## Stimititic gmmirn.

MUNN \& CO., Editors and Proprietorg. m0. 87 PARE ROBLISHED WERKLY AT $\quad$ (PARE BUILDING) HEW IORE O. D. MUNN. A. ह. BEACH.
(T) The American News Co.," Agents, 121 Nassau street, NewYork. e New York News Co.," 8 Spruce street, New York A. Asher \& Co., 20 Unter den Linden, Berilin Prussia, are Agents


OL. XXVI., No. 23. [New SERIEs.] Twenty-seventh Year
NEW YORK, SATURDAY, JUNE 1, 1872.


A FEW WORDS OF ADVICE AND ENCOURAGEMENT TO NVESTIGATORS AND INVENTORS.

Persons enlightened enough to follow the line of pursuits of which we spoke in our last (page 351), namely, informing themselves by consulting and investigating the transactions of learned societies and the back volumes of scientific journals, complain often as to the difficulty of finding details on particular subjects; and we confess that there is some difflculty, and consequently labor of that peculiar kind which the truly scientific mən understand too well, but are too wise to shun. However, the assertion, which we have often heard, that success in such researches is next to impossible, and that scientific discoveries, when inserted in the annals of learned societies or in scientific journals, are buried there, we totally deny. The finding of data on any peculiar subject is an art which, like all others, is attained by practice; besides which, a peculiar condition of mind, enabling persons to con centrate their judgment in this direction, causes some to be very successful in such labors, while others fail. We hav had the experience of several assistants in our private labor atory, some of which were rather unreliable in practical expe rimenting and totally untrustworthy at the balance, but had always the most eminent success when sent to a library in order to hunt up, in the transactions of societies or in scien tific journals, data relating to any branch of physics, chemis try, or technology
Of great assistance are the collected indexes which some societies publish from time to time, and which some journals publish periodically. For the benefit of science, it is desica ble that this example were generally followed, and that these indexes were made as full as possible, in which case such an index makes a journal almost equivalent to a scientific cyclo pædia. Any one who possesses back volumes of the
ScIENTIFIC American, and consults the alphabetical index which is appended to every volume, will agree with this statement. The British Royal Society has published already three indexes to its transactions, and the French Academy to a great portion of its Mémeires. The same can be said of the first thirty-one volumes of the Comptes Rendus, and of the first ten volumes of Wagner's Jahresberichte. Also the "Philosophical Magazine" has its collected indexes. The British Royal Society promised, long ago, the publication of indexes of the principal European journals, whether English German, French, or Italian. However, these indexes will not contain the subjects, but the names of the scientific men who have labored and published their results. This may appear a drawback; however, when we then refer to the name in a biographical dictionary, we may get the references we want, and, at the same time, many other details, which not only increase the interest, but put us on the track of a great deal more.
Libraries such as the Astor, American Institute, and seve ral others in New York, Peabody in Baltimore, and many other public libraries, in Philadelphia, Boston, and, forta nately, now in almost every large city on this continent supply the means for ascertaining the history of almost any subject of scientific research. When such a research is once commenced, the student will, while his material accumulates, be always surprised that so much is known respecting the subject under investigation. But, in place of being dis couraged, the truly scientific mind will commence to feel, not only a lively interest in it, but a sort of affection for it It will occupy many of his thoughts, and, if the nature of the subject and his circumstances allow it, he will try experi-
menta of his own. If, then, he is so happy as to discover
something really new, his interest will not only be increased a thousand fold, but he will enjoy that delightful and noble self gratification known only to those who, in the paths of Science, discover a new fact, whether it be a geometrical theorem, a new chemical compound, a not yet discovered de tail in regard to the properties of sound or light, or an rovement in an apparatus, or even an entir of mechanism; in either case, the delight is unparalleled by any enjoyment which can befall human nature.

