator itlated. Before testing the insulator it should be properly cleaned, and a temporary disconnection made between it and the line wire; this should of course be done before the connection in the diagram can be made.
If the handle of the magneto machine be turned and cur rents produced, it will be seen that, if there is any leakage through the insulator, the currents must pass through 1 and 2 wires, and by means of the contact at b and K back to the machine; the slightest pressure on f^{\prime} will at once interrupt the circuit, but if the key, f^{\prime}, be pressed by one finger, and the stud, f, in C, by another finger of the same hand, the circuit will again be closed through the hand. And if there be any leakage, the elight positive and negative currents due to that leakage (forming a circuit) will be felt as shocks from the nachine, in a greater or less degree, according as the leakage is more or less. The amount of these shocks and, of course, the whole management of the test is in the hands of the one experimenter, who, while carefully feeling for the shocks with one hand, is with the other moderating the revolution of the machine to the requirements of the
t does not follow that, because no shocks are felt, the in salator is perfect. There is one more test which the experi menter can perform, but which should not be done until the finger test has failed. When such is the case, let one finger remain on f^{\prime} and touch f^{\prime} with the tongue; if no shock be then felt, the insulator may be passed as perfect, as the electrosensitiveness of the tongue may be considered as very great.
Togive a practical test of the value of the finger and tongue when applied to such a purpose, Mr. Schwendler made some tests on some insulators (whose resistance had produced from one of Siemens' magneto alphabetical instruments.

From the above experiments, it will be seen that, up to 1,000 Siemens' units, shocks may be felt by means of the fin-
gers, and beyond that and up to 8,000 the loss of insulation
can be detected with the tongue-an instrument which Mr. Schwendler considers the best for discovering faults of want of insulation, because it is sufficiently sensitive, never gets ut of order, and, besides, is the least expensive instrumen that one can employ.

Art Progress.

Dr. Dressler lately read a paper, before the Society of Arts, wherein he sald:
One of the cbief lipdrauses to the advancement of decora tive art is to be found in the designers themselves, many of whom are ignorant and have no art ability; while others who have, often produce works whicb, though beautiful in form, are inconvenientin use and consequently calculated to bring art into disrepute. The fitness of the ornamentation of an article to the use for which it is designed is the end to which designers must educate themselves.
Certain manufacturers may truly be regarded as hindrances to art progress. It is curious that there are many men who would not rob another of a farthing, and yet who eagerly look for every new pattern which more honorable manufac. urers than themselves produce, with the view of copying them if they be good and are not protected by registration, or of producing others as nearly like them as they can if they be registered.
Much has been said respecting the unwillingness of manu facturers to issue designs of an art character, and to pay such prices for patterns as will fairly compensate the designer for producing a carefully considered work. I bave had as much to do with manufacturers, I think, as most artists, and I am bound to say that I have found most of them both willing to try new things and to pay handsomely for well considered designs; but the manufacturer cannotbe expected to produce designs; but the manufacturer cannotbe expected to produce many patterns suc

That class of the public who are pleased with whatever is "loud" and showy immediately hinder the progress of art, since some manufacturers will strive for the patronage of the most vulgar taste; but this hindrance will disappear with the increase of art knowledge.

Retrigeration by lifeans of Ammonia.

A Tellier refrigerating machive, just erected in the largest brewery in New Orleans, owned by corge Merz, supplies the large storeroom, holding 5,000 barrels of ale and lager beer, with dry cold air at a temperature of 40°, the tem perature outside being 85°. The refrigerating agent is iquefied ammoniacal gas, and to cool this large room but en cubic feet of the material is required.
A large refrigerating cylinder, through which passes a number of pipes, is filled with the linuefied ammonia which vaporizes, rendering the pipes through which the air passes excessively cold. The ammoniacal vapor is subsequently compressed again into liquid form and returned to the cylin der to repeat the same operation without any waste of the material.
The Carré apparatus, another form of the ammoniacal ice and refrigerating devices, has been in ase in New Orleans and '「exas for several years with much success.

Dyeing Vencers.

