

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES.

Suspension Truss Bridge

Our engravings illustrate a light and graceful bridge, invented by Mr. John H. Diedrichs, an engineer well known to the scientific world by his valuable work on the theory of strains. His object was to produce a suspension truss for bridges which should be durable and economical in construc tion, and should secure from a given quantity of material a greater proportion of strength than is derived in any other truss system. This is accomplished principally by a novel and judicious distribution of the tie rods which connect the lower ends of the fendent posts with the top chord of the ncidge.
and posts may be made of wood or metal. In the first case the upper ends of the tie rods are secured, where they join to boxes placed upon the top chord, as shown in Fig. 2. In the second, the connection may be made directly to the me tallic top chord, as shown in Figs. 1 and 3. The lower end of the tie rods, where they project from the post, are united by a bolt passing through a vertical slot in the post. A strap is laid round the boit in the slot, and its two ends passed through a plate at the bottom of the post and secured by uts, as shown in Fig. 4. By this mode of fastening, th sion on them can be regulated with theirlength, and the ten
loud report. They are in use on some roads for night signals and in foggy weather, when lights or flags would not be seen in time to prevent accident. Track men are provided with these torpedoes, and in case of danger they are placed on the rail, far enough from the place of danger to prevent disaster. Usually three of them are placed, a few feet apart, to insure their being heard by the engineer. They are reliable, and will explode at the touch of the wheel at the slowest speed.
It is said that the Reading company uses 35,000 of these torpedoes per annum on the roads] which it operates. This is a good showing in favor of the contrivance and doubtles

DIEDRICHS' SUSPENSION TRUSS BRIDGE.

Fig. 1 shows the arrangement of these parts, which the following description will explain:
From the top chord of the bridge, which is properly supported on the buttresses, are suspended posts at suitable distances from each other, but of which posts there should be an uneven number pendent from every top chord. Tie rods or braces connect the lower ends of these posts with the but tresses and top chord; and these tie rods are applied in the following manner : From the lower end of each post, proje two tie rods in opposite directions, bent at equal angles, one

Aig. 2

Eiy. 3

, 9

of which is continued to the nearest buttress, the other to the juncture of a post with the top chord. By this means every post is connected with one buttress only, but the mid dle post, which is united to both. At the upper ends, only every alternate post is braced, provided they are equidistant, which arrangement is preferable in practice. The top chords
shows an elongated form of strap adapted to the support of transverse beams below the posts.
The contraction and expansion consequent on changes of temperature cannot give rise to undue strain on the parts of his bridge, as the tie rods projecting from each post are of from the above causes is also rendered impossible, which is feature of great importance. The system admits of the use of equally thick rods throughout bridges of considerable length, though the rods nearest the middle may be made somewhat thicker than the others. The peculiar distribution of the tie rods relieves the top chord of excessive strain, and the special bracing of panels is rendered unnecessary, while the general appearance secured is light and harmonious.
The improvement was patented through the Scientific American Patent Agency, April 2, 1872. For further information address John H. Diedrichs, care of Mr. C. Gewecke, 115 North Front street, Baltimore, Md.

Powdered Coal for Unhealthy Plants.

In a communication, addressed to the Revue Horticole, the writer states that he purchased a very fine rosebush, full of buds, and, after anxiously awaiting their maturing, was greatly disappointed, when this took place, to find the flowers small, insignificant in appearance, and of a dull, faded color. Incited by the suggestion of a friend, he then tried the experiment of filling in the top of the pot, around the the experiment of filling in the top of the pot, around the
bush, to the depth of half an inch, with finely pulverized bush, to the depth of half an inch, with finely pulverized
stone coal. In the course of a few days, he was astonished stone coal. In the course of a few days, he was astonished
at seeing the roses assume a beautiful red hue, as brilliant and lively as he could desire.
He tried the same experiment upon a pot of petunias, and soon after, all the pale and indefinite colored ones became of a bright red or lilac, and the white petunias were variegated with beautiful red stripes. Some of the lilac petunias became a fine dark blue. Other flowers experienced similar alterations; those of a yellow color alone remained insensible to the influence of the coal.