## the Great musical JUbilee.

The Bostonians are to give us another grand Musical Jubilee this year, to open June 17th and close July 4th. An mmense building is now in progress of erection at Boston, which is to be supplied with a gigantic organ. The roaring ctavos are to be produced by cannons fired by electricity he electric keys being placed on the organ and operate like the other musical keys, by the organist. The clanging
notes are to be done by means of a chime of church bells, notes are to be done
also worked by keys.
The grand choruses will be sung by twenty thousand per formers, representing some two hundred musical societie rom all parts of the country.
The orchestra will be made up of one thousand selected musicians, which, with the military bands, American and oreign, will constitute in all about two thousand player New York. it is expected, will furnish five hundred of thi number; while Boston, Baltimore, Cincinnati, Chicago and ther cities of the South and West will make up the mainder.
The instruments for this select orchestra will be as fol ows: First violins, 250 ; second violins, 200 ; violas, 150 ioloncellos, 100 ; contra basses, 100 ; first flutes, 12 ; secon futes, 12; first clarionets, 12; second clarionets, 12 ; firs boes, 10 ; second oboes, 10 ; bassoons (first, second, third an fourth), 20 ; French horns (first, second, third, and fourth), 24 trumpets, (first, second, third and fourth), 24; alto trom bones, 12 ; tenor trombones, 12 ; bass trombones, 8 ; bas tubas, 6 ; tympani (pairs), 6 : small drums, 10 ; bass drum 4; cymbals (pairs), 4; great drum, 1; great triangle, 1 otal, 1,000 .
The building, it is calculated, will seat not less than on hundred thousand people. The chorus and orchestra will nearly two acres, while nearly three acres wil in diameter. The frame has just been completed.
Each programme will contain one or more familiar hymn o be sung by the full chorus and audience together. This will be "congregational singing" on a large scale. Among he pieces of this description named are Old Hundred.
The music, for the greater part, will be sacred. The se lections announced are principally from the great masters Mendelssohn being most conspicuous. Handel's oratori "Israel in Egypt" will be given entire, by a chorus of sing ers familiar with the music, resident in Boston and its ad acent towns

## A GIGANTIC RAILWAY CAR.

Among the mechanical novelties, to be seen in operatio at the Grand Central Depot in this city, is a steam railway car seventy feet wide which travels on a track of correspond ing width.
This great vehicle is made in the form of a low platform ar, and the track on which it runs is provided with four rails, extending from Fourth Avenue to Madison Avenue The car is used for the lateral transfer of passenger cars rom the main tracks of the Hudson River, Harlem, and New Haven Railways to the various side tracks, thus avoid ng the use of turntables. The car is propelled by steam the engine and boiler being contained within a sheet iron ouse carried on one side of the machine.
The cars to be transferred are run upon the great car steam is then turned on and the huge machine trots off with its burden with as much ease as a horse draws a buggy. The achine is supported on eight wheels, arranged on indepen ranged upon one axle. It was proposed not long ago to con struct a grain railway from New York to Chicago, on a gage of 12 feet. That was considered a big thing in the way of broad gages. But it is a pigmy compared with this eventy foot gage railway and locomotive of the Grand Cen seven
tral.

## TIN FOIL---ITS USES AND MANUFACTURE

Every one is familiar with those soft pliable sheets of netal, generally known by the name of " tin foil," with which packages of spice, and tobacco are enveloped. The name it self is a misnomer, for the material of which these leaves are made is rarely pure tin, but generally an alloy or mix ture of tin and lead, with often a large preponderance of the latter. The lead is added, not only on account of its render ing the composition cheaper, but also because it gives to the in alone