It has been found that veneers soaked for twonty four hours in a solution of caustic soda containing ten per cent of soda, and boiled therein for half an hour, may be, after washing them with sufficient water to remove the alkali, yed throughout their mass. After being dyed, they must be dried between sheets of paper and pressed to keep thei shape. It is stated that if, after the veneers have been reated in this way, they are left for twenty-four hours in hot decoction of logwood (one part of logwood in three of water), then superficially dried and placed in a hot solu ion of copperas (one part of copperas to thirty of wate hey will in twenty-four hours be dyed a beautiful black.
A solution of one part of picric acid in sixty of water, with ammonia added until perceptible to the nose, dyes the ve neers a yellow which is not affected by subsequent varnish ing; and coralline dissnlved in hot water, to which a littie caustic sode and one fifth of its volume of soluble glass has been added, produces shades of rose color differing with he amount of coralline used.

The English Patent Laws.
The Select Parliamentary Committee on the Patent Laws have agreed to certain resolutions which they will recommend as the basis of legislation on the subject. They stat that the privilege conferred by letters patent promotes the progress of manufactures by causing many important inventions to be introduced and developed more rapidly than would otherwise be the case; and it does not appear to them that the granting of pecuniary rewards could be substituted with advaxtage to the puolic interest for the temporary privlege conferred by letterapatent. At the same time, the ex sting laws are defective and require improvement; and the Committee think that protection for a limited period, ard dating back to the time at which it was applied for, should only be granted for an invention on its nature aud particulac points of novelty being clearly described in a provisional specification, and upon the report of a competent authority that such an invention, so far as can be ascertained by such authority, is new, and is a manufacture within the meaning of the law. They further consider that all letters patent of the law. They further consider that all letters patent
should be subject to the condition that the manufacture should be subject to the conditien that the manufacture
should be carried on within the United Kingdom, and that should be carried on within the United Kingdom, and that
it shall be carried into effective operation, within a reasona. ble time from the granting of the patent, by the patentec or his licencees.-Pall Mall Gazette.

On the ditating of steel.

We believe that overheatipry has condemned splendid steel more frequently than anything else. "Make it woll hot that the shop; but when heating steel. don't follew the advice, for although it may seem to work easier when overheated, the error committed thereby will soon become apparent. All cast steel (exceptivg the comparatively new article, "chrome the most careful heating. The fire must be reculated by the size of the work; and in heating ihe stecl, beat the coals size of the work; and in heating the stecl, beat the coals
around the outside of the fire as soon as the flames begin to around the outside of the fire as soon as the flames begin to
breakout in order to prevent the heat from escaping. To save breakout in order to prevent the heat from escaping. To save
fuel, damp the coul and throw water on the fire if it extends fuel, damp the coal and th
beyond its proper limits.
To ascertain the heat of the steel, draw it out of the fire, and that often; for it requires to be well watched to heat it properly, snd if not hot enough, thrust it in quickly again; but be careful not to use a higher degree of heat than is ansolutely necessary to effect the desired purpose, and to use as few heats as possible. Steel is, essentially iron with a larger ingredient of carbon; therefore, too frequent heating or overheating burns out the carbon, and thus spoils its valuable character. Many smiths have the idea that so long as the steel does not fly to pieces when they strike it with the hammer, it is not too hot; but this is an erroneous idea, and easily proved when it comes to be hardened, and when it is brougbt into use. We therefore say again, that ne forger can be too careful in the heating process, and when ho
takes the heats. The practical eye will soon learn when it is takes the heats. The practical eye will soon learn when it is
leasted properly for forging. But few forgers will admit heated properly for forging. But few forgers will admit
that they spoiled the work by overheating, and yet this is that they spoiled the work by overheati
unfortunately most frequently the case.
On tiie Welding of Cast Steel.-For welding cast steel, a flux is required in order to prevent oxidation of the surfaces to be joined. For this purpose, use a composition consisting of sixteen parts of borax and one of sal ammoniac which has been boiled together over a slow fire for an hour, and when cold, ground in toa powder. The steelis first heated a little, then dipped in the flux, and the heating continued until the metal has attained the proper heat. The flux is then fused over the surfaces, and has dissolved any oxide of iron which may have formed. The two surfaces to be joined are laid together and struck continuously, working toward union of the orer to expel the fhus union of the metal. Shear steel is joined to wrought iron without difficulty; but when cast steel is to be welded to wrought iron, the greatest care is required, op else no
sound welding will be effected. By using the above men sound welding will be effected. By using the above men
tioned flux, it can be done; but in all cases where steel is to be joined to iron, the steel-no matter what kind-should never be heated to so high a degree of temperature as th iron.-T'he IIub.

