A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES.

Machine for Boarding, Pebbling and Glossing Leather.
Our engraving illustrates a machine designed to accomplish the above purposes, for which important claims are made, both as to the economy resulting from its use and the superior quality of the work turned out. A large amount of work is done with very little expenditure of power and very much less effort, on the part of the operator, than is required in the old way. The machine is adjustable to any thickness of leather and to give any requisite pressure. The precision with which the lines can be run at any angle in graining is a matter of much importance, this facility being derived from a matter of much impo the ac
plate.
The machine can The machine can
board the largest board the largest
whole hide if neceswhole hide if neces-
sary, taking its entire sary, taking its entire
breadth, even to the points of the shanks, at one operation, producing a superior ap pearance which, with thin le ather, is very notable as compared to that boarded by hand.
The pebbling and polishing appliances are especially claimed to be superior to anyto be superior to anything yet devised for the purpose, and their dvantages will, we think, be apparent to practical men upon examination. The pebbling roll can be quite small and of any length, as there is no train on its bearings. The pressure is also perfectly controlled while the work is rap. idly performed, and the leather is held in position by the machine itself.
Fig. 1 is a perspective view of the machine as it appears in the it appears in the operation of boarding, the object of which is to raise the grain and to give the leather pliability. Fig. 2 is a section showing the operation of some of the parts of the machine during this process. Fig. 3 is a section which shows the application of the pebbling roller. A represents the upper roller, B, the under roller (these rollers being preferably made of cork), C, the steel feed plate, D, the treadle which operates the feed plate, E , a chain running over suitable pulleys, which chain connects the treadle and feed plate; F represents adjusting screws; G, the trough, which receives the leather as it passes over the edge of the feed plate; and H, Fig. 3 , is a section of the pebbling roller.
In boarding, the bide is placed over the feed plate as shown in Fig. 1. This plate is carried by pivoted arms, so constructed that the edge of the plate may be brought to exact line with the line of conjunction of the upper and lower rollers, A and B. Its motion toward the rollers is adjusted and lim-

ited by set screws in the vibrating arms which carry the plate. By suitable gearing, the rollers, A and B, are caused to revolve in the same direction, as shown by the arrows in Figs. 2 and 3.

COOGAN'S MACHINE FOR BOARDING, PEBBLING AND GLOSSING LEATHER.
need tenderer care, and for them we have these directions from an experienced hand.
If you have no loam laid away for this purpose, take, any warm day, the upper surface of loam from your richest gar den beds. Bakeit in the ovenin an old tin pan; when so dry as to crumble in your hands, add one third white sand. Now fill your pots, boxes, or pans with the mixture. The pots made for planting seed, with large holes for drainage; are the best; butsalt, raisin, or cigar boxes will answer. Fill to the best ; but salt, raisin, or cigar boxes will answer. Fill to the brim with heated soil, press down firmly, and, while
milk warm, plant your seed. If large enough, place them milk warm, plant your seed. If large enough, place them part; if very small, like the soil, press them in gently with the hand then sprinkle on sand Take a piece of any old flannel, double it, and lay on the seeds, press ing it down at the cor ners; then water with lukewarm water over the flanel. Put your pots or boxes in some warm place, on the shelf of a range, or on a mantel piece. The kitchen hob is the best sitchen hob is the best place, for the steam from the kettles keeps the
air moist. Leave the boxes there until the seeds begin to push, giving lukewarm water over the flannel every day: then put in a sunny window, and, if the nights are chilly, return the boxes to the mantel sbelf or back of the range. This way of planting rarely fails the earth, being warmed through, starts the seeds as well as a hot bed, and the flannel prevents th caking of the top of the soil, and also keeps up a uniform heat.
Of course, the same treaf course, the sam
performed by suitable attachments carried by the feed plate, the general operation of which is analagous to that described for the pebbling roller.

This machine was patented through the Scientific Ameri can Patent Agency, Oct. 10, 1871, by Owen Coogan, of Pittsfield, Massı, who may be addressed for further information.

Starting Flower seeds

The sudden arrival of extremely hot weather, in New York and adjacent States, has taken everybody by surprise, and turned public attention to the country and horticulture. The following paragraph will be of interest, at this time, to all who have a garden :
There is nothing like loving them, to coax flowers to grow. Some old ladies seem to quicken the sap in drooping plants the moment their kind hands touch them. They give them their hearis, and so a thoughtful; quick-witted care, and their fuchsias are always the largest and their pinks the sweetest. Beginners are often troubled at the outset to get seeds to germinate. Some will grow anywhere. Others
fectual with seeds for the kitchen garden, though most of them do not need such careful nursing.-J. S.

STEAM FLYING SHIP.

As a contribution to the stock of lore on the subject of aerial navigation, we illustrate the following curious but im practicable machine, invented by a western correspondent
This gentleman takes the ground that gas is too light, and has neither the elevating nordirecting power essential to the proper guidance of a balloon. He thinks, however, that steam (although, as he says, hitherto employed with but lit-

tle success in ballooning) has a natural ascending power, which may also be used as a means of propulsion. The main abjection to it was in the great weight of the apparatus employed; and this objection he intends to remove by using
hin sheet metal vessels for its generation, and employing n cumbrous engine in applying its power. He proposes to car ry out the idea by constructing an air ship, of sheet metal or of gummed rubber or other fabric made impervious to the action of steam, as delineated in the annexed cut; and the ship is thus described by him:
A is the body of tbe air ship for the reception of the ele vating and propelling power-steam. B, B are two pipes leading to the car, C , below, one forming the chimney of the tove or furnace, D, and the other receiving through its fun nel, F, the steam from the kettle or boiler. E; they both serve to conduct the smoke and steam into the body of the ship, A As the body fills, the smoke and steam also enter into the cir cular bellows or expansive cylinders, G, G, which may be made of leather, or of rubber or other elastic material. The smoke and steam enter these cylinders through valves at the interior ends, and as they fill they are expanded outwardly as soon as they reach their utmost outward limit, valve open and let out the steam and smoke. The outward expansion of the cylinders and the final escape of the steam and smoke are designed to propel the ship forward. As soon as the steam and smoke begin to escape, the inner valves close thereby permitting the cylinders to contract, which they do by means of springs or elastic cords. These alternate ex pansions and contractions of the cylinders are the propelling power of the ship, and are equivalent to the operation of cylinder and piston in an ordinary steam engine. The othe parts of the machine will fully be understood from the draw-
iog, and consist of a metal rod surrounding the ship and ing, and consist of a metal rod surrounding the ship and
supporting on its ends the arrow head and tail, which are supporting on its ends the arrow head and tail, which ar made to turn on the rod to any required angle, and the pulley connecting the body, A, with the car, used for adjusting th elative position of each in such a manner that the required course shall be steered.

PATENT LAW REFORM IN ENGLAND.

The Committee of the House of Commons are now in ses sion again on this subject, and are examining witnesses, pro and con, at great length, trying hard to satisfy themselves whether it is best to continue the patent laws in England o to abolish them. The lords and rich manufacturers wan the abolition. But the active thinkers, workers, and go ahead people are emphatic in their demands to bave the system continusd, and greater facilitios given.
Mr. C.W. Siemens deposed that he was a Fellow of the Royal Society, a member of the Council of the Institution o Civil Engineers, and that he was by profession a telegraph engineer. He was not born in England, but had resided in it for twenty years. As a patentee, he had had considerable experience in patents. He had taken out some patents for successful iaventions and some for failures; among the more suecessful of his inventions were a steam"engine governor, He had also taken out patents relative to telegraphic appara tus and cables, thus covering a somewhat wide range of experience. He was an engiveer possessing that order of mind which led him to make new applications of first principles He considered his branch of the engineering profession to be much influenced by the existence or non-existence of a patent law; he was drawn to England in the first instance by the fact of a patent law existing there, and he went there from
Germany directly after he finished his theoretical and practical studies. He made England his home in consequence of there being no properly understood and regulated patent law in Germany; England, therefore, had had the benefit of his inventions in the first instance. He had made a few applications for patents in Germany, but in most cases with unsuc cessful results. He could not patent in Germany things which can be patented in England, and as a rule, patents are granted in Germany for small mechanical improvements, bu principles. In Germany, they refused him a patent for his principles. In Germany, they refused him a patent for his their houses there to warm them. At the present time, the regenerative furnace is more widely adopted in England where a royalty is payable, than in Germany, where it can be used without the payment of a royalty. His experience told him that without the protection of letters patent he should probably have not undertaken the long series of ex-
periments and the great expense necessary to perfect that periments and the great expense necessary to perfect that
furnace; England had had the advantage of its use in the first instance, and at the present time it is more generally adopted there than on the Continent. Although the invention is in use in Germany, England is more benefited by it than Germany. Many 'inventions would never have seen the light of day at all without a patent law, and in England there are more inventions than in Germany, and they are more quickly adopted.
Mr. J. Siserrow Wright, of Birmingham, and formerly President of the Birmingham Chamber of Commerce, deposed to the Committee that he had had experience in the patenting of mall articles. So far as he knew, manufacturers were to a man in favor of a patent law, and so were working men. The trade of Birmingham had been, without doubt, largely benefited by a patent law, and much of the prosperity of the town was due to patented inventions. Patents sometimes improve articles, and sometimes reduce the cost of manufacture, or they may promote economy in the use of materials. Elkington's electro-plating invention, for instance, he believed, would never have attained its present perfection without a patent law ; as, in this case, that law has transformed a manufacture which was positively declining into one of the chief trades of Birmingham, giving employment and excellent wages to numbers of mechanics and artizans. The
old mercury gilding process was very unhealthy, but th resent process is very healthy. The patent law accelerated this invention, if it did not actually form it; at all events, it ould not have been perfected so soon without the protec tion of a patent law. He had considered the merits of variou substitutes for a patent law, but thought that none of them were so satisfactory. A system of Government rewards, he ought to be utterly impossible, and sure to break dow oon after it was established. His experience applied chiefly to inventions relating to small articles, some of which were of
great importance, and he contended that patents should ap great importance, and he contended that patents should ap
ply to these small inventions. For instance, the patent for sleeve link might have been thought worth $\$ 25$, an or several years, it produced no profit; the owner paid $\$ 500$ or it; during the last seven years, he made from $\$ 75,000$ to 100,000 profit; nobody out of the trade could, at the outset ave assessed that invention at its true value. The public erive some benefit from it, otherwise they would not buy th links; no harm has been done to any individual, and it ha stimulated other inventions, for he believed that other inven tions had been brought out in consequence of that one. He bad in his hand a watch, the result of an invention which ight be assessed at a small sum; the watch was wound up by the act of opening, and could not be overwound. If it ere not worth his while to buy that watch, he should not oit; it was, he believed, a Swiss invention which had been atented in England, and the extra cost of such a watch wa rhaps two or three guineas. He himself had been interes d in many patents, very few of which had succeeded peratives were in favor of a reduction of patent fees, and were manufacturers. He held that the present law ha worked satisfactorily; as compared with the old one, it was very great advance indeed. The fees for patents should b reduced, there should be a preliminary examination, mainl as to novelty and not as to merit or utility; this is the opin on of Birmingham manufacturers generally. Half the pa ents taken out at presentare taken out in ignorance of th invention having been previously patented. A person, when old by the Patent Office authorities that his invention wa not new, would not be so foolish as to take out a patent, but if he wished to do so, he should be allowed to do so if he patent itself.

