CITY OF LONDON LIBRARY AND MUSEUM.

Our engraving gives a view of a handsome edifice ad joining Guildhall, London, recently erected by the corporajoining Guildhall, London, recently erected by the corporary and museum.
The style is gothic, to accord with the Guildhall, and the external facing, stone. The museum is on the lower floor, and is over 83 feet long by. 64 feet wide. The library is above it, and is 98 feet long and about the same width as the museum. Adjoining the library are a public reading room, 50 feet in length,
and a commodious committee room. A flight of stairs leads from the librain to a veabule opll Biond hall. Below are strong rooms and apartments
for muniments and arfor mun
chives. chives.
This commodious and appropriate building has reflected credit upon all engaged in its erection, and we would like to draw to it the attention of our own architects of public buildings.

The city architect, Mr. Horace Jones, prepared the design, and the contract to camplete the building, in accordance with it, was entered into for $£ 21$, 360.

improvements in
 Wheel Making.

One of the difficulties in making light carriage and buggy wheels has been to get a tight spoke and felly joint. One reason why this so often fails, and so many poor jobs are made, is, that if a round tenon fits very tight in a round hole, the driving on will often split the felly. This often occurs with the very best straight grained timber

All wheelwrights know how very diffcult it is to put on a light hickory felly tight and not split it. If, however, they are not split when put on, carriage makers know how often they give way afterward, and way afterward, and how many light car riages are disfigured by the bulging and swelling of the felly at the tenon of the spoke. As a remedy for this difficulty, Mr. Jacob Woodburn, of Indianapolis, has applied to the Sarven wheel the following new principles, which are claimed to work very advantageously. Of the first he writes: "We make a tight joint, first, by making the tenon of the spoke oval; and, instead of doing this by filing and shaving, which is untrue and uncertain, we have a ma: chine tbat turns the ten on perfectly smooth and

applies to all wheels. The second invention of Mr. Wood burn will be best understood by the following description by himself. He says:
"Our long experience in making wheels has shown us that while the oval tenon is a very great improvement upon the common methed, yet it only partially removes the difficulty. The best timber, under the extraordinary pressure and strain brought upon it by rough roads, crossing the rails of street railroads, etc., will sometimes split, and, this giving way, the spoke becomes loose. This is a great annoyance and expense
to the owner of the carriage, and mortification and damage

Many carriage makers are in the habit of paying but little attention to their thread cutting tools; but the thread of bolt or clip or nut will bear no more tampering with tha the mainspring of a watch, and to attempt cutting thread upon bolts or clips with an imperfect screw plate, or to at tempt cutting a nut with a worn out or useless tap, is no thing more than tampering with the thread. We would say to any correspondent on this subject, that he can himself re pair his screw plates as well as any other person. To re produce the thread in the dies, if they are heavy enough to allow of it, first redu the temper by anneal ing. A good and easy ing. A good and easy
method of doing this method of doing this a metallic box, hea a metallic box, heat the dies to the required heat and deposit them in the sawdust, and le them remain until they are perfectly cool. Af ter the dies are an nealed, we reduce the dies in width just suf ficient to allow of the emoval of all the old hreads; after which we place them in th plate and commenc cutting the thread by means of the plug tap To cut with a taper tap vould not be so effec ive, and would have endency to strain th dies and their bearing n the slide of the on th

The following are the o the inch; ${ }_{1}^{16} \mathrm{in}$. di the inch the inch; $\frac{1}{2}$ in. diame inch; 9 in dian inch; $\frac{9}{16} \mathrm{in}$. diameter 10 threads to the inch and so on until we ar
rive at $\frac{3}{4}$ in.,after which the V shaped thread O unsafe, and the square \rightarrow thread is substituted It is better to have which pug tap with a trifle larger than th diameter of the bol desired to be cut. Th esired to ve cut. The must not be made so unt they will be that they will be pe ectly round, and a ow the edges of the ies to meet while the tap is inserted. Unles the object is to have the bolts all the same ize,there must be som pace allowed for cut ing them smaller, by trifie, than the stand ard.

The tempering of the dies is a simple pro cess. First heat and cool off; brighten a lit le with sandpaper or brick dust, and reduce to the required temper by placing on a bar o heated iron, and cool ing off when the pro
 at once sees the benefit of this. The hole is round, the tenon is oval; thus the wedging pressure of the tenon is upon the ends instead of upon the sides of the fiber of the wood, preventing, to a considerable extent, the swelling and splitting of the felly."