Secondary Batteries.

It is well known how the Leyden jar discharges, in one strong spark, the sum of electricity it received from the elvetric machine. M. Plante connects a somewhat analagous apparatus with the voltaic pile. Two plates of lead (20iv
loag by Sin. wide) are rolled up in spiral, being separated from each other by a few strips of india rubber. This spiral is placed in a jar containing acidulated water, and hav iog a gutta percha cover, on which are fitted bindiug screws connected with the plates. Twenty such elements are placed in two rows of ten each, and charged from the
primary battery, which consists of two Bunsen couples. By primary battery, which consists of two Bunsen couples. By secondary elements may be cosinected either for quantity or for intensity. When the elements are joined in series, on electromotive force equal to thirty Bunsens is obtained, giv ing a current by means of which platinum wire may be
In the secondary couples, the chemical action generating the current is the reaction of hydrogen on peroside of lead tive carrent from the primary pile, having caused decomposition of the water, oxidizing one of the plates and developing lydrogen on the other
By the above arrangement, the quantity of electric work from the direct action of the primary pile is transformed by condensation. This case is somewhat similar to that of hydraulic press or crane. In a pile driver, $e . g$, a heavy body, raised by degrees to a great hight by a series of successive efforts, is then left to itself, and gires back at once the greater part of th', work thus expended on it. So, when, aiter charging, the secondary circuit is closed, the sum of the accumulated chemical actions caused by the primary current is given out in the form of a very intense current n quantity corresponds to the fall of a very heavy mass raised a amall hight; when joived for intensity, to the fall of a small mass raised to a great hight. It is not difficult to see how these secondary piles may become of imporiant use.

The Mastodon Bones.

At. a recent meeting of tine Cornell Natural History Seciety Mr. Seybolt read a paper on the skeleton of the mastodon lately exhumed on the farm of A. J. Mitchell, near Otisville Orange county, N. Y. The facts of the case were drawn from the personal observation of the speaker, and were consequent ly listened to with much interest. The skeleton was discov ered December last in a deep wet swamp. The bonas found up to the 1 st. of April were the ribs, vertebre, head, pelvis, and bones of the forelegs, indeed all the bones except those of the bind legs, lower jaw and tusks, which undoubted!y
will be found ere long. The head is of astmishing size and will be found ere long. The head is of astmishing size and
measures three feet sever iaches across the top and over
four feetin length. Of the teeth, the back tooth extends seven inches along the jaw and has a width of three incher. The tusk holes are seven inches in diameter and ext:nd three feet into the head. The shoulder blades are cach two
feet in l!ac: 3 and about the same in breadth. And the ribe, some thirty in number, measure in the longest bet ween five and six feet. The pelvis bone, which was taken out entire, measures in its greatest extent five feet seven inches. The eleton as: a whole is supposed to be the largest yet discov ered. When set up, it will be fourteen feet in hight and
twenty-five feet in length. Twigs of coniferous trees, leaves twenty-five feet in length. Twigs of coniterous trees, leaves
and other vegetable matters were found between the ribs, and other vegetable matters were found between the ribs,
and tufts of dun brown bair from two to seven inches in and tufts of dun brown hair from two to seven inches in
length were found outside. Concerning the deposits in which the skeleton was found, the upper layer, from five to fifteen inches in thickness, consisted of common black swamp dirt; beneath was a layer of coarse, fibrou; peat quite day in its character and varying from two to fou: and a half feet in thickness; below this was a stratum of coarse marl, a foot in thickness, then a curious, layer of grass, mat ted and quite well preserved; then enother layer of marl, below which appeared the clay which is supposed to underly the region roundabout. The bones were found chielly in the lower strata, but a few occurred in the upper. The swatup is at the eastern base of the Shawangunk mountains, and the under stratum sloped eastward, disclosing sea washed cobble stones and marine shells. The bones are of a brown ish col or, being und oubtedly impregnated with oxide of iron No disposition has yet been made of the skeleton, but it will be sold to the higheas bidder.-Cornell Era.