At present

the fees sometimes stand in the way of work men getting patents; if the fees were too low, there migh too many applications, but then each invention should b vell examined. He thought that the first payment shoul a very small one, and a higher one, perhaps, when the pat ent was sealed. He had never yet met an operative in
favor of the abolition of the patent law. He thought the favor of the abolition of the patent law. He thought the rally they found men willing to help them to carry out thei inventions; no doubt they would be in a better position, to deal with those who aided them, if they could get protection cheaply. The French law is that a patentee must manu facture the article in France within a given time, but the law was evaded; he had worked two days in Paris to continue patent. A foreigner who patents things in England should e compelled to make them here, and not to import them. England does nearly all the electro-plating business of the world, for very little of this kind of work is done on the coninent outside of Paris. If foreign inventors patent thing ere, it gives a stimulus to inventions in England. If the patent law were abolished here, our best men would go to her countries, and we should lose our trade in novelties hereby both British trade and British workmen would suf fer. The idea of getting money is the thing which spurs on an inventor; men did not invent for the sake of inventing ut to make profit
If England went without patents, and depended upon the nventions which she could pirate or filch from other nations, he did not think she would take the lead as a manufacturing people. The chief difficulty under the present system was to know what inventions had been patented before. He though that patents ought to be granted for trivial objects, and that such patents did not hamper trade. In the matter of novelty, he would not make the decision of the examiners absolute but should let the risk and onus of taking out the paten rest with the intending patentee.

Clestial space

When astronomers assure us that the diameters, of the cir les which the planets describe in their perpetual revolutions round the sun, are millions upon millions of miles-how is it possible for the mind to take in an idea of the space or room in which such globes as those of eighty and ninety thousand miles in diameter are running, thirty times more rapidly than a cannon ball, without the slightest interference with others?
Space-without limit! There is no boundary, no barrier, precipitous termination, but space forever and ever, and here the in
But there is something more perplexing in the belief that interminable space is filled with billions, aye, with countless organized worlds, beyond all human computation, far excelling our own in grandeur of proportions, physical resources and beauty, so immensely distant that no telescope can ever survey those on the nearest border of that celestial space which they occupy; and yet still beyond and beyond, so far that the light they send abroad, at the speed of one hundred and ninety-two millions of miles in one second, may not reach this earth for a hundred of millions of years to come, and there again and again there are globes infinitely multiplied.
Space, then, is a field in which the Almighty displays the majesty of His supreme power.

One Primordial Form of Matte Form of Force.

I. Matter exists certainly under two, and probably unde hree, varieties: namely, ordinary or gross matter, directly recognized by our senses; universal or luminiferous ether flling all space, and pervading the interstitial spaces of al odies of ordinary matter, the existence of which is inferred rom optical phenomena; and electric ether, associated with ll bodies of ordinary matter, whose existence is inferred from lectrical phenomena
These varieties of material substance may possibly no Iffer in their essential nature. It is at least conceivable tha he atoms, so called, of ordinary matter, and of electric ethe re condensed groups of atoms of the universal ether; an ance that there is, essentially, but one form of matter in ϵ innce, namelf, that which, as made up of single atoms hom eneously aggregated, forms the ether of space.
It may be that the electric ether, the supposed agent of lectrical phenomena, may ultimately be shown to be ident al with the luminiferous ether; but in the present state of hysical science, it cannot be so regarded.
The existence of an electric ether has not been as co clusively established as that of the luminiferous, but all the phenomena give decided intimations of the operation of such n agent, and thus serve to confer upon the hypothesis o n electric ether a high probability.
Now that the ethereal is known to be one of the forms in bich matter exists, and as we perceive that ordinary matte resents a great variety of substances, differing in density nd other conditions, we may certainly just as reasonably re fer electric phenomena to a special ethereal agent as to hypo hetical atomic movements of ordnary bodies of matte The comparative availability of the two hypotheses, in ad quately representing the entire series of electrical phen mena, both formally and in their precise laws, is the onl proper ground upon which we can decide to which the reference should be given.
II. All atoms of matter, when within a certain range of dis tance, attract or repel each other, either actually or virtually in the normal condition of things, in the instance of each distinct body of matter, each of its constituent atoms is in a state of equilibrium, relatively to the rest, under the opera tion of all the forces, attractive or repulsive, exerted upon it by all other atoms within the range of sensible action This is true of the universal ether, each atom of which is con eived to be at rest, so far as the natural action of othe thereal atoms upon it is concerned; and this action is sup osed to consist in a force of repulsion. It is also true of odies of ordinary matter ; but each integrant atom is unde the operation of attractive as well as repulsive forces, ex rted by other contiguous atoms-or at least of forces which end to urge it from or toward the atoms acting on it. It by virtue of this statical condition, and the change in the intensities of the effective forces when the relative distanc of the atoms is altered, that all existing collections of matte re media, through which extraneous forces applied to them t any point are propagated to other points.
III. All atomic forces, whether operating at small or grea distances, are of the nature of incessant forces; that is, ar made up of impulses which are renewed every instant. In the case, certainly, of the forces propagated in the waves of radiant heat and light, and taking effect upon the atoms of bodies, the number of impulses received per second is not infinitely great, but capable of determination though enorm usly great. It is conceivable that all the other incessan res in operation (gravitation, molecular forces, electri rces) are of the same essential character: that is, consis f, or result from, actual recurring impulses propagated in hereal waves. Upon this hypothesis, these forces shoul onform to the law of inverse squares, like the radiations of eat and light; as they in fact do, in every instancs in which the law of variation of intensity with the distance has been determined. The effective molecular forces may furnish an exception; but we have no reason to suppose that the law oes not hold good for the actual attractive and repulsiv orces, from the antagonistic operation of which these effec ive forces result.
IV. In the light of these fundamental principles, we may assume, as the basis of an entire scheme of Nature, the hypo thesis that all matter has but the one fundamental property of repulsion: and that the three great varieties of matter and all the various substances known to us, differ essentially nly in the mass, size, or perhaps in certain cases also the pecific intensity of repulsion, of their atoms. We may ach a still deeper underlying principle by conceiving that 11 the atoms, so called, of ordinary matter and of electri ether, consist of groups of atoms of the one primary uni ersal ether, condensed by reason of a diminished repulsiv ction of their constituent atoms. This conception brings u to the simplest possible basis upon which a physical theor of inanimate Nature can be erected, namely, that of the exist nce of but one primordial form of matter and but on primary form of force.-Professor W. A. Norton, in the American Journal of Science.

It is a healthy indication, savs the American Builder Chicago, to see artesian wells going down while new build ngs are going up in the burnt district, and to know that, in the future conflagration, coming in consequence of tar roofs, when our water works again burn, we shall not be left wholly without water. Messrs. Hale, Emerson \& Co. are to ave an elevator in their new building, to be driven by water from the weil, and they expect the well to save them from three to four thousand dollars a year. Messrs. J. V Farwell \& Co., have sunk a well very successfully on thei premises.

Transferring Negative Films.

M. Gobert's method of transferring collodion images is a very simple one, and capable of application to obtain reversed negatives, or simple collodion prints.
The cliché upon glass is moistened with strong alcohol, and upenit is laid a sheet of albumenized paper, which has also been wetted with the spirit. Contact is easily brought about between the two surfaces as they are both covered with an excess of fluid; the spare alcohol is drained off, with an excess of fluid; the spare alcohol is drained off, and the paper pressed into contact by means of a pad of
blotting paper. After the lapse of a quarter of an hour, all blotting paper. After the lapse of a quarter of an hour, all
the alcohol has been absorbed and the drying can be conthe alcohol has been absorbed and the drying can be con-
tinued in the open air. The albumenized paper will then have become perfectly attached to the varnished or unvar nished collodion surface. To remove the sheet from the glass, the margins are cut round with a penknife, and the paper then moistened by means of a sponge dipped in water After a few minutes a corner can be lifted up, and the paper gradually removed from the plate without trouble. Or, if desired, the plate can be putinto a water bath and allowed to remain therein until the albumenized sheet floats from the glass, bearing with it the film.
In either case the sheet is allowed to dry, and is then rendered of a transparent nature by the use of wax in the ordinary way. In this manner, a reversed negative is obtained, which can, of course, be well employed for carbon printing and such like purposes. To obtain the image transferred in its proper position, it is necessary to employ gela tin paper, which is used in pretty well the same manner The image is first obtained upon the gelatin paper, and af terwards this is pressed in contact with a sheet of albumen-
ized paper moistened with alcohol, the two surfaces being ized paper moistened with alcohol, the two surfaces being
pressed together in a printing frame. After perfect contact pressed together in a printing frame. After perfect contact
has been made, and the sheets have dried in one compact body, this is putinto a bath of warm water; the image will then be found to be attached to the albumen film, which has been coagulated by alcohol and is, therefore, insoluble.
For detaching a cliché by means of the gelatin, Gobert recommends the use of a solution of 10 parts of gelatin in 100 parts of water, which is poured upon the negative After the same has dried, there is poured upon the gelatin film a normal collodion, containing one per cent of pyroxylin; stronger collodion cannot be used, for the reason that it shrinks too much, and does not, therefore, answer the purpose. The addition of glycerin is not recommended, as purpose. The addition means the film is rendered too hygroscopic. Gobert also warns the operator against employing very thick gelat in films, as the image, on leaving the glass, is very apt to be come broken.-[Photographic News.

Bitumen of Judea Paper.

At a recent meeting of the French Photographic Socieiy, M. Despaquis exhibited some specimens of a new photo graphic matorial, being paper or sheets of mica sensitized by means of bitumen of Judea, prepared in several different ways according to the manner in which it is to be used, M. Despaquis, in calling attention to this novelty, made the following observations relating to it:-
The paper may be preserved ior an indefinite period, if screened from light and protected from the effects of moisture, and yields prints of an unalterable nature. The manip ulations necessary to its employment are of the most simple character, and are confined to placing the paper under cliché, exposing the same to light, and washing subsequent ly in essence of turpentine.
The samples of paper are of various kinds. No. 1 is as transparent as glass, and is covered with a sensitive film of bitumen; it serves for the production of transparent positives, and for reproducing clichés, which may be put into the frame reversed if desired, according as the image is re quired for photo engraving or carbon printing.
No. 2 material is also transparent, but possesses more the appearance of ground glass. It is suitable for making trans parent prints for stereoscopes, transparencies, etc., at a low price. With prints of this kind, the stereoscope needs no glass, and is, therefore, very light and portable. This same material answers well for the preparation of so-called photominiatures, which are produced by means of two prints superposed, the lower one being vigorously colored; the tints, when viewed by transparency through the upper print, possess very fine gradations. The upper print is produced upon this No. 2 paper, which will doubtless be found to answer the purpose much better than albumenized silver paper render $\in d$ transparent by varnish.
No. 3 has a mett or opal white surface, formed by means of oxide of zinc and starch. It serves very well for the production of the second or lower print required for the object previously mentioned, and is also suitable for the preparation of transparencies.
All three papers may be attached or mounted upon cardboard like ordinary prints. To do this, the print is put upon a glass plate and covered with thin card slightly moistened; the two surfaces are then passed through a rolling press, and complete adhesion takes place.
There is yet a fourth material, which is likewise sensitized by means of bitumen, and is capable of important photocraphic prints, with all their half tones, to stone or zinc, for working up with fatty inks, and printing upon wood, glass, enamel, painter's canvas, etc.
In the last named material, there is a film of gum in between the mica and the bitumen, and as no washing in water is required for developing and fixing, it is attached while still wet, with essence. If already washed and dried, the print is again treated with the essence upon the stone,
zinc, wood, etc.; then by the aid of a sheet of thick and
moist blotting paper, which is placed upon it and pressed down to chase away air bubbles, the print is allowed to
dry under a slight pressure, as in carbon printing. The dry under a slight pressure, as in carbon printing. The blotting paper should somewhat overlap the print. One or two dry sheets of the same kind are placed over
wet paper, and these are then covered with a few glass plates. After the lapse of a few hours, the dried sheets are removed by means of a sponge, water is applied to the last sheet of blotting paper, and the gelatin being softened the gum is dissolved, and the film, consequently, comes away from the bitumen image.

The the bitumen image.