Railway Torpedoes.

A neat and effective device for securing convenience and safety in railroad operations is the "torpedo" or alarm signals. This little affair consists of a tin box about the size and shape of the smallest sized blacking boxes. The box is filled with an explosive compound, and two strips of tin are soldered to two opposite sides of the box, perpendicular to its sides or edges, for fastening it to the rail. These
many serious accidents are prevented by their use. They cost but a trifle. The Reading company is always ready to dopt good improvements. Some genius might do a good thing by contriving a plan by which a torpedo could be placed on the rail at drawbridges and switches in case of misplacement.

SELF-LUBRICATING BOX AND SHAFT BEARING
In this invention, centrifugal force is utilized for the pur

pose of lubricating upright bearings. Our engraving shows the several parts of the device, partly is sections and partly in perspective. A is the outer shell of the bow, which is lined with the composition metal, B. Through this lining uf.
right passages are made, as shown in tha engraving, extend ing from the circular oil chamber, C , to the top of the box 0 is a sleeva which projects upwards from the bottom of the \approx around the shatt and forms the inner wall of the oil chamber. It doss not touch the shaft. Projecting downward over the sleeve in to the oil chamber is an enlargement of the shafi shown at E. It is so chambered out as to admit the sleeve without truczing it. This enlargement is turned so as to forma a ta
Tee coneration is as follows: The rotatiog shaft carries with it the ulumpmorn", E , and produces centrifugal force in the it he whatymen and prodnces centringal force in the Gil rimin
lining, B, and through apertures therein to the sides of the beaing. The same force aiso carries up the oil between the bearing and the lining to the top of the box. Surplus oil at the top is returned by the passages to the oil chamber, into which the drippings from the bearing fall. The bearing is thus made to move constantly in oil, and when running a considerable spers never comes in contact with the box, as the esmitrigs, force developed is sufficient to keep a sheet of cil always between them under any ordinary pressure on one side of the shaft. This has been proved in practice; and mints filed on this principle, and rotating min the , have run for fourteex months without sensible wea months without re-oiling, as, by the construction, no oil can escape, and i! must consequently be all used up.
A patent for this device has been granted, February 13 1872 , to Mr. J. P. Grosvenor, of Lowell, Mass., from whom funter information may be obtained.

Chotera and Sun Spots.
Mr. B. . Jenkins recently read, before the Historical Soci ety of Lendon, a remarkable paper on cholera, in which he What tiner that the disease is intimately connected with auroral displays and with solar disturbances. "I believe that 1 am able to show that a remarkable connection exists between solar spots. You are all probably aware that the great as tronower Sch wabe discovered that the sun spots have what is called a ten year period; that is, there is a minimum of spots every ten years. It was also discovered that the diur nal variation in the amount of declination of the magnetic needle has a ten year period. The same was proved in re gard to earth currents, and also aurore. The maxima and
minima of the four were found to be contemporaneous. This was a great result; but Professor Wolf, on tabulating all the sun spots from the year 1611, discovered that the period was not ten years, but $11 \cdot 11$ years. This period is now the ac cepted one for the sun spots, and it has been established for the magnetic declination, and by Wolf for the aurore. Now, it is a curious fact that the last year of every century, as 1300 , has a minimam of sun spots, so that the minima are
$1800,1811 \cdot 11,1832 \cdot 2,1833 \cdot 33$, etc. The maxima do not lie midway between the minima, but anticipate it by falling on the year 478 after a minimum; for example, 1800 was a minimum year, then 180177 was a maximum year. Now cholera epidemics have, I belive, a period equal to a period
and a half of sun spots. Reckoning then from 1800, we get as a period and a half the date 1810.63 , which was shortly as a period and a half the date 1810.60 , which was shortly
before the great Indian outbreak; another period and a half gives 1833 33, a year in which there was a maximum of chol era; another, 1849.99 , that is, 1850 , a year having a maximum of calera; another, 1366.66 , a year having a maximum of
ciolsra; another, 1883.33 , as the year in which there will be a cholera maximum. It follows from what has been already said that 1783.33 would be a year in which cholera was at a mastuam. Now it i: a fact that in April 1783 there was pres outbreak of the discase at Hurdwar.
1 an not, however, prepared to say that sun spots originate Cholera; for they msy both be the effects of some other cause, which may indeed be the action of the other planets upon the earth and upon the sun.
My own opinion, derived from an investigation of the sub ject, is that exch planet, in coming to and in going from peri-elion-more especially about the time of the equinoxesproduces a violent action upon the sun, and has a violent sumathete sction produced within itself-internally
manifested by earthquakes, and externally by auroral displays and volcanic eruptions, such as that of Vesuvius at the present moment; in fact, just sach an action as develops the tail of a comet wheu it is coming to and going from perihe lion; and when two or more planets happen to be coming to or going from perihelion at the same time, and are in, or nearly in, the same line with the sun-being, of course aces a maximum of cun spots, and in connection with it a zaximum of cholera on the earth. The number of deaths fron cholera in any year-for example, the deaths in Calcut to duricg the six years 186570 -increased as the eart passimum wher it was in aphelion, and increased again when aninimum whe it was in aphelion, and increased again when ithes affording a fair test of my theory."