Adulterations.

While it is very difficult, and perhaps almost impossible detect the finer kinds of adulteration in the case of liquors we are fortunately able to follow the adulterator of the ordi nary articles of food, and to detect his practices with certainty. Add perfectly odorless spirit to brandy, and although the adulteration is notable and profitable, it is beyond the reach of the chemist. Add chicory to coffee, and although the chemist fails to point it out with certainty, the microscopist is not so easily balked. Before the searching power of this wonderful tube, the secret operations of the adulterator become as obvious as if performed in full view; for the microscope reveals to us the ultimate structure of the differ ent vegetable and animal substances, and as each has its own well marked characteristics, it is as easily recognized by the expert as are the faces of his friends by an ordinary observer No one who has ever seen potato starch could readily mistake it for anything else; chicory and coffee are so unlike tlat the difference is instantly perceived, and the smallest adaition of either one to a sample of the other is readily detected no, too, in regard to many sophistications of a purely chemi cal character. Red lead, added to vermilion, is easily sepa rated; sulphuric acid, or oil of vitriol, when used fo: the pur pose of iacreasing the strength of vinegar, is readily recog ized; sugar, when adulterated wich sand, may easily b the coloring matter employed for the purpose of converting wortbless tea leaves into the "best" grten tea, may without difficulty be identified; and the mineral matter, such as territ starch, used for the purpose of increasing the bulk or potato tarch, used for the purpose of increasing the bult and weight of confectionery, may be determined. There is a wide range
of cases in whic'a adulterations may be detected with ease of cases in which adulterations may be detected with ease
and proved with certainty. Some of the tricks of the wily adulterator show a marveilous ingenuity. Thus some per ons, knowing that most ground coffee is adulterated, never buy the ground article, but al ways procure the whole beans which they either grind themselves or get ground. To mee this case, the adul erator makes up a paste of ground chicory pea flour, and other cheap materials, and molds it, by ma chinery, into the form of the beans. These artificial btans are rolled in a barrel until smooth, roasted to the proper cols them the true coffee flavor. The fraud is of course easily de ected, as such beans quickly fail to powder when soaked in water; but this example shows the ingenuii y and painstaking f the fraudulent classes, who often spend, in efforts to heat, an amount of labor and ingenuity that, if devoted to some honest udertaking, would be certain to insure success
Any attempts to suppress the practice of adulteration must Any attempts to suppress the practice of pused upon certainty of exposure and punishment. How many children are robbed of their due amount of nutrimen by the vile practice of watering milk? How often is the plysician dieappointed in the effects of the medicines that he prescribes, simply from the fact that these medicines are not pure, some dishonest and avaricious druggist having adulter hast he might make a little gain
We feel satisfied that the practice of aduiteration will never be completely and permanently ciecked until the gor roment takes the matter fairly in hand, and enacts efficien -Profcssor Phin, in Good Health.

A School house in Copenhagen, Ienmark, is furnished $\{0$, 000 children; one session is held in the morning, 1,000 at tending, and a secontin the ufternoon, 1,000 attenaiing, both
schools being under the same general management. The system secures a happy union of bodily and mental exer cise, the scholars workins half the day.

A Nelv tin tea kettle takes a longer time to boil than an ld obe, because the bright surface reflects or throws off the sorbs the heat

Improved Cooking vessel.
For some time past, we have employed io our donestices ablishment one of Warren's improved cooking versels, and and it to be an imporant aad valuable adcition to t!ly culi nary service. It is, in fact, an antomatic cook, as performa its alloted duty with a great deal better judgment and far less fuss than the best forty doliar a-month French cook thist ver officiated over a stew pan.
The patent cook consists of a series of rembinus vessele, and, in using it, you simply placeyour roast letef, atesh, in atte! ham, fich or game and the various vegetables, each in ite feparate division, and set the vessel on the fire; where it manim for a specified time without any attention. It cannot burn, orer do or under cook, but when the time is up, you have the finest cookery that can be imagined, executed on stricbly scientific principles. That is to say, the coking is done at a temperature of not over 210° Fait, which, accoraing to Limitr, is the correct heat. A higher temperature coaguiatas tho albumen and renders meats tough and stringy. This uta chine is not a steamer but a roaster; but pou cau make
steamer, if desired, by shifting onn or two of the covers. steamer, if desired, by shifting onn or two of the covers.
By the ordinary methods of cooking, one third of the oriyiBy the ordinary methods of cooking, one third of the orizi-
nal weisht of the meat is lost by the evaporation of the juices but with this improved device this loss is to a great exten pravented, and the cooked food is greatly improvisi in quality Made by the Newport Lead Works, Newport, R. I.