The preparation of bitumen paper is, of course, no novelty, but it is the special employment of gelatin that is new. This renders the application of water unnecessary in development, and the film does not cockle or roll in washing; by the addition of starch, carbonate of baryta, oxide of zinc, and various colors, it is possible to impart to the film any degree of transparency desirable. The two principal points of importance are the application of bitumen of Judea to a support of gelatin, which, not being dissolved in the liquids used as solvents for the bitumen, is not modified or changed in any way during the process of washing; and the special preparation of the bitumen, whereby it is very adherent to its basis, and of so solid a nature that it will allow of the application of a layer of printer's ink by means of a roller. The employment of acids for etching ma
This of the film.
This is a very important mattter for photo-engraving or photo-lithographic purposes. Maps and drawings have been prepared upon glass by M. Despaquis in the manner indicated, and in these cases not only is the etching of extraordi-
nary depth, but the fineness of detail is perfect, proving beyond doubt that the hydrofluoric acid which had been employed for etching had in no way attacked the film. These same qualities are only to be seen upon metal engravings; and although M. Despaquis is himself but an indifferent operator, he has been enabled to obtain these results very easily.
As to the transparent pictures produced by means of this material, they are certainly very beautiful when mounted between two plates of glass, forming very charming illuminated designs. The manipulations are exceedingly simple: there is no sensitizing, no fixing, and no toning, inas much as the whole operation consists in placing the mica paper under a cliché, in exposing to light, and washing it in essence of turpentine.

Care of Lawns.

There is no season of the year when careful and persist ent watchful attention and labor are more requisite to the perfection of a lawn than that of the early spring months. Nor is there any season during wh:ch the same amount of labor is better repaid by the future results. A severe rain, followed by a sharp frost, or a half dozen clear days, warm nd bright, with cold, freezing nights, always result in hrowing more or less of the turf and grass roots, which, if would by exposure at this time die out; besides, if the lawn be now left to take its own course without the use of the oller, there will ensue more or less of a rough uneven sur ace, caused by some lines of soil being finer and heavie han others, and therefore settling more rapidly and firmly If, by any previous neglect, the lawn has already got upon its surface small pit holes or undulations, varying from four to six inches across and half thereof in depth, now is the time to go over it with a barrow of fine soil and fill them up,
at the same time filling the soil with a heavy seeding of pure lawn grass seed; then finish by rolling again and again If the lawn has become impoverished, make a misture of pulverized hen manure or guano, two parts; two parts of fine, very fine, bone meal-not bone dust; one part of plaster (gypsum); together with two parts common salt (seven parts in all), and sow at the rate of eight bushels to the acre jow just before rain, and as soon as the rain is over roll grass seed to the acre, and another, and another, and yet nother rolling. Before doing any thing, however, rake th lawn thoroughly to clear it of chips, stones, etc.-Addi.

Par
The following are theinteresting notes regarding tunnage speed, engines, etc., of the new steamship Adriatic
Tunnage, 4,200 ; maximum speed, 16.4 knots; length, 450 feet ; breadth, 41 feet, draft, 23 ; weight of cargo, 2,800 tuns Her engines are compound, by Maudsley, Sons, and Field, 2 cylinders of 42 inches diameter, and 2 of 78 inches. The high pressure cylinders are on the top of the low; and all the pistons are of 5 feet stroke. The cranks make 50 revolu tions per minute. The boiler pressure is 65 lbs., and the vacuum 27 inches. The temperature in the hot well is 120° Fahr. The engines have surface condensers and a centrifu gal circulating pump driven by an independent engine. The air pump is 43 inches in diameter and has $2 \frac{1}{2}$ feet stroke. The maximum indicated horse power is 3,500 ; and the consump ion of coal per horse power per hour is $2 \frac{1}{2} \mathrm{lbs}$.
The Adriatic has 12 boilers (cylindrical shells), with 2 furnaces each. The grate surface is 444 square feet, and the heating surface, 12,320 square feet, thus having a ratio of heating to grate surfaces of 28 to 1 . She carries coal to the mount of 800 tuns, consuming 65 tuns per day. Her propeller is $22 \frac{1}{2}$ feet diameter and $81 \frac{1}{2}$ feet pitch. It has 4 blades, and is made of Vickers' steel; the slip is 8 per cent, and the
area of the blades is 116 square feet. The coefficient of the power of her propeller, $\mathrm{MV}_{3} \div \mathrm{IHP}$, is $992 \pm$.

A commission appointed by the French Academy, to invesigate the relative merits of various disinfectants for use in hospitals where contagious diseases are treated, have made the following report as the result of their experiments:

HYPONITROUS ACID.

The members of the commission agree that the first place among agents for attacking and destroying infectious germs must be accorded to hyponitrous acid. Extraordinary precau. tions must, of course, be observed in making use of this dangerous gas; the doors and windows must be carefully sealed with gummed paper when disinfecting a room containing 40 or 50 cubic yards. The materials are taken inthe follow ing proportions: 2 quarts of water, 34 pounds of ordinary commercial nitric acid, and $\frac{1}{2}$ pound of copper turnings or filings. A stoneware vessel is employed, holding two or three gallons. The exit doors are carefully pasted up, and the room left closed for 48 hours. The person opening the room at the expiration of the time should be protected in some way from breathing the gas, by a suitable respirator.
carbolic acid.
This is cheaper, more easily used, less dangerous, and has proved equally efficacious. It is best employed mixed with sand or sawdust-one pound of acid to three pounds of an indifferent substance. The mixture, placed in earthen vessels, was used for the same purpose as thehyponitrousacid. Carbolic acid, diluted with 15 or 20 parts by weight of water, was found useful for daily sprinkling of the floor and bedclothes.

An interesting case is mentioned in the report where neither chlorine nor hypochlorous acid was able to destroy or render odorless the gases given off from the corpses in the Paris Morgue during the heat of summer. The object was attained by dissolving a quart of liquid carbolic acid in 500 gallons of fresh water, contained in the reservoir and used to sprinkie the bodies. Putrefaction was entirely stop ped.
Devergie found that water containing only one to four thousand part of its weight of carbolic acid sufficed to disinfect a dead house, even in the hottest weather, when six to ight corpses were in it.
For fumigating linen, mattresses and other bedding with chlorine, Régnault's latest metbod was used, namely: One pound of chlorine of lime(bleaching powder) is sewn up in a strong bag of sail cloth, holding about a quart, and put in an earthen pot containing a quart of common muriatic acid (sp. gr.115) and three quarts of water. As soon as the acid come in contact with the chloride of lime the room is closed, and the thingsexposed to the action of chlorine gas for 24 hours che room is then aired for 48 hours. Ten such earthen pots
give off 500 litzes of chlorine, sufficient to disinfect from 20 to 25 , more or less, dirty mattresses.

Beet Sugar in Ellinois.

The Freeport, Ill., Beet Sugar factory, a new institution will commence grinding beets as soon as the vegetables ar eady about the middle of the coming September. The Free port Journal says that contracts have already been closed for the cultivation of nearly seven hundred acres of sugar beets. The contract price per tun is four dollars. The yield per cre is from fifteen to forty tuns, a fair average being twen y-five tuns. When in full operation, it will require two hundred and fifty hands to run the factory; and fifty tuns of beets per day will be consumed.
It is expected that there will be paid out for beets no less than $\$ 60,000$, which would purchase 15,000 tuns, enough for 50 tuns per day for three hundred days, the full working ine of a year.
The factory itself is a firm and thoroughly built brick tructure, 300 feet long and 200 wide, being two stories high The cost of the building and machinery is $\$ 150,000$. There will be in the factory 11 engines, ranging from 4 to 80 horse power. Thus it will be seen that the Freeport Beet Suga Factory is a magnificent and important enterprise. Beets weighing two and a half pounds yield as much sugar as those that weigh five or six pounds, the latter being coarse and having a less percentage of \&accharine matter. Farmers who raise beets for the factory will use the large, coarse ones to fatten stock.

Curculio on Plums

A correspondent says that he wraps plum trees, below the lower limbs, with cotton, which he keeps wet with camphor and spirits of ammonia. Ho wets the cotton twice a week, and the result has been a good crop of plums and no curcuio. A correspondent in another journal says.
"I have seen various methods for ketping these insects off plum trees, but none so simple or yet so effectual as the following: Soak corn cobs in sweetened water until thoroughly tle while then suapend them to the limbs of the trees a litthe fruit ripens, as they will be found full of the young insicts. A good plan is to change the cobs every few weeks. My theory is this-that the insects deposit their egga in the cobs in preference to doing so in the young plums. The first season I tried it upon one or two only, and in the summer was rewarded by a good crop of as fine plums as ever ripened, while those on the other trees fell off when about half grown. I have since tried it more thoroughly and have never known it to fail.
The Telegrapher states that the Paine Electro-Magnetic Engine Company bubble, late of Newark, N. J., has gone up, that the inventor has left for the East, where the wise men came from, and that the stockholders have experienced a galvanic shock in the shape of a total loss of their interests.

Expansive Pivot for Sewing Machines, Cutter
Bars for Harvesters, etc.
The wear of pivots in machinery is a frequent source of annoyance, and often of positive loss, as in case of the imperfect operation of the valve gear of steam engines. The object of the present invention is to provide means whereby this wear can be constantly taken up, and thus prevent the rattling of loosely connected joints and other evils attending imperfect fitting. The device is ingenious, yet simple and of imperfect fitting. The device is ingenious, y
Fig. 1 of the accompanying engravings shows the device Fig. 1 of the accompanying engravings shows the device
attached to the cutter bar and pitman of a harvester or mowattached to the cutter bar and pitman of a harvester or mow-
ing machine. Fig. 2 represents the expansion pivot, ating machine. Fig. 2 represents the expansion pivot, at-
tached to the frame or stand for carrying the driving wheel, of a sewing machine; and as this engraving shows every part of the invention, we shall refer by letters to it.
A represents the central pivot piece. It is prismatic in form, its cross section being triangular. The three sides of this piece are toothed after the manner of a ratchet. B represents a bushing used in the hole in the sewing machine stand, when this hole is larger than one half an inch in diameter. C, D, and E are washers.
Upon the sides of the central pivot piece are placed two plates having teeth corresponding to those of the triangular center piece, the outer sides of these plates being rounded, so that when applied to the central piece their united outward contour is cylindrical.
An external sleeve or split ring, F, is placed around the internally toothed and externally cylindrical plates described, Projecting ribs, on the part of the central pivot which enters the frame, fit corresponding grooves to prevent the pivot from turning on its longitudinal axis.
The inner ends of toothed plates which lie between the parts, A, and the sleeve, F, abut against the washer D. The outer ends of the plates do not quite reach the nut, H , or the washer, E , held by the nut, H , that bears against the split ring or sleeve, F. The latter furnishes the bearing surface. When the pivot wears smaller through use, the nut, G, is turned up, which draws the central pivot piece, A, along the reversed inclined planes on it and the plates lying between it and the sleeve, F, acting to expand the latter and take up the wear. Patented through the Scientific American Patent Agency February 13, 1872, by E. Motz
For further information address Michael M. Motz, Woodward, Center county, Pa.

SWEETZER'S BLACKING AND BRUSH HOLDER.

This is one of those simple, practical, and cheap, yet use ful inventions from which inventors often reap large re wards. The obvious utility and convenience of such a

blacking and brush holder, will, we think, secure for it a wide popularity. The object has been to form a convenient blacking and brush holder, so constructed that, while the blacking is fully covered and excluded from the action of the air, the knob of the brush shall form a handle for the entire apparatus.
Fig. 1 is a prospective view with a portion broken out to show the internal construction.
The external and lower part, A, is a receptacle for the blacking box, B, from which the cover is taken off when it is placed in A. One side of the blacking box rests against a lug soldered to the bottom of A, and the other side is engaged by the screw C, so that the box is firmly held in position. In this way the arrangement may be adopted to four sizes of blacking boxes, but it is preferred to employ two different sizes of holders, the smaller size forming a very neat and tasteful device for travelers' use.
D represents the daubing brush which is made slightly tapering at the part E, and bas a suitable knot at the top. The part E engages and covers F, when the apparatus is not in use, in which case the parts are in the position shown in Fig. 1, a right angled slot, G, in the cover engaging the
screw C, in the same way as a lantern top is sometimes made to engage lugs in the bottom. When it is desired to use the blacking, a smart tap on the knob of the brush releases
it from its engagement with the cover, F. The latter is then slightly turned to release it from its engagement with the screw C, when it may be lifted off, and the brush is then left free.
Wh
When a brush combining a daubing brush with a polishing brush is preferred, a common cover for the blacking box and holder is employed, as shown in Fig. 2.
This invention was patented through the Scientific American Patent Agency, March 26th, 1872. For further infor mation address E. H. Sweetzer, Box 317, Salem, Mass.