American Sallors as Firement
The American squadron, consisting of the Wabash, Con gress, Brooklyn, Flymutin, Shenandoah, Juniata and Wachu sette, under the c mmand of Admiral Alden, recently lay in
the Napoleon Basin, at Marseilles, France, amid innumerable the Napoleon Basin, at Marseilles, France, amid innumerable merchantmen of every description and from every nation. Shortly after midnight, an explosion startled the city, fol lowed by fire and dense clouds of heavy smoke which issued Irom an Italian ship just arrived from Philadelphia with
a cargo of petroleum. The nature of the danger soon be.
came evident, and it seemed impossible to prevent the spread ing of the fire from ship to ship, as they lay in such a mass,
and a general conflagration seemed imminent for the bouses and a general conflagration seemed imminent, for the bouses
extend dowu to the wharf on every side. No city of France has the means to extinguish a great fire, and hexce the peo ple gathered, contemplating the scene in panic stricken, fas inated horror.
Presently a well manned boat came from the part of the basin illuminated by the blazs and pulled directly towarl the burning skip. This was soon followed by another, then a thind, ten, twenty, all the boats of the American squadron A moment later men were seen on tho deck of the burning
ship. The silence of the people on the shore was such that they could hasar, through the smothered roar and crackle of the fire, the word of command and blows of axes. The peo ple are thinking of the hundreds of barrels of petroleum be low and its possible escape on shore and communication to ther slips, perhaps others with petroleum, and in imagina Hon conceived the whole surface of the basin covered with Dlazing cil. Presently the burning vessel began to settle
She had been scuttled, and her cargo wás now under water She had been scuttled, and her cargo was now under water,
the deck being level with the surfäce. The danger from the escape of burning petroleum was still imminent when a lin of boats, lashed together stem and stern, was seen pulling away, and as the file straightened out the buraing ship moved also, and was lowly towed out to the bay by over two mense cheer manned oars. It was only then that an in inexpressible saraitua? for the sulvation of the city.

The steam Jet Air whanst.