A Hint to Nurses

You know what a racket is caused, even by the most care ful hand, in supplying coals to a grate or stove, and how when tho performance is undertaken by the servant, it bo comes almost distracting. If you don't remember, take notice the first time you are ill, or you have a dear patient in your care, or the baby is in a quiet slumber. Let some one bring on her coal scuitle or shovel, and revive your recollce tion. Well, the remedy we suggest is to put the coals in tittle paper bags, each holding about a shovelful. These can be laid quietly on the fire, and, as the paper ignites, the coals will softly settle in place. You may fill a coal scuttle or box with such parcels, ready for use. For a sick rom, a nursery at night, or even for a library, the plan is admirable. Just try it. Besides, it is so cleanly. If you don't choose to pro vide yourself with paper bags, you can virap the coals in pieces of newspaper at your leieure, and have them ready foz use when occasion requires.

preparation of Beet leaves for rodder

 Méhay maintains the entire success of his method of so preparing the leaves of the beet as to render them capable of preservation for several months as fodder, aud at the same time greatly improving their qualities as food for cathe. The methad consists simply in placing them in backets and im mersin : them in a tank containing diluted hydrochloric acid of 4° of Beaumé. The result of this is to greatly condense he volume of the leaves, and to render it mecossary to ad more fresh ones to fill up the basket, which has to be again mmersed, and dinally allowed to drain off. The leaves may then be placed in beds, in dry earth, and kept unitil neede for use. According to a report of a committee who exam ned the results of this process, domeatic animals become ex remely fond of the leavos thus prepared; and, indeed, wilch cows fed with them are said to give a lar re increase of milk, with a decided improvement in the quality of the bui er. The tendency to diarrhea in cattle produceit by tive resh beet leaves seems not to be developed by this prepared fodder, and for this and many other reassestit is strongly re commended to agriculturists.
source of Nitrogen in prants.

It is wall known that the quantity of mitrogen containced inthe crops exceeds in enormous proportion that existing in the manures, the excess undoubtedy leeing derived from the ir. It is now a question whether this is estracted directly from the air by plants, which would thus have the pomer of assimilating directiy, or if it is first taken fron the air by the soil, so as to combine with organic matter and forta \ddot{o}^{\prime} ssimilable compound. According to Deherain, oxygen, in he presence of organic matter, combines directly with nitrogen to form a compound analogous to the humus of the arth, or to ulmicacid. To illustrate this, he placed in a iube xygen, nitrogen, glucose, and ammonia. Oa dryivg the tube nd heating it, a black, nitrogenized matter was left, and a portion of the nitrogen in tine tube was found to have disap peared.

Regulating tie hatching of Shikwoim Eggs.-Du claus, after a careful observation of the external condition which favor and iufluence the hatching of the eggs of silk worms, has prepared the following rules, by attention to which it is said that the development of the rges can be reg lated at will. First, to prevent an egg from boing hatched at the usual time, it must be kept, fiem the period of buid aid, at a temperature between 59° and 63° Fahr., and then exposed fourtern days to cold, three montis before the fims at which the baiching is desired, being subsequently treated in the usual manner. To cause an egg to hatch before the sual time, it must be exposed to cold iwenty days after b ing laid, and kept in that condition for two months, and then removed. Six.weeks later it will be in the sam y condition a ordinary eggs, and can be treated in the same manuer. In
this way it is possible to have silkworms rady for inateling this way it is possible to
at any season of the year

Trie actual duration of a flash of lighteios does aut ix eed the millionth part of a second, Bat the retian of the a much longer periot.