Jasper and Bloodstone.

Jasper, one of the many varieties of quartz, is very compact, and is found of various colors-dark green, red, brown, of $\left|\begin{array}{l|l}\text { yellow, grayish, and sometimes bluish and black. It is very }\end{array}\right|_{d u}$
the variety. In the middle ages, the red specks alluded to were supposed to represent the blood of Christ; and this stone was thought to possess the same medicinal and magical virtues as the jasper.

The Future of Iron.

Unless the present scarcity and high prices of iron are the temporary effects of causes which may be speedily removed, they must operate as a serious check to the prosperity and progress of all civilized nations. The rapidly increasing demand for and consumption of this metal, in its various manufactured forms, has already been brought to a halt; and enterprises of great. utility, and even of national importance, are now awaiting further developments upon this subject.
This enhanced cost falls with the most severe and paralyzing effect upon railroad building enterprises, and hence indirectly upon the general interests of commerce and prolargely dependent upon transportation facilities. Unfortunately, this large advance has come upon us at a time when the railroad system of the country is being extended at the rate of some seven or eight thousand miles a year, when new building projects were about to be entered upon in nearly every State and Territory in the Union, and when vast railroad schemes are being matured in South America, Russia, Egypt, India, China, and other non-producing countrits, which have just begun to develop their material resources, and need iron to do it with, in immense quantities and in every possible utilized shape.

Where is all thisiron coming from? And if the present demand so much exceeds the supply and forces up prices to so high a range, what may be expected of the prospective demand, which promises to be much larger in proportion than any prospective or even possible increase of production?
It is difficult to perceive how the increased supply, requisite to keep prices within bounds, can come from Europe. It is very evident that the cost of production there is not likely to be reduced, with mines growing deeper and more difficult to work, and operatives clamoring for more pay or deserting for other fields of labor.
It really seems that, with our abundant supply of coal and ore, lying close to the surface and so
hard and takes a fine polish. Occasionally it is found banded or in stripes of different colors, when it is termed ribbon jasper; the stripes are usually red and green alternating. Jasper alone is infusible before the blowpipe, but it will melt with the addition of carbonate of soda. It is sometimes found imbedded in trap rock, but more frequently in pebbles in the beds of rivers.
The yellow jasper
The yellow jasper is found near the bay of Smyrna, in Greece, and other places, the red in the plains of Argos; the variety known as ribbon jasper comes from Siberia and Saxony; and another kind, termed Egyptian jasper, is found on the banks of the Nile. This latter is of a fine brown on the exterior and clouded with brown of various sbades, frequently spotted with black, the markings in this variety occásionally resembling natural objects. A specimen in the British Museum is thought to exhibit a likeness of the poet Chaucer. The yellow variety is used in the Florentine mosaic work called pietra dura.
The ancients were well acquainted with this stone, and prized it most highly. Onomakritos, 500 years before the prized it most highly. Onomakritos, 50 years before the
Christian era, speaks of the "grass green jasper, which reChristian era, speaks of the "grass green jasper, which re-
joices the eye of man, and is looked on with pleasure by the joices the eye of man, and is looked on with pleasure by the
immortals." The emeralds spoken of by Roman and Greek immortals." The emeralds spoken of by Roman and Greek
authors were most probably green jasper, as we hear of pilauthors were most probably green jasper, as we hear of pil-
lars of temples cut out of one piece. Pliny, who describes no lars of temples cut out of one piece. Pliny, who describes no
less than ten kinds of jasper, relates that it was worn by the natives of the East as an amulet or charm. This stone wa much used for cameos; many specimens are extant, having several layers, and the objects represented are cut deep or shallow so as to bring the colors into contrast: for instance, in some specimens may be seen the head of a warrior in red jasper, the helmet green and the breast plate yellow. In the collection of the Vatican are two marvellous vases of this substance: one of red jasper with white stripes, the other of black jasper with yellow stripes.
This stone is cut on copper wheels with fine sand and emery, and polishod on wooden or metal wheels with pumice and tripoli. The jasper, according to the authorized version of the Scriptures, was the twelfth stone in the breast plate of the High Priest; and as the Hebrew name is "yashpeh," which is strikingly similar to jasper, and almost all the translations agree, there can be little doubt as to its identity. Galen, among other sage advice, relates that, if a jasp
hung about the neck, it will strengthen the stomach.
ung about the neck, it will strengthen the stomach.
The bloodstone is another jasper variety of quartz, of a dark green color, and having those minute blood red specks disseminated throughout which give its name.
The word heliotrope, from ' $\eta l i o s$ the sun and $\tau \rho o ̈ \pi \eta$ a turning, is derived from the notion that when immersed in water it changed the image of the sun into blood red. Pliny that it made visible its eclipses. It is found in large quantities in India, Bokhara, Siberia, and Tartary, and also in the Isle of Rum in the Hebrides, occarring generally in masses of considerable size. It is translucent and susceptible of a beautiful polish; its commercial value, as in the case of other stones, varies with the quality of the specimen. The bloodstone is used for the same purrose as agate and onyx. There is a tradition that at the Crucifixion the blood which
followed the spear thrust fell upon a dark green jasper lying at the foot of the cross, and from this circumstance sprang
easily mined and brought together, we ought not only to be able to supply our own domestic wants but those of nearly all the world.-Commercial Bulletin.

whitus attachment for bit braces.

This is a very simple invention, the application of which to bit braces will add much to their utility while it does not greatly enhance their cost. We hardly need say that it is customary to keep on hand a number of wooden tubes or pods, of various lengths and sizes, to slip over bits to gage the depths of holes. This invention obviates the necessity of using such appliances.

A sliding gage, A, Fig 2 , is attached to the side of the bit stock and held in the desired position by the thumb screw, B, Fig. 1. C is the thumb screw which holds the bit in the stock. The gage bar has a ringshaped foot, which, meeting the surface of the material to be bored,limits the depth of the hole. The gage may be graduated in inches and fractions of an inch if desired.
This very practical and useful attachment is the invention of Mr. Charles Whitus, of Philadelphia Pa., assignor to himself, Edward C. Smith, and William Mar tin, Jr., of the same place. It was patented April 9, 1872 For further particulars address William Martin, Jr., 1702 Gerard avenne, Philadelphia, Pa.

Niirate of Ammonia in Respiration.

The formation of nitrate of ammonia in respiration may be shown by the following experiment: On breathing for a few moments from the chest into a large glass, the sides of which are moistened, and afterward rinsing out the glass into a test tube, the presence of free nitric acid is shown by he ordinary reagents (iodide of potassium and dilute sul phuric acid). The presence of ammonia is shown by the usual reagents. M. Struve has remarked that the formation oi nitrate of ammonia, in the act of respiration, is more feeble in the morning before dinner than in the afternoon He concludes from this that the nitrogen in the atmospheric air does not play an entirely passive role in respiration, which is evidently contrary to the experience of MM. Régnault and Reiset. It is natural to suppose that nitrate of ammonia present in saliva plays an important part in di gestion.

Fig, 1,-HILL OF GUANO AT THE CHINCHA ISLANDS.

GUANO.

The Chincha islands, whence have come the immense supplies of the well known fertilizer termed " guano," consist of a group of three small islands, which rise from the sea at a distance of fourteen miles from the coast of Peru to which government to which government they belong. These isl 150 to 300 feet, are about 150 to 300 feet, are about a mile in diameter, and the guano is found upon them in the form of a covering or deposit of varying depths, but in some cases 150 feet in thickness, the underlying rocks being of vol canic character.
Our engravings show the mannerin which the valuable commodity is mined. The laborers employed are Chinese coolies, who areobliged, at the point of the bay at the point of the bay onet, to sure a ser vitude more galling than African slavery.
One of the views (Fig. One of the views (Fig.

1) shows the largest re1) shows the largest re
maining hill of guano maining hill of guano, cars to the brink of the cliffs, and then dumped (Fig. 2) into cribs, from the lower corners of which it is made to slide down through strong canvas chutes into small boats, shown in Fig. 3.

Fig. 3.--shOOTING tHE GUANO INTO THE BOATS.

The mode of fasten ing the chutes to the boats, so as to prevent loss of the material, will be readily understood by a, glance at the engraving. The small boats convey the guano to the ships which ride at anchor at some little distance from the islands. It is not nn. common to find over a hundred ships, of various nations, waiting to receive cargoes of the precijus earth, which they convey to all parts of the civilized world. Many millions of tuns of guano have been removed from these islands dur ing the past thirty years, and their supply is now appres is now apprang exhaustion. There are twelve other guano islands on the Peruvian coast, which are now
being worked; among them are the Guanape islands, which are north of the Chinchas. Other islands in the Pacific furnish guano, as, for example, Jarvis and Baker's islands.
It was formerly the popular belief that the guano deposits were wholly the excreta of wild birds, but careful investigations of geol ogists show that this is

Fig. 2.--DUMPING .THE GUANO INTO THE CRIBS.
not correct, and that guano is the result of the accumulation of the bodies of animals and plants, and is in many cases associated with bitumen.
At a meeting of the Natural History Society in this city Professor A. M. Edwards made the following instructive remarks upon the subject:
I am not prepared at the present time to enter fully into the consideration of this subject of the origin of guano, but I would merely mention that my views on the subject were first made public at a meeting of the American Microscopical Society, during the winter of 1868 . Thereafter, on the 4th of January, 1869, I gave the results of my investigations and the deductions I drew therefrom at a meeting of the Essex Institute at Salem, Mass., and an abstract of what I then said was published in the bulletin of that association, Vol. I, page 11. The main points then brought forth, and which I desire to dwell upon now, are for the purpose more particularly of calling the attention of scientists to this interesting and im portant subject. I have spent several years in investigating this subject and have become acquainted with some facts of great moment as bearing upon several branches of science, more particularly geology, agriculture, biology, and chemis try, as well as commerce. I have also been, for the last fifteen years or more, studying the so-called infusorial deposits of marine origin; that is to say, those which are proved, by the character of the remains contained in them, to have been formed beneath salt water.
Among the specimens thus examined, are some of the rocks or shales making up the great mass of the mountains of the coast range which extend down the Pacific shore, from Washington Territory to the borders of Lower California and even perhaps down as far as the southernmost extremity of that peninsula. These shales are usually of a light cream color and mainly consist of the siliceous skeietons of diato macees and polycystina, the former being commonly consid ered as plants, the latter as animals. These are of extremely minute size, and often require for their study the use of the highest magnifying powers. Many of them prove to be indistinguishable from forms living at the present day on the Californian coast. Exuding through and often appearing a the upper portion of these rocks, to which situation they have evidently been driven by heat, are found the'petroleum, bitumen, and asphalt of California. Hence the survey has conferred upon these strata the name of bituminous shales. Along the Pacific coast, and lying generally parallel to it, are islands often bearing upon their summits deposits of guano of more or less commercial value.
We find that guano is not confined to islands only, but occurs in large quantities on the contiguous headlands; and many ravines extending into the interior of the country contain guano in smaller and larger quantities. With regard to the upheaval of such coasts, along which guano occurs, it is well known from Darwin's investigations that the whole Pacific coast of South America is in constant motion and up-
heaval, and that "on the mainland near Lima, and on the heaval, and that "on the mainland near Lima, and on the
adjoining island of San Lorenzo, Mr. Darwin found proofs that the ancient bed of the sea had been raised to the hight of more than eighty feet above water, within the human epoch, strata having been discovered at that altitude, containing pieces of corton thread and plaited rush, together with sea weed and marine shells.''
When the portion of guano which is insoluble in water and acids is examined by means of the microscope, it is found io be made up of the skeletons of diatomaceer, polycystina and sponges, invariably of marine origin, and sometimes identical with those living in the adjoining ocean, and fossilized in the adjacent infusorial strata. Also we find that some of these forms occur in patches exactly as they grow in Nature, and as they would present themsel ves if they were deposited from water, and not as they would be if they had to pass through the alimentary canals of mollusca and simi lar small animals, then through the same organs of fish and
birds, in turn, as they would have to do, to get into the birds, in turn, as they would have to do
guano in the manner commonly supposed.