At a recent meeting of the Institute of Mechanical Engi neers, London, the President, C. W. Siemens, read a paper On a Steam Jet for Exhausting Air, etc., an the thent aving remained hitherto essentially the same as in the orig inal steam blast of the locomotive, it occurred to the writer that much might be one to improve its effect by a judicions arrangement of the parts, so as to avoid eddies in the combined current of steam and air, and to utilize more complete Iy the initial moruentura of the steam. These objects have now been effectually accomplished by the employment of a very thin annular jet of stealu in the form of a hollow cylindrical column discharged from an annular nozzle. The air to be propelled by the steam jet is admitted through an ex terior annular orifice surrounding the jet, and also through the center of the hellow jet; and the area of the air passages
is gradually contracted on approaching the jet, whereby tbe elocity of motion of the entering air is so much accelerated before it is brought in contact with the steam as $t \rho$ avoid the
great difference in the velocity of tie two currents at the point where they come together, which caused the eddies that previously impaired the efficiency of the steam jet. By the annular form of the steam jet, the extent of surface contact between the steam and the air is greatly increased and the quantity of air delivered is by this means very much augmented in proportion to the quantity of steam employed The combined jet of steam and air is discharged through an expanding delivery pipe of considerable length, in which its velocity is graduaily reduced and its momentumaccordingly utilized by being converted into pressure.
This improved st:an:1 jet has been applied for exhausting One of the pucenusitis despatch tubes employed at the Centra Telegrayh Station, in London, for conveying the carriers con taining telegraphic despatches from one station to another
The result of a comparative trial made with the steam jet The result of a comparative tr:al made with the steam jet and with a froat steam engine and exhausting pump has been
found to be :Lat the expenditure of steam is about the same in the two cases in doing the same work, the advantages of the steam jet being its very low first cost in comparison with that of the engine and pump, and also its great simplicity, and the small space occupied as compared with an engine and pump.
Another application of the steam jet is to the lifting of water from a moderate depth, by employing the jet to ex haust the air from a closed vessel, into which the water then rises under the pressure of the atmosphere, the hight of lift depending upon the size of the jet and the pressure of steam, The discharge from the steam jet, being then admitted into the top of the vessel, allows the water to escape through a elivery valve in the bottom and aids in its expulsion. By using a pair of these vessels in conjunction, and patting the exbausting jet in communication with each alternately, by
means of a seif acting float and reversing valve, one vessel is filling while the other is discharging, and a continucus deliv It of water is thus obtaine
It is also proposed to apply the steam jot for exbausting the vacuum pans employed in sugar bolling, so as to dispense with ths present costly vacuum pumps and steam evgiae and the condenser for condensing the vapor from the evapo rating pan; the supply of condensing water, which in many places in the sugar growing colonies is a consideration o steam jet is further expected to prove very useful for draining the molasses from the sugar, by exhausting the air from below the parforated bottom of a strainer containing the undrained sugar, whereby the present modes of draining by ravitaicu or by centrifugal strainers can be supersedel riti ad vantage
Numerous applications have been mate of the steam jet as a blower for accelerating the distillation of fuel in gas pro
ducers for heating purposes, the jet being admitted into the space underneath the fire grate, which is enclosed by doors By this means it is found that coal dust of the most inferior
dessription may be used, and the rate of production desseription may be used, and the rate of production of the
gas is doubled, while at thesametime its quality isimproved,
owing to the generation of hydrogen from the steam which enters intermingled with the air
A specimen was exhibited of the steam jet apparatus; and the particulars were given of the proportions which have
been found by experiment to be attended with the greatest efficiency, rendering the jet capable of realizing results comparable with those obtained from a steam engine working an air pump.

British Army Telegraph.