## n alone.

Before touching upon tin foil, our subject proper, we per aps should mention a species of foil which, though almost entical in appearance with the former, is made entirely of ead. It constitutes the linings of those tea chests in which the poorest qualities of tea are imported. The metal of
which it is made is carried to China from England in large quantities, averaging some 4,000 tuns per year. The method of manufacture formerly in vogue among the Chinese was exceedingly primitive, as they merely pounded the lead until it attained the requisite tenuity, but in 1858 a rather ingen
ous invention was patented in England which we believe i
still in use both in that country and in China. The sub joined description will doubtless recall to many of our read ers the machine, constructed on essentially the same princi ple now employed for cutting the so called "wood hangings" or thin veneers of wood designed to take the place of wal paper. A cylinder of lead is cast in a mold, having a man rel or core in its center. To this cylinder, when cooled, knife or cutter equaling it in length is gradually brought up antil it shaves the surface, the cylinder rotating while bein cut. The mechanical arrangement is such that the cutting blade advances gradually toward the axis of the cylinder and the rate of this advance determines the thickness of the film. The sheet is received on a collecting spindle which is removed as soon as filled
Tin, as is well known, is extremely malleable, being fourth in this respect on the list of metals, so that it is readily rolled or beaten into very thin sheets. The old method of produc ing these was simply to hammer the metal on a large flat stone or anvil. One sheet at a time was completed, and the work were obliged to use their long handled hammers with much skill, not only to render it of even thicknes hroughout, but also to avoid pounding holes through its thinner portions. Now, however, the rolling mill has super seded the hammer. For the heavier foils, plates of metal of about half an inch in thickness are cut and simply rolled be ween powerful steel rollers until they become sufficiently thin. For the more delicate leaves, the process is much mor elaborate. Bars, for example, 14 inches long and $1 \frac{1}{2}$ inche hick, are rolled out to a length of some six or eight fee Several of these are placed one upon the other and again pu through the mill, their lengthbeing thus increased to twelv feet. The sheets are then cut in two, again piled as abov described, and once more rolled, this time both lengthwis and in the direction of their width; and so the process is re peated until the requisite tenuity is obtained. In order to prevent the adhesion of the rollers to the metal, the upper and lower sheets of each pile are oiled as they pass through the machine: The last stage of the process consists in pilin the leaves in heaps of thirty or forty, cutting the edges and pounding them smooth with a wooden hammer. The sheet are then assorted or further cut up for smaller sizes. Massi eri has lately introduced a new method for casting plates of tin of great thinness, which consists in pouring the flui metal on a cold stone. This process has the advantage of apidity, as a sirgle man can easily make some 900 sheet per day, which only need to be slightly rolled to rende them ready for the market
As we stated in the beginning, an alloy of lead and tin i generally used in this manufacture. The proportions of the different metals for the purpose are not definitely fixed, bu seem to vary according to the ideas of different manufactu ers, each one of whom keeps his own notions on the sub ect, as well as all information relative to the especial de tails or cost of manufacture of the foil, a profound secret We learn however that, of late, alloys containing lead hav fallen into disfavor, on account of sundry cases of lead poisoning which they have been instrumental in producing One instance of late occurrence which took place in thi city was that of a devotee of tobacco who was rendered dan gerously ill from masticating the foil with which his favor te weed was enclosed. To obviate such difficulties, the lead now made in a separate sheet and placed between tw leaves of tin. The whole is then rolled together, so that while the inside of the foil contains the cheap and injuriou metal, the exterior, which comes in contact with the sub tance enveloped, is devoid of bad effects.
Pure tin foil is in use, though in a limited number of cases. Large sheets of it are employed in the manufacture of mirrors; these, of course, are extremely thin. Anothe variety, of not over $\frac{150}{} \sigma^{\circ}$ of an inch in thickness, is "whit Dutch metal," used for ornamentation in theatres and fo other purposes in which silver foil would be too costly. Dentists occasionally fill teeth with a quality somewha hicker than the foregoing, as it packs with nearly as much readiness as gold. Lastly, pure tin is used in those soft tubes in which artists' pigments are contained. For thi purpose tin is better than silver, as it has no affinity for sul hur nor is it affected by any oxidizing ingredient which the paint may hold in composition.
Ordinary foil made, as already described, of tin and lead is valuable for enveloping any material from which it is de irable to exclude the air. It is generally used in its differ ent varieties to enclose cocoa, chocolate, spices, druggists reparations, corks of wine bottles, etc, though it is mos argely employed as wrapping for chewing tobacco, one manufacturer in this city (Lorillard) alone consuuing some 0,000 pounds per month. Sign painters find a use for it in making a kind of fancy sign, the leaves being placed be hind letters traced on clear glass, producing the effect of in laid mother of pearl. This, however, is a probable imita tion of Chinese lacquering, which is done on a groundwork of he same material
In the market, three varieties of tin foil are found. Of these, tobacco foil is the thickest and cheapest (probably because it contains the most lead), selling at wholesale for 23 ents a pound. No. 2 foil, generally used by druggists, is the next quality, the price being 32 cents, while the thinnest variety is tissue foil, at 40 cents a pound. A great portion of that used in this country is necessarily imported, as there only one manufactory now engaged in its production in the United States.

As an accompaniment to the Grand Jubilee at Boston, Professor King, of that city, is manufacturing a gigantic bal loon, capable of carrying fifteen or twenty passengers. This great flyer is to be aalled the "Colossus."