I have stated that in California we have a deposit of infusoria, improperly so called, accompanied by bitumen, which bitumen the gentlemen of the State survey believe has been derived from those infusoria, and that contiguous thereto we have guano deposits. Now let us see if we have a similar association of facts anywhere else. At Payta in Peru, Dr. C. F. Winslow discovered an infusorial deposit, almost identical in character with the California one; near by are bitumen
springs, and lying off the coast are the guano islands of Lobos, Chincha, Guanape and others; at Natanai, Japan, we have extensive infusorial strata and bitumen; it is not recorded whether guano occurs in that quarter. In the island of Barbadoes we have infusorial strata, bitumen, and near by that guano is abundant on the smallislands and rocks nearly throughout the West Indian archipelago. In the island of throughout the West Indian archipelago. In the island of Trinidad, we have infusorial strata and bitumen, and of
course adjacent guano. At all of these localities volcanic action is evident, but we have some localities of guano without infusorial strata or bitumen as yet recorded, while we
have the celebrated infusorial strata of Virginia, which by a have the celebrated infusorial strata of Virginia, which by a little stretch of the imagination, may be supposed to be related in some way to the petroleum of West Virginia and Pennsylvania. In Algeria we have infusorial strata and bitumen, but I never heard of guano having been found near by However, now that attention is called to this fact, it is to be hoped that more careful observations will be made connected with the subject, and I hereby call on all scientists and travellers to do all they can to assist in the elucidation of this interesting and important matter. From all of these facts from chemical and microscopical characters, I have come to
the conclusion that guano is not the excreta of birds, depos ited upon the islands and main land after its upheaval, but that it is the result of the accumulation of the bodies of ani mals and plants, for the most part minute and belonging to the group which Haeckel has included in a new kingdom, separate from the animal as well as the vegetable, under the name of protista, and subsequently upheaved from the bottom of the ocean. Subsequent chemical changes have trans formed it into guano, or heat and pressure have so acted upon it, that the organic matter has been transformed into bitumen, while the mineral constituents are preserved in the beautiful atomies that make up the mass of the extensive in fusorial strata, found in various parts of the world.
In conclusion, I have to state that the Chincha islands have been visited by a competent geologist, Mr. Kinahan, of Dublin, and he has pointed outthat they have been upheaved by volcanic action within a recent period, geologically conidered, and that I have found a remarkable confirmation of my theory in a paper, read before the American Institute some years since by Mr. Alanson Nash, detailing the observations of a Mr. F. Nash, made during a residence on the Chincha islands, while engaged in the guano trade, for nearly six months. Therein I find it stated that Mr. Nash was o opinion that guano was formed in the way I have described that the anchors of vessels in that locality bring up guano from the bottom of the ocean; that " the guano is (much of it) not composed of bird dung, but it is composed of the mud of the ocean." That " the composition taken from the islands, called guano, is stratified and lies in the same form it did before it was lifted up from the ocean; that the bottom of the ocean on the west coast of Peru, contains vast deposits of guano. An island, during an earthquake, rose up in the bay of Callao some years since from the sea, containing guano four feet deep, the formation the same as the Chincha slands."
In conclusion, he says " the day will come when the guano at these islands will be dredged up with boats like mud from our rivers and harbors." And in this expectation I fully coincide with Mr. Nash. Need 1 again point to the interest connected with, and the value of further knowledge of, this subject, or call on every one for a contribution of facts to aid in its thorough elucidation?"

Sea Sickness.

From an article in the British Medical Journal by Si James Alderson, M.D., D.C.L., F.R.S., consulting physician to St. Mary's Hospital, we make the following extracts on this very nauseating subject:
The cause of sea sickness and its possible amelioration is subject particularly appropriate at the present time
Referring to the experience of sufferers from sea sickness, is admitted by all that they are most sensible of the mis erable feeling at the moment of the descent of the ship. They are also conscious, at that particular time, of an instinctive effort to sigh or take a deep inspiration, the meaning of which is manifest. During deep inspiration, the chest is di lated for the reception of air, and its vessels become more open to admit blood, so that a return of blood from the head is then more free than at any other period of complete respiration; while on the contrary, by the act of expelling air from the lungs the ingress of blood is obstructed. This obstruction is proved by observation when the surface of the brain is exposed by the operation of trephining; a successive turgescence and subsidence of the brain is then seen in alternate motion with different states of the chest. A deep in spiration, therefore, at the time of the descent of the ship tends to counteract the turgescence of the brain.
Sickness is sometimes produced by waltzing. In this case the same theory of pressure on the brain holds good; but during rapid gyrătion in waltzing, the blood is acted on dif ferently; it is centrifugal force which causes the blood to rise in the vessels supplied to the brain. There is an addi tional cause of cerebral disturbance from the confusion of objects rapidly presented to the eye; from this comes giddi In ress.
ne
nen
In reference to sickness brought on by swinging, I cannot do better tian quote Dr. Wollaston: "Sickness, by swinging, is evidently from the same cause as sea sickness, and that direction of the motion which occasions the most piercing ion alren of uneasiness is conformable to the same explanasation is perceived, for then the blood has the greatest tendency to move from the feet towards the head, since the line joining them is in the direction of the motion; but when, in the descent backwards, the motion is transverse to the line o the body, it occasions but little inconvenience, because the tendency to propel the blood towards the head is then inconsiderable."
The last observation of Dr. Wollaston, quite accurate as to he result, plainly suggests the practical bearing of the sub ect. Knowing the mode in which the ship's movement act on the brain, we are at once furnished with the only rationa
way of averting sea sickness. The first poing sea sickness
The first point is wholly to avoid the upright posture Every one knows that it is a common practice to lie down,
and this is done almost instinctively, but it is also known that to do so, though frequently successful, is not invaria bly so. The way in which the motion in a swing affects the brain affords the proper explanation why lying down is not invariably successful, and shows that it is necessary, not only to take a recumbent position, but to lie in the right direction. A person lying down with the feet towards the bows of the person while it descends in pitching, in the same position a have seen that sickness is produced by blood being forced upon the brain. On the contrary, a person lying down with
his head towards the bows is, during the descent of a ship in the position of one descending backwards in a swing, i which case the pressure by the blood will be towards the feet, and, therefore, relief rather than inconvenience will be experienced, as the tendency will be to reduce the natura supply of blood to the brain. It is necessary, therefore, not only to lie down, but to do so with the head to the bows and it is highly desirable that this position should be assumed before the ship begins to move. There is a secondary advantage to be gained by closing the eyes, and so shutting out the confu
If the philosophical explanation here given be the correct ne, which there is no reason to doubt, it adds one more to many unanswerable objections to the device of taking pas sengers in railway carriages on board gigantic vessels. No relief would be afforded by that plan to the miseries of sea sickness, since, except in a perfect calm, nothing can prevent the rising and falling of the ship and the consequent action of the blood upon the brain. The sitting posture would be equally unfavorable with the upright, and there would be in addition, the common motion of a carriage, which alone, with some persons, produces sickness.

The Laws of Boat Racing.

A meeting, of the boating fraternities of Oxford and Cam bridge Universities and the principal boat clubs of London, was recently held at Putney, at which the following laws to govern the racing of those clubs were agreed upon

1. All the boat races shall be started in the following manner: The starter, on being satisfied that the competitors are ready, shall give the signal to start.
2. If the starter considers the start false, he shall at once recall the boats to their stations, and any boat refusing to start again shall be disqualified.
3. Any boat not at its post at the time specified shall be liable to be disqualified by the umpire.
4. The umpire may act as starter, if he thinks fit; where he does not so act, the starter shall be subject to the control of the umpire
5. No fouling whatever shall be allowed; the boat committing a foul shall be disqualified.
6. Each boat shall keep its own water throughout the race, any boat departing from its own water will do so at its peril.
7. A boat's own water is its straight course, parallel with those of the other competing boats, from the station assigned to it at starting to the finish; and the umpire shall be sole judge of a boat's own water and proper course during the
8. The umpiro, when appealed to, shall decide all ques tions as to foul.
9. A claim of foul must be made to the judge or to the um pire by the competitor himself before getting out of his boat.
10.

It shall be considered a foul when, after the race has commenced, any competitor, by his oar, boat, or person, comes in contact with the boat. oar, or person of another competi tor: unless, in the opinion of the umpire, such contact is so slight as not to influence the race
11. In case of a foul, the umpire shall have the power(a.) To place the boats-except the boat committing the
foul, which is disqualified-in the order in which they come in.
(b.) To order the boats engaged in the race, other than the boat committi
another day
(c.) To restart the qualified boats from the place where the foul was committed.
12. The umpire, may, dnring a race, caution any competi or in danger of committing a foul.
13. Every boat shall abide by its accidents.
14. No boat shall be allowed to accompany a competitor for the purpose of directing his course or affording him other assistance. The boat receiving such direction or assistanc shall be disqualified at the discretion of the umpire
15. The jurisdiction of the umpire shall extend over the ace, and all matters connected with it, from the time the race is specified to start until its final termination; and his decision in all cases shall be final and without appeal.
16. Any competitor refusing to abide by the decision or to
follow the direction of the umpire shall be disqualifed follow the direction of the umpire shall be disqualified.
17. The umpire, if he thinks proper, may reserve his de cision, provided that such decision be given on the day of the race.

Dr. Pincus states that ozone is formed during the burn ing of hydrogen, and that if a flame of this gas is al owed to burn from a fine point, the smell of ozone can be be distinctly recognized. This statement recalls to mind the announcement made some time since by Loew, of New York, that ozone might be obtained, in sufficient quantity for pur poses of lecture demonstration, by simplyblowing the heated air on the edge of an ordinary Bunsen flame, with the aid of a glass tube, into a glass receiver containing the ordinary re agent for testing an oxidizing agent-iodide of potassium,
acetic acid and starch-when the blue coloration of the iodide acetic acid and starch-when the blue coloration of the iodide of starch almost instantly makes its appearance. At the time, Loew's announcement met with some objectors wh sought to explain the phenomenon by assuming that the ox idizing process originated with certain oxidized nitroge compounds formed by the heat of the flame. From the fact, owever, which is well known to ch directly, by any mean short of the electrical spark, the explanation of Loew would seem to be the correct one.

SCIENTIFIC and practical information.

the combustibility of iron.