For this service there is at present one troop of the Royal Eogineer traiu which is divided jnto three sections, each car rying twelve miles of wire, in half mile lengths. These pieces can be conveniently joined by an ebonite jointer which makes a practically watertight joint in less than half a min ute, and which in the case of searching for faults, can be nndone in even a less time. The cable consists of a strand of seven No. 22 B. W. G. copper wires, insulated by Hooper's compound and made three inchesthick; it weighs 300 pounds per mile. For service it is carried on wooden drums, which again are placed on the " wire wagons," and are to be dra wn by six hores. The wagons consist of an under carriage
wheels of an ordinary service wagon, the whole made as lifit wheels of an ordinary service wagon, the whole made as light
as possible of "Clark son's material." Upon this carriage are as possible of "Clarkson's material." Upon this carriage are ranged six drums in two rows, so placed on framework that the wire may be paid out as required from the rear drum as the wagon advances. Thus on each wire wagon is carrita three miles of wire and $t w o$ dozen iron poles intended to lit the wire overhead when passing the insulation is so moren deal of ill treatment, such as carts and carriages passing over it wheu laid unprotected on a hard macadamized road, yet it is not to be expected that any thing less durable than a rod of iron could stand the traffic of an army. The poles are formel of wrought tron tubing in two lengths, the butt ten feer long and one and a quarter inclit in diameter, the top n° ne feet long and one inch in diameter fitting inside the butt and fas'ened, when in use, by a bayo net catch. These poles can be stayed, if necessary, by three guys provided for the purpose. The wire is held in a woode plug which fits into the top of the pole.
There is also carritd, by each wire wagon, a hand barrow which is fitesi with legs, and, as occasion demands, with wheels, so that it is capable of taking a drum of cable when the wire wagon may either not be able or not required to go. There are, moreover, $\mathrm{t} \boldsymbol{\mathrm { J }} \boldsymbol{\mathrm { wr }}$ whight iron earth plates eighteen inches long, four and a half inches wide, and some one half inch thick, which aree strongenough toba driven home in any possible soil, and a six gallon cask of water to insure some moist earth. This, with a jointed ladder of two nine feet lengths, and some spikes to lift the wire on to a wall if want ed, comprises the main part of the furniture. There is a very ed, comprises the main part of the furniture. There is a very wire when laid out can be rolled up by the action of that wire when laid out can be rolled up by the action of that
wheel. Finally, there is a little hooked stick for lifting the wh eel. Finally, thera is a little hooked stick for lifting the
wire as delivered on to the hedges or fences which ordinatly wire as delivered on to the hedges or fences which ordinarily
bound the road. The office wagon. not unlike a travelling photographer's van, contains a pair of Morse recording in struments fitted with Siemens' polarized relay, and with Ifig. ny's felt ink roller, which has been deliberately preferred, to the possibly more scientific arrangement of Messra. Siemen s, as being more portable. The pattern of battery at present in use is a form of Daniell's, arranged for portability by Sergeant Mathison, R. E., of the Electrical School at Chatham. This school is intended to facilitate the training of men from the ranks to the duties of telegraphers.

Thermometrical Experiments.

The Providence Journal describes the following interest. ing experiments made in that city with an excellent slass mounted thermometer.
In the hoase with open windows, it stood at 902°. Out of doors in the shade, at 95°; freely suspended in the sum, six feet above the greensward, 995°. In the same position, with wet bulb, 79.9°, with bulb coved with black silk $109: 96^{\circ}$ When laid upon the grass in the sun, it rose to 104°. Laid upon white cloth, placed upon the grass, $105^{\circ} 0^{\circ}$, and whe similarly placed upon black silk, it indicated 113°.
The experiments with different colored coverings show very conclusively the utility of light colored clotiing for those who are obliged to be exposed to the direct ravge of the sun at high temperatures; and the experiment with the wet bulb shows as clearly the value of free perspiration in keeping down the temperature of the body, which, however, the observer finds in his own person, notwithstanding the perspiration wbile making these experiments, to have risen to 100.5°, which is about two degrees above the usual standard for cooler days. The average temperature of the healthy human body throughout the year, in temperate climates, is 34°; while in tropical regions it is about one degree higher

Durtng a recent fire at Ithaca, N. Y., one of the steamers was stationed on the high bridge over Fall Creek, just below the foot of the main fall. When tha fire was nearly out, the bridge, without any warning by cracking, fell, carrying with it the engine and the people who had congregated there to the number of about 200 . The bridge was 20 feet
above the water, and the whole of it went down tagether above the water, and the whole of it w
Fiften persons were seriously in jured.

Several citizens of Sacramento, Cal., having been poisoned by the use of what is there known as the "Eanitary com posite" water pipe, the Board of Health have ordered its use to be discontinued. Water flowing through this pipe was pipe in question is bolieved to be composed of a species of brass,