This idea, of making the tenons of spokes oval instead of round, appears to us to be a very practicable one, and it admits of wide application. Why would not every wheel be stronger with its spoke tenons ovaled? The points where the spokes connect, with the rim at one end and the hub at the other are the two weakest points in the wheel; but, in the Sarven wheel, this weakness is mostly transferred from the hub to the rim. This is why the oval tenon is particularly valuable in the Sarven wheel; but the same principle
our patent felly rivet, which makes it impossible for a felly process is, in all probability, the best.-The Hub to split. A tight fitting wood screw, with a sharp thread, is put through the felly, on each side of every spoke in the wheel, making over twelve feet of rivet in every set of wheels. This screw, after being tightly put in and firmly imbedded in the fiber of the wood, is cut off smooth on eac side of the felly, so that when the wheel is painted it is not seen. This makes the joint more secure than the method of putting a bolt, with head and nut, to every spoke, aud de tracts nothing from the beauty of the wheel."-The Hub

Reading makes a full man, talking a ready man. The happy medium is reached when a man reads enough to give value to what he has to say.

The Wonders of the Telegraph.-A corresponden St. Louis, Mo., gives us the particulars of the sending of elegrams from that city to Hong Kong in Cbina, and the return of answer, the time each way being only 4 hours, the message being sent and reply received both during the same day.

Ebonizin Wood.-A simple metbod is to procure an or dinary slate and hold it over the gas, lamp, or candle, until it is well smoked at the bottom, scrape a suficient quantit into French polish, and well mix; then polish your article in the ordinary way. If there are any lumps, gently rub them down with your finger, and apply another coat.

Holding Cutter Heads.

Our engraving illustrates an improvement in the construction of that class of "freizing bits," or rotary cutters for wood working machines, which are adapted to reverse, so as to present a cutting edge in either direction.
Fig. 1 is a perspective view of the improved cutter ready for work. Fig. 2 is a perspective view of the same, showing the collars ready to receive the bits. Figs. 3 and 4 represent bits removed from the collars. Fig. 5 is a cross section through the bits and spindle, the dotted lines showing the clearance. Fig 6 shows the face of a collar, with the pins on which the bits are pivoted. Without further explanation, it will be seen how, by the peculiar shape of the bits and seeir connection with the collars, they are made to turn on the pivots, according to the direction of rotation, and stop (in either direction) when they present a clear cutting edge in front and clearance in the rear. When desired to reverse the action, the nut seen in the figures is slightly lnosened, the bits are placed in proper position, and the nut again tightened.
For manufacturers of moldings, furniture and picture frames, this invention seems well adapted, and the invenitor claims it to be equally important to all kinds of wood working. Patented April 16, 1872.
For further information, address Hope Machine Company, 181 West Second street, Cincinnati, Ohi. See advertisement in another column.

RESERVOIR palette.

It is well known to draftsmen that it is evaporation rather than use, that so rapidly diminishes the liquid, color or ink; and moreover, the material particles or sediment are prejudicial to high class work. The reservoir palette is de signed to remedy these defects, which it does perfectly by simple means. The reservoir is shown at R, in the body of the palette B, and consists simply of a cylindrical cavity filled by a plug, P, so that any water previously poured into is expelled and rises on to the surface of the palette, where, in the usual way, it is prepared for use by rubbing with the stick of Indian ink or cake of color requisite. After the desired depth of ink, tint, or color is obtained, if left to settle for a short time, the sediment precipitates on the palette, and when the plug is withdrawn when the plug is withdrawn, the clear ink or colored fluid
 flows readily into the reservoir,

CUTTER HEAD MOLDING MACHINE

drawing, or other design to be copied, is made, has to be

 thoroughly cleaned and well and evenly varnished; care also must be taken, by a firm, steady pressure on the style, effectually to remove the varnish, leaving the writing, print ing, or other pattern, in bright steel on a raised ground of varnish, affording perfect insulation everywhere else on the surface.By placing the copying sheets, efficiently damped with the prussiate solution, in any number from one to five or six one over the other, superimposed on the prepared plate, a corresponding number of copies can be obtained, and so on almost ad infinitum. 'Thus any required number of copie can be produced with perfect facility and ease-all being facsimiles of the original.-Mechanics' Magazine.