The combustibility of iron is shown by any means that exposes a large surface to the action of the atmosphere. For that purpose, the late Professor Magnus, of Berlin, devised the method of using a magnet, to which iron filings readily attach themselves like a beard, all radiating from the poles in such a manner as to leave small interstices. On igniting these with an alcohol lamp or gas burner, they continue to burn most brilliantly; and if the experimenter stands on some elevation, like a step ladder, and waves the magnet, a most magnificent rain of fire is produced. When this experiment was first performed in Berlin, it was received with applause by the King and court of Prussia.
It is well known to physicists that a magnet of some strength may be made by placing a bar of iron or ateel in the magnetic meridian, and striking it a few sharp blows with a hammer.
If no magnet can be procured for the experiment, a bunch of cotton wool is saturated with alcohol, placed on some support, and the alcohol ignited. Some fine iron tilings, placed on a sheet of paper, are allowed to fall in a fine stream on the burning mass, when they burn with brilliant scintillations, showing that iron is combustible if only the supply of air is sufficient.
Still more remarkable is the experiment showing that iron is more combustible than gunpowder. A mixture of fine iron filings and coarse gunpowder is thrown on a small quan tity of burning alcohol. As the iron falls through the flame, it takes fire and burns with its characteristic color and scintillations. The gunpowder falls through the flams without taking fire, and lies quietly in the bottom of the saucer until the alcohol is nearly consumed and the flame is brought into contact with it, when it flashes, showing that it was the powder, not the iron, that passed through the flame without taking fire.
The influences which the minute size of the particles, by which a large surface is exposed to the air, has on the combustibility of a substance is well illustrated in pyromorphic iron. If the oxide of iron be reduced, by passing over it a current of hydrogen, the heat employed being less than that of boiling mercury, the metallic iron is left in such a fine state of subdivision as to take fire spontaneously when allowed to fall through the air.
It may not be out of place here to refer to the fact that spontaneous combustion of greasy rags and oily cotton waste is due to rapid oxidation of the oil or grease, of which a very large surface is thus exposed.

REMEDIES FOR CANCER.
Our readers will remember that we published (on page 5 of the current volume) a recommendation of the use of wild tea as a cure for cancer. Mr. J. B. Williams, who wrote the letter, has since been accused of an attempt to impose on the public, some of our readers having tried in vain to it is to be had in drug stores that its names are that pipsissewa;, partridge berry, deer berry, tea berry, winter green, and mountain tea being among them; and he gives its botanical name as chimaphila umbellata. There is, we believe, a little confusion in this description. Pipsissewa is
the chimaphiba umbellata, and is known in the the chimaphiba umbellata, and is known in the country as "spotted wintergreen." The real wintergreen is gaultheria procumbens, and "partridge berry" is a common name for
it. Again, Mitchella repens is also called partridge berry. These three herbs are widely different in appearance as well as in their medicinal effects. It is probable that Mr. Williams meant the Mitchella repens, which is said to be in use among the Indian medicine men to facilitate parturition. No one would announce as a discovery that wintergreen (gaultheria) or pipsissewa was a specific for cancer, the characteristics of these herbs being known to every tyro in pharmacy.
dyeing cotton yarn with magenta.
If cotton yarn be washed in pure water, heated to nearly boiling point, the material being supported on rods in the wash boiler and turned frequently during three quarters of an hour, then well rinsed in running cold water, and dyed according to the following directions, a mordant can be dispensed with. The color bath is prepared by using four ounces of the hydrochlorate of rosanilin (sometimes called diamond fuchsin) in ten gallons of boiling water. The yarn should be entered in parcels of about twenty pounds each, the color being also putin gradually. The heat of the wate will impart a blue shade to the dye, and the yarn should be
dried at a low temperature. This method is economical and can easily be tried.
regelation.
This curious phenomenon can be exhibited by placing a block of ice on a netting of fine wire. The ice will be melted by the wire, and, passing down therethrough, will be come frozen into a mass again below the wire. A single block of ice, the ice uniting again behind the wire and finally showing no sign of having been cut at all.

COLOR AND TEMPER OF STEEL.

In an interesting work entitled " The Metallurgy of Iron," we find some figures that will be useful to our very many readers who ask for particulars as to the tempering of steel for different purposes:

The process of tempering steel consists in reheating hardened steel to a temperature varying with the degree of manner. This proper temperature is indicated by the color
of the thin film of oxide formed on the surface of the heated metal, according to the following şcale :

Color.

0° Pale yellow..
Straw yellow..
Golden yellow Grown yellow. Brown,dappled with purple. $\begin{array}{lll}2777^{\circ} & \mathrm{Pu} \\ 288^{\circ} & \mathrm{Br} \\ 293^{\circ} & \mathrm{Fu} \\ 316^{\circ} & \end{array}$ 6° Dark blue...... Fine saws, augurs, etc.
The reheating is generally effected in baths of molten metals, or metallic alloys having definite fusing points. Thus, alloys of tin and lead, in varying proportions, may be used up to a temperature of 300°; above which boiling linseed oil and pure lead are to be employed. The tenacity of steel is highly increased by tempering with oil instead of water."

Concentrated ozone.
Professor A. Houzeau has devised a very simple electrical tube, by which he is enabled, by passing air through the tube, to produce ozone, so concentrated as to be from fifteen to twenty times stronger than has hitherto been obtained. He has thus been enabled to review many of the most important properties of this substance, and besides to determine the part it plays in Nature.
With the ozonizing tube, the following lecture experiments may be performed. The gas can be collected over water, in flasks of the capacity of half a liter (water dissolves about the 100,000 th part of its weight of ozone.)
Silver.-A bright leaf of silver is immediately blackened in most ozone (Schönbein). The oxide of silver formed is alkaline, and produces a strong blue with reddened litmus paper (A. H.) In spite of this absorption of ozone by the silver, the volume of the gas undergoes no visible diminution A. H.)

Iodide of Potassium.-A solution of iodide of potassium, poured into ozone, is decomposed and becomes of a reddish brown color, through the liberation of iodine (Schönbein). Free potassa is also formed (A. H.) The reaction is rendered more striking if, for a simple solution of iodide of potassium we substitute a colorless mixture composed of four to six cubic centimeters of a neutral solution of iodide (6 to 100), and 2 c.c. of the dilute sulphuric acid containing 0.122 grammes $\mathrm{SO}_{3} \mathrm{HO}$. The liquid colors slightly and nearly the hole of the iodine is precipitated.
Hydrochloric Acid.-5 c.c. of pure colorless solution of hydrochloric acid in water, holding in suspension finely di vided gold leaf, when agitated for two minutes with concentrated ozone, becomes of a yellow color; the metal is entirely dissolved, and at the same time a manifest odor of chlorine is produced (A. H.)
Ammonia.-A few c.c. of the volatile alkali, turned into a half liter flask of ozone, emitted white vapors consisting of nitrate of ammonia (A. H.) A transparent mixture of ozone and dry gaseous ammonia nitrifies when water is introduced (A. H.)
Sulphuretted Hydrogen.-A strong reaction, sulphur eposited, and white vapors produced.
Phosphuretted Hydrogen.-($\mathrm{Ph} \mathrm{H}_{3}$ of M. Thénard.) This gas, which is unaffected by ordinary oxygen, burns with vivid light in contact with ozone. The experiment may be made without danger, if only one c.c. of gas is used over water in a tube several decimeters long. As each bubble of zone is introduced, a brilliant flash of light appears (A. H.)
A mixture, composed of two volumes of phosphurretted hydrogen (not spontaneously inflammable), and one volume of oxyen, blown into a soap bubble, detonates with violence on contact with a globule of ozone (containing only $0.03 \mathrm{mil}-$ igramme of ozone.) The ozone acts as though it were harged with electricity.
Organic Matters.-Ozone rapidly corrodes caoutchouc whether vulcanized or not (Frémy and Bécquerel.) A curent of ozone, made to pass through a tube filled with frag ments of caoutchouc, becomes charged with carbonic acid nd produces a precipitate with baryta water (A. H.) The lteration of caoutchouc by ozone is therefore the result of combustion. Solution of anilin red is instantly bleached
by ozone. A weak solution of indigo is likewise decolorized.

Chinese Plumagery.

Confucius informs us that in remote antiquity, ere the art of weaving silk or hemp was understood, mankind were clothed in the skins of beasts and feathers. How the latter were held together is not stated, but it must have been in manner by cords or thread; at a later period, feather were in general demand as ornaments to banners and articles
of attire, and subsequently for the manufacture of door creens and caps. Tradition states that garments made of eathers and resembling fur dresses were presented to the Emperor Shan-shau, who reigned twenty-five centuries before our era. The earliest allusion to robes woven with feathers
occurs in the history of the Tsin dynasty. In the year 272 , A. D., Dr. Ching, the Court physician, presented the empero with a gown made of feathers from the golden headed pheas ant. His Majesty, being the founder of a new dynasty, was anxious to induce economical hahits among his subjects; he therefore immediately ordered the splendid garment to be publicly kurnt before the palace door, and issued, on the fol owing day, stringent
The Emperor Wu:
ifth century, had a son who
gance, having among other costly articles a robe woven with eacocks' feather
The Chinese have lost the art of weaving feathers. Plumagery is still practiced, however, in the decoration of metallic ornaments worn by all classes of famales, chietly on the head. The mode of procedure is a follows:
"On the table at which the workman sits, he has a faiencelus of feathers, a small furnace with a few embers for keep. ing warm a cup of glue, a small cutting instrument like a screw driver, a pencil or brush, and the articles, either silver, gilt, copper, tinsel, or pasteboard, which are to be feathered. "The thumb and index finger being smeared with glue, the feathers are gently drawn between them, which stiffens the barbs, causing them to adhere firmly together; and when dry the perpendicular blade is drawn close to the shaft, dividing it from the barbed portion. Holding the cutting implement as in writing u la Chinoise, the artist, by pressing on the strips of barb with the knife, cuts them into the desired size and shape, which is a work of some delicacy, the pieces being very small, in the form of petals, scales, diamonde, squares, and the like, and requiring to be of same size as the particu. lar spot on which they are to be laid. Besides fingering this tool in the manner described, he holds the pencil nearly as we do the pen, dips it into the glue, brushes the spot to be covred, then, expertly reversing it, touches with its opposite point a tiny bit of feather, which isthuslifted up and laid on the part for which it was fitted. Care is requisite also in giving a proper direction to this twilled work, for such, of course, is the appesrance presented by the barbs.
The feathers most in demand for this purpose are from a beautiful species of Alcedo, brought from the tropical regions of Asia; they are employed for silver articles. Kingfishere, of Asia; they are employed for silver articles. King
of coarser plumage and less brilliant hues, found throughout the country, are used for ornaments made of copper or paste board. Blue always greatly predominates over lighter or darker shades, relieved by purple, white or yellow.

A New Railroad Safety Signal.
The Boston and Maine road has ordered the construction on trial of a new safety signal, which bids fair to supply a very important want. The invention contains a dial about four feet in diameter, divided as to its circumference into ten parts. The sets of figures in this dial, from 1 to 10, inclusive, are each nine inches in length, and show white on a large ground of red glass. Back of the dial, and pro tected from the weather, is a clockwork, and also the light. This dial and the work attached thereto are mounted by the side of the tracks on a post sixteen feet high. Another part of the invention is a large signal arm presenting white with red spots.
The method of operation is as follows: When a train passes. a staple on the top of the engine cab strikes a trip rod depending from the signal, which sets the clock work in operation. The result is that the arm giving the danger signal at once falls, and remains in a horizontal position ten minutes. The dial also begins to revolve, and for ten min utes shows red to indicate danger, and at the same time presents the large figure or figures indicating how many minutes have elapsed since the train passed. Both the board and the illuminated dial can be seen a long way off, the latter being applicable particularly for night and the former for day trains.
The way they boil rice in India is as follows: Into a aucepan of 2 quarts of water, when boiling, throw a table spoenful of salt; then tbrow in one pint of rice, after it has been well washed in cold water; let it boil 20 minutes Throw it out on a cullender, and drain off the water. When this has been done, put the rice back into the can or sauce pan, dried by the fire, and let it stand near the fire for some minutes, or until required to be dished up; thus the grains appear separate and not mashed together.

Fire Kindlings.-In France, a very convenient and econ omical kindling is made by dipping corn cobs for about one minute in a bath composed of 60 parts melted resin and 40 parts tar. They are next spread out to dry on metallic plates heated to the temperature of boiling water. They are then assorted, according to size, and tied up in bundles. are then assorted, according to size, and tied up in bundles
They sell for one to two centimes ($\frac{1}{2}$ cent) apiece. The "Com pagnie des Allumettes Landaises" employes 30 workmen pagnie des Allumettes Landaises" em
and makes about $\$ 40,000$ worth a year.
M. C. Robin states that matters iniected into the spongy issues of the bones in the livin subject are absorbed a rapidly as if they were introduied directly into the veins, from which he inferred that this spongy tissue is in direct
connection with the veins, and must be regarded as forming connection with the veins, and must be regarded as forming system of sinuses.

IT is curious how great ideas will float about in the world There is Mr. Darwin who, after exten vis research and deep tudy, has hit upon the idea of the siss:ent of man from ani mals. Now comes Mr. Poole, another Englishman, just from the Queen Charlotte Islands, who tells us that the natives claim their descent from the crow; they also give rev illing form to th

A NEw Chinese temple was recently consecrated in San Francisco, with no less than seventy-five gods, two of whica are twenty feet high aud correspondingly large.

Four years ago, Lincoln, the capital of Nebraska, was a way out on the prairie," and was califd "Young's Coiony." Before the close of the present season, it will have six rai roads, and will be lighted with gas.

Patent Pulley Bridle Bit.

This bit is used as a common bit, with the ordinary reins, and, it is claimed, gives the driver absolute control of his horse. A pulling horse is soon taught not to pull, and a horse. A pulling horse is soon taught not
vicious or frightened horse is easily managed.

It is argued by the inveator that control of a horse should be secured without extra reins or extra manipulation of them, and it is claimed this desideratum is, in this invention, se cured for the first time. The driver can never be surprised or taken off his guard, for the reins are the ordinary reins, and he holds and handles them just as he has been accustomed to do. In this bit, in place of the place of in the orring in the or-
dinary bit, is a dinary bit, is a small pulley,A, Fig. 2, through whichis passed a round strap to a buckle immediately under the blinder. A supplementary strap, same buckle, holds the bit in its proper place; or the bitmay be supported by at ported by attaching two or leather balls to the reins un. der the pulder
Now, in pullng on the reins the bit is lifted into the corners of the horse's mouth; he cannot hold it in his teeth, nor receive the pull on his jaw, and therefore is compelled to yield and throw up his head; in this position he cannot kick or run.
At first, if the horse is a hard puller, it is necessary to drive him without martingale, as the length of the martiogale regulates the force of the bit.

It is admitted that no man can hold or control a horse with the common bit, if the horse exercises his strength. A great deal of damage is done to life, limb, and property by horses becoming unmanageable and running away, which the old device made by our ancestors is inadequate to prevent.
No man wants a pulling horse. We drive for pleasure, and do not wish to "work our passage." By this bit, it is claimed, a horse may be taught never to pull, and a horse not so educated may be kept under full control until he has learnt the reason.
Patented, March 19, 1872, by G. W. Barnes, No. 12 First st., New York city.

Improved Brick Kiln.

This invention consists in applying to the top of a brick kiln a series of intersecting horizontal flues, with registers at the intersections of the flues, whereby the products of combustion can be directed in their course Fig. 1 is a perspective view of the kiln, and Fig. 2 is a par tial top view, and Fig. 3, a partial side elevation,
Upon a brick kiln of suitable size and shape, and built un of raw brick in the ordinary manner, with furnaces, eyes, and crevices for the proper distribution of the heat, is placed a course, A, of bricks, in such a manner as to leave horizontal, longitudinal, and transverse fluas, D E, which intersect at C, the outermost flues being placed quite near the verge of the kiln. All these flues are in proper connection with the smoke crevices, so that all products of combustion enter them.
Upon the course, A, is laid another courss, B, of bricks set on edge and close together, so as to cover the flues made in the first course. The bricks of the top course are preferably of burnt brick or fire brick, which will protect the kiln from injury by rain. Cement may be used to close the joints of the top course.

Each of the intersections of the flues has, placed over it a register of cast iron or other suitáble material, as shown in the center of Figs. 2 and 3.
In describing what led to this invention and the general operation and the advantages claimed for this cheap modification of ordinary brick kilns,' we canuot do better than to copy the inventer
" 1 have been engaged in making and burning brick for nearly the third of a century, and have, during that period, tried various experiments to dircover a mode that should

produce better results than are usually seen throughout the southern country-a mode by which, with less fuel, a larger portion of well burnt brick might be produced. In this I have utterly failed until recently. Upon a paved foundation, twenty four feet by forty two feet, I constructed a kiln or clamp, with ten eyes through it (the short way), eleven feet six inches high, reduced by battering one foot on each side, making an upper base or surface twenty-two feet by forty feet. It was thirty-three courses high, with benches between the eyes four bricks thick. The eyes were two
ries of horizontal flues (three inches wide and four deep), the first flue passing along the sides and ends of the whole kiln within three inches of the outer verge, with also ten flues of imilar size crossing the kiln in the direction of the eyes, terminating in the long flues near the verge of the kiln. Each of these flues were, and should be, placed over the center of he eye below. There were also eight flues placed within three eet of each other, running lengthwise and terminating in he flues at the ends, thus making ninety-six intersections or fues. The courses of bricks forming all the flues were, and should be, half an inch apart. Upon this course I set an other course of burnt brick edgewise, closely packed (with their joints broken in the length) except at the intersections of the flues below, where there should be left apertures nine inches square, to .be closed with cast iron registers, made tight by fitting them in soft clay mortar. The whole upper surface should be flushed with soft clay mortar, and plastered smooth and tight so as to be impervious to smoke or flame
" With the registers all open, I commenced a moderate fire which was continued for fifty hours, when flame escaped from the central registers, which assumed a red heat. Thess
Fig. 2 I then closed, and continued the fire and closed others as they became red hot. In 70 hours black smoke and flame is sued freely from all of them, and the outer walls of the kiln show ed considera ed considera ble heat. the fuel, and the fuel, an so manipula
ted the regis ters as to keep up a good draft, giving the most draf where there seemed the least heat. At the end of 96 hours, the whole upper

BARNES' IMPROVED PULLEY BRIDLE BIT.

bricks wide, and closed with the twelfth course. The particenter of the kiln. The short flues at the ends of the eye -say two feet long-were closed by cast iron fronts, with dampers hinged on, The kiln was banked, with loose earth
arface shrank (with great uniformity, making no rent or break through which flame escaped) from four to six inches when I supposed it was sufficiently burned and closed the eyes and awaited its cooling. I had on the ground eighty cords of wood the guantity I had heretofore used in burn in such a kiln; this I reduced to little less tha thin ing such a kiln; this I reduced to a little less than thirty cords. The labor was performed by eigh laborers instead of five. Seventy-five to eighty per cent of merchantabl bricks was the best yield under the old system, On opening the kiln I found it burned to the surface as high as th earthen embankment (say six feet) From the embankment up, on one sid and end, the bricks were thoroughly burned to the outside stretching course which were themselves half burned On the other side and end, owing to continuous heavy wind blowing on them, the bricks were burnt to within the length of a brick of the outer sur face. I stripped the kiln of all the sal mon brick, which amounted to thirty eight hundred, leaving ninety-eight per cent of merchantable brick, an advan tage of eighteen per cent over the usual result, equal to thirty-six thousan bricks in the kiln, the increased valu being four dollars per thousand. The saving of twenty eight cords of wood was equal to eighty-four dollars, and the saving in labor, thirty iwo dollars.
"The ninety-six registers cost seven cents per pound, which amounted to eighty-six dollars and sixty-four cents, and were not injured by the use, showing that they may be used over and over for an indefinite period.
The inventor and other credible witnesses say that the foregoing statement has been several times corroborated in actual practice, and from this it seems that the new kiln is a very valuable improvement, which can be employed a

It was patented, through the Scientific American Patent Agency, June 20, 1871, by Samuel C. Brewer, of Water Val ley, Miss., whom address for further information.

Learn to do something, young man, and learn it well Set it down that no man ever succeeded in this world with Set it down that no man ever succeeded in this wor than
out knowing how to do some particular thing better than his out knowing how to do some particular thing better than his
fellows. Whether it was in a store or a tinshop, in a bank fellows. Whether it was in a store or a tinshop, in a bank
or on the seat of an express wagon, excellence was shown or on the seat of an express wagon, excellence was shown,
and made the beginning that is the foundation of a successful career. The doom of the slouch and the sluggard is told in the legend that appalled the Babylonian king: " Weighed in the balances and found wanting." Hard work is the price asked for success, and it ean be purchased with no other kind
small cost. of currency

Srientific बgmmerian.

MUNN \& CO., Editors and Proprietors.

pUblished wekely at

FIO. 87 PARE ROW (PARK BUILDING) MEW TORE.
o. D. MUNN.
A. ह. beach.

'The American News Co.," Agents, 121 Nassau street. New York

 " The New York News Co.," 8 Spruce street, New York. tor the Aerman States. 20 Unter den Linden, Berlin Prussia, are Agents
VOL. XXVI., No. 21. [New Series.] Twenty-seventh Year
NEW YORK, SATURDAY, MAY 18, 1872.

Importance of Advertising.

The value of advertising is so well understood by old established business The value of advertising is so well understood by old established business
firms, that a hint to them is uanecessary; but to persons establishing a new business, or having for sale a new article, or wishing to sell a patent, or find
a manufacturer to work it: upon such a class, we would impress the importance of advertislng. The next thing to be considered is the medium through which to do it.
In this matter, discretion is to be used at first; but experience will soon determine that papers or magazines having the largest circulation amon the class of persons most likely to be interested in the article for sale, will
be the cheapest, and bring the quickest returns. To the manufacturer of all kinds of mechinery, and to the vendors of any new article in the mechanica line, we believe there is no other source from which the advertiser can get as speedy re
Amprican.
We do not make these suggestions merely to increase our advertising pat-
ronaze, but to direct persons how to increase their own business.
The SOIENTIFIO AMERICAN has a circulation of more than 40,000 copies per
week, which is probably greater than the combined circulation of all the week, which is probably greater than the combined circulation of all the

OUR OBLIGATIONS TO THE ARABIAN ALCHEMISTS.