Asphalte Pavements and Roadways
This subject is one of very great importance, especially in large towns and cities. The authorities of the city of Lon don are disposed to afford, says the Enyineer, an extensive trial to the asphalte pavements, at the same time admitting any other mode of paving which appears to offer any advan tages. The Commissioners of Sewers have not even discard ed wood, but are going to try the American system at a very important junction of streets, where failure would be exceed ingly annoying. Trial is also being made of granite pave ments jointed with asphalte. The task of providing proper carriage ways for the enormous traffic of London is no small matter. Within one square mile, or thereabouts, there are forty-eight miles of streets. "Of these," says Mr. Heywood "about nine miles of carriage ways are subject to the largest, most concentrated, and most destructive traffic in the world." The wear from the traffic' causes a large consumption of granite annually, and public convenience requires the use of a granite by no means the hardest and most economical The expense of maintaining the granite carriage ways of the ity is very considerable.
The luxury of asphalte paving is undeniable. It is quiet r and cleaner than granite, though not quite so quiet a wood. Consequent on the laying of the Val de Travers as phalte, the roar of Cheapside has given place to the mere clatter of horses' hoofs, as if a regiment of cavalry had taken the place of the usual wheel traffic. The change is like the calmafter a storm; but the process is at once reversed on quitting the region of asphalte and entering upon the gran ite roadways. In fact, the asphalte has the effect of a tram way, with the absence also of the grinding sensation which accrues from the flange of the wheel as it travels along the grooved rail. After being down for two or three months, the asphalte has more of a ringing sound than at first, a result which is attributed to the consolidation produced by the weight of the traffic. Being impervious to moisture, the as halte paving promotes evaporation, and as there are no joints to retain dirt, it is comparatively easy to keep the pav ng in a state of cleanliness
Horsesfalling on asphalte are found to be less injured than if falling on granite, but have more difficulty in getting up again. A little sand, or a horse cloth, removes this disadvan tage.
Proper caro being taken, by a system of street orderlies, to keep the surface of the asphalte in a state of cleanliness, th use of the watering cart may be dispensed with. This of it self is a great comfort to the public. The sloppy state of the granite carriage ways in summer is a special nuisance, only tolerated because the alternative may be a blinding cloud of dust. With due care, asphalte need have neither dust nor mud.
The durability of the asphalte paving is a question of much importance, and at present can scarcely be answered though there is reason to hope for a favorable result. This element in the problem materially affects the question o comparative cost as between asphalte and granite. The City Engineer concludes that the durability of asphalte will be less than granite, and in a report presented last year he cal
culated that, as a general rule, asphaite would be the more
that franite often has to be patched and mended, and what is called "relaying" is a formidable af fair.

Remarkable Parasitic Fungus

A correspondent, Mr. A. J. B., of Kansas, sends us a box of specimens and says: Please find herewith what to me is a wonder as well as curiosity, in the shape and character of what is, with us in Kansas, known and called a common grub worm. A bed of them was found and dug up re cently while setting posts in this town. The grub when found was jus as he now appears, having no life or animation whatever, while the sprout queue, or whatever it is termed, grow ing from near the head of the grub, was in a growing condition, and full of vegetable life and greenness.
We give a drawing of the specimen sent by our correspondent. The grub is the larva of a brown beetle which feeds upon the roots of grass, corn, wheat, etc. The long sprout from the head are fungi (probably Sphaeria or Isaria) which grow at th expense of the nutritive fluids, and therefore of the life of the animal They are generally found in the interior of the body (hence called entophy $t a$) and near the posterior end. The dreaded disease of the silk worm (Muscardini) is caused by a fungus. Hosts of the seventeen year locusts ar destroyed by a fungous disease. "It is probable," says Dr. Leidy, " that this disease is one of the means of main taining the equilibrium iu the aggre gate of the life of the species under existing circumstances." These "veg etable grubs" are something of a mys tery to the naturalist, and more ligh is wanted. Professor Orton noticed a like phenomenon on the western slop of the Andes, near Quito. The fact that all animals are liable to fungous diseases, that there is in fact a flora within man, ten different parasitic fungi laving been found in him, the recent investigations of able naturalist n both sides of the Atlantic, and the lectures of Huxley and Tyndall, invest this subject with deep interest and im portance.

Proposed Government Boiler Experiments. Judge Bradley, of the United States Supreme Court, has made a valuable suggestion in his late letter to the Secre ary of the Treasury on the subject of steam boiler explo ions. He points out the absolute necessity of making trial of steam boilers, of the size and kind generally used, to ind the laws governing explosions and the means of pre venting them, and cites the few experiments made at Sand Hook as showing there is much to be learned by this method of investigation. He recommends Congress to appropriate $\$ 100,000$ for the purpose, and to authorize the Government to have a system of experiments made under charge of a board of skillful engineers.

The Currant Worm.-A small yellow fly, with brown in rs, about the size of the common house fly, deposits it ggs about May 1st. The worms appearabout the middied May. Remedy: Hold a pan under the brush and jar th branches; the worms fall into the pan and are easily de stroyed. Repeat the operation as often as necessary. The larvee are supposed to burrow in the earth.