It is well known that our modern chemistry, that wonder ful science which, in this nineteenth century, is revolution izing the industry of the world, is of recent growth. One century ago, it deserved hardly the name of a science; and only since the discoveries of Priestly and Lavoisier can it lay claim to be a systematic whole. And it has since grown lay claim to be a systematic whole. And it has since grown
in a twofold aspect- first, as a most practically useful pur in a twofold aspect - first, as a most practically useful pur
suit; and, secondly, as one of the branches which ought to suit; and, secondly, as one of the branches which ought to
enter, more or less, into the curriculum of the studies of enter, more or less, into the curriculum of the studies of
every man and even woman who lays claim to a civilized every man and even woman who lays claim to a civilized
education, as it has a peculiar influence in the developmen education, as it has a
of the human mind.
Still, notwithstanding the youth of this science as a sys tematic whole, it stands on a basis built ten centuries ago; in fact, our modern chemists may be considered to stand on the shoulders of the ancient alchemists, who, notwithstanding that they were always searching for unattainable results, have succeeded in discovering thousands of facts which have laid the foundation for that wonderful knowledge which gives us an insight into the secret recesses of the composition of mat ter. It is, therefore, highly interesting to trace the slow progress of that alchemistic science, chiefly nursed by the their personal possessions, and who, in place of that their personal possessions, and who, in place of that,
increased the knowledge and well-being of the human race.
The Divine Art, as the ancient alchemists called their pur The Divine Art, as the ancient alchemists called their pur-
suit, appears to have been practiced first in Egypt, that cradle suit, appears to have been practiced first in Egypt, that crade
of knowledge; for historians tell us that the Emperor Dio of knowledge; for historians tell us that the Emperor Dio-
cletian, after the conquest of the rebellious Egyptians in the cletian, after the conquest of the rebellious Egyptians in the
year 296, ordered that all the writings on the alchemy of gold should be burnt, in order that the people should not, by making gold, grow so rich as to commence a second rebeilion. It
was thus already known, at that time, that the success of was thus already known, at that time, that the success of
revolutions and rebellions depends on the possession of revoluti
money.
In the large European libraries, manuscripts on alchemy are pressrved, many of them dating from Alexandria in the fifth century, and written by Greeks living in Egypt and practising alchemy there. It appears, further, that when the Arabs invaded the north of Africa and the south of Europe, they learnt this art from the conquered nations; and the results of their labors and their worderful advance are re corded in the archives of the Spanish Moors. So we find that Djafar, better known under the name of Geber, who lived in
the end of the eighth and the beginning of the ninth cen tury, in Seville, Spain, and who was wise enough not to believe that any one had succeeded in making gold, discov ered that a metal when calcined, which we now call oxidized, becomes heavier. It took 1,000 years to bring such facts to bear on the destruction of Stahl's theory of the Phlogiston, which taught that during this calcination, or burning of metals, something was driven out which had negative weight. Geber also was the first to make nitric acid by mixing blue vitriol, alum, and saltpeter, and distilling the mixture; he changed it into aqua regia by adding sal ammo niac; then he dissolved gold in the same, and obtained thus the solution of gold, so long searched for by other alchemists and supposed to be the elixir of life which would cure all diseases and even prevent death. The experiments undoubt diseases and even prevent death. The experiments undoubt-
edly made in this direction, however, failed, of course, an edly made in this direction, however, failed, of course, and
the results therefore have neither been recorded nor handed the results therefore have neither been recorded nor handed
down. We know now that gold is one of the most dangerous elements to introduce into the human system, becaus its insolubility makes its removal afterward very difficult Geber gives very clear instructions in many chemical opera tions, as sublimation, distillation, filtration, water and sand baths, cupels of bone earth to absorb the metals which become calcined (oxidized), etc.; and there is no wonder that in the middle ages, he was called the master of all masters in alchemy.
Sulphuric acid was first made in the end of the ninth cen tury by Rhazes, head physician to the great Bagdad hospital He made it in the same way as at present practiced to mak the Nordhausen vitriol, by distilling copperas. He also made absolute alcohol by distilling spirits of wine over quicklime while phosphorus was made by Achill Bechil, who sub limated a mixture of urine, clay, lime and charcoal; he called it an artificial carbuncle, and said it shone in the dar like the moon. This was a lost discovery, when, in 1669 like the moon. This was a lost discovery, when, in 1669 Brand in Hamburg made phosphorus in a similar manbina tion of gases, which he called ghosts or spirits (whence ou word "gas"). This is proved by his account which, trans ated, runs thus: "When spirits fix themselves in soli bodies, they lose their form and are in their nature no longe what they were before. When you compel them to be disen gaged again, this is what happens: Either the spirit alone escapes in the air, and the solid body remains fixed in the lembic, or the spirit and the solid body escape (volatilize) a the same time."
As a few other eminent Arabian alchemists, must be men tioned El-Raii, Ebid-Durr, and Togbagré, who wrote an alchemical poem, and Djildegi, one of whose chemical works is called "The Lantern," a very significant title for such ubject. But the most astonishing fact of all is the defini ion which some of these authors give of the chemical cience they practiced, and which is worthy of the nineteent entury. It is: "The science of combustion, the science o veight, the science of the balance."

PUDDLING IRON BY MACHINERY.---AN IMPORTANT IMPROVEMENT.

Many attempts have been made to supersede, by mechan ism, the laborious and expensive hand processes, employed in making wrought iron, known as puddling. But unti ithin the past four years, all efforts have failed. To Mr Samuel Danks, of Cincinnati, Ohio, belongs the credit of having successfully solved the problem. He has invented mprovements, now in successful operation, which promise to revolutionize the art, and which are recognized as indispen sable to the trade by the leading iron puddlers of this coun try and England. Last year, Mr. Danks appeared before the Iron and Steel Institute in England, and read a very instruc tive paper, in which he described the practical workings of his inventions, as shown at Cincinnati, in such forcible terms, exhibiting, at the same time, such thorough know terms, exhibiting, at the same time, such thorough know-
ledge of the whole subject, that the attention of the members was immediately called to its importance. They voted o appoint a committee to visit the United States, examin he practical operation of Mr. Danks' alleged improvements, and report in full to the Institute. The committee consisted f some of its most scientific as well as most practical members, and they came over here determined to make the most rucial tests possible. Every facility was granted them, and hey went home fully satisfied that all that Mr. Danks had laimed had been realized in their presence, and even more and they have so reported to the Institute. The invention is now being rapidly introduced in England, where hand puddling is declared to be doomed, and rotary pudàling an ounced among the iron men as an accomplished fact. The aving effected by the use of the Danks machinery is placed $\$ 5$ per tun of iron
In puddling iron by the Danks process, a revolving fur ace is employed in which the pig iron is melted down This furnace is provided with a fire grate, and a blowing fan o urge the fire and supply the necessary gas. The revolving furnace rests on rollers, and its exterior has cog teeth by which motion is imparted. Mr. Danks gives the follow ing particulars:
A suitable engine is attached to each machine, so that the urnace can be made to revolve at any speed that may be required according to the different stages of the operation. The most important feature in connection with the invention is the lining of the vessel. The foundation consists of what is termed the "initial" lining, which is composed of a misture into the consistency of a thick paste. The method of putting on this "initial" lining is fully described, and, when completed, the author says that upon it is placed the fettling
proper. A quantity of pulverized iron ore-about one fifth of the total amount required to fettle the apparatus-i thrown in, the furnace is heated and made to revolve slowly until the iron is found to be completely melted, and the ap paratus is then stopped. That part of the molten iron which has not been consumed by glazing of the "initial" lining surface, runs to the lowest level of the furnace, and there forms a pool, into which there are put a number o small and large lumps of iron ore of such dimensions as will be required to allow the said lumps to project over the sur face of the liquid ore by from two to six inches. This part of the fettling is allowed to set, when a fresh quantity of pulverized ore is thrown in. The furnace is again made to rotate slightly until the newly added ore is liquefied, when the apparatus is again stopped, and the pool is filled with lumps as before. The operation is continued in this way lumps as before. The operation is continued in this way
until the whole of the vessel is properly fettled. From 2 to until the whole of the vessel is properly fettled. From 2 to
$2 \frac{1}{2}$ tuns of iron ore are required to fetile a 700 pound furnace.
The iron is charged into the furnace either in a solid or molten condition. When charged in the shape of pig iron the melting down occupies from thirty to thirty-five min utes, during which a partial rotation is given to the furnace from time to time, in order to expose equally all sides of the charge to the flame. When the whole of this is thoroughly melted, the furnace is made to rotate once or twice per min ute only during the first five or ten minutes, in order to ob tain the most perfect action of the cinder upon the molten iron. A stream of water is injected through the stopper hole along and just above the line of contact between the floating cinder and the inner surface of the vessel on the descending side. A certain portion of uncontaminated cin der is thereby solidified on the metal surface, and is carried der is thereby solidified on the metal surface, and is carried stream, which, in rising up through the iron, combines with the impurities of the latter in a far more effectual and com plete manner than any mode of puddling hitherto known an effect. On the expiration of the said five or ten min ates, the iron begins to thicken and the motion is stopped The heat is then raised so that the cinder shall be perfectly iquefied, and the vessel is brought into such a position that he tap hole shall be just over the level of the iron, which by this time has become partly pasty. The puddler gently pushes back the iron and the cinder is made to run off. The heat is again raised, and the furnace is put in motion at a velocity of from six to eight revolutions per minute, by which means the charge is dashed about violently in the furnace. A high temperature being kept up, and the charge being cortinually turned over, the particles begin o adhere, when the velocity of the apparatus is lowered to from two to three revolutions per minute, upon which the ball then very speedily forms. The puddler then solidifie he front end of the ball by a few blows from a tool applied hrough the stopper hole. The props of the movable piec re then removed, and the flue hanging from the overhea ail is moved away. A large fork, suspended from a crane is put into the vessel along one side, and the ball, which by a turn of the vessel is rolled on to the fork, is then taken out by means of the crane. The ball is then worked in a squeezer. The flue is replaced after the requisite quantities of cinder and metal have been again charged, and the pro cess is continued. From eight to ten charges are made be fore any refettling is required, and these heats are worked in a day of ten hours.
Mr. Danks claimed for the revolving furnace the following advantages: A great saving in the cost of labor and also in the consumption of coal, varying according to the size of the furnace; a superior and more regular quality of puddled ron from a given quantity of pig; a yield of puddled iron much in excess of the charge of pig metal, instead of th usual loss, the extra yield being obtained by the reduction of the rich fettling used in the machine; eight to ten heats, whether of from five to ten cwts., are made in a day of ten hours when suitable metal is used; the refining process is very complete, the whole of the phosphorus and silica, and he sulphur to a large extent, being removed by the chemi cal action of the lining mixture; the very heavy and ex haustive labor of pudding is performed by steam power thereby enabling one skilled man to attend to the working of a large quantity of iron; the bringing to nature and ball ing of the iron is completed by the rotary action, withou the use of rabbling, except when the heat has to be divided into smaller balls; and the capacity may be suited for heats of any weight from five cwt. upwards. The cost of the fur nace, weight of product considered, is about the same a that of the usual hand puddling furnaces.

RESULT OF ILLUSTRATING A NEW INVENTION.

We have received a letter from Captain W. F. Goodwin whose invention for the propulsion of canal boats was illus trated in these columns a few weeks ago, in which he alludes to the success he has attained in the introduction of his screw gear mower and reaper, which was illustrated in the ScIEN tific American, November 25, 1871. After alluding in a complimentary manner to the great number of patents he has obtained through this office, he states that he has made some money out of his patents, but the amount would have been much larger hal he earlier appreciated the advantages to be derived by placing his inventions before the public through the medium of the press. Immediately after the publication of the engraving and description of the mower and reape in this paper, he states that he had so many letters of enquiry from manufacturers and agriculturists for rights to build and for the purchase of machines, from every State in the Union and from Canada, that he was for a time exceedingly embar.
rassed, not having the facilities for supplying the machines " And much to my surprise and satisfaction," he says," I found I had established, before I hardly knew it, a large business abroad; orders were received for machines from Europe, and applications for agencies as far north as Russia poured in upon me by every mail." The result has been the establish ment of agencies in London, Edinburgh, Vienna, and St Petersburgh, and arrangements are about being consummated in Prussia. Captain Goodwin accords his success in the introduction of his harvester to the publication of it in the Scientific American, and closes his letter by stating tha he hopes the same good result will follow the publication of his system of propelling canal boats that resulted from the publication of his mower.

ON ATMOSPHERIC AND PNEUMATIC PROPULSION

The workings of the weather bureau have confirmed what was anticipated, namely, that the changes in barometric pressure are the causes of the winds, which, in their turn, become the causes of the different conditions of weather. I we trace the changes in the barometric pressure further back, we come finally to the solar heat which expands the air in some localities, and causes it to become specifically lighter than the colder air, and to the solar and lunar attractions which cause continual atmospheric tidal waves to run around our globe. In this way, our atmosphere is kept in a permanently agitated condition; and the cossmical power expended in keeping up this agitation is something startling when we attempt to reduce it to our common measure of force, the foot pound. We have only to consider what an infinitely small portion of this force is utilized by sailing vessels, and what an enormous power is required to move about the sailing fleets of the world. Little Holland gives in its windmills an example of how this power may be further utilized; there are in that country (where the construction of windmills has been improved since more than 1,000 years, thanks to the study of the most profound mechanical thinkers) more than 12,000 windmills for the pumping of water alone, not like the mere toys we see in this country, but colossal structures of masonry 100 and more feet high, attended to by a regular crew, as is customary on shipboard, each mill lifting from ten millions to fifty millions gallons of water per day; there is an equal number of mills for sawing lumber, and at least an equal number for grinding corn. The total labor, performed by the utilization of the wind alone in that country of four
million very industrious inhabitants, is estimated to equal million very industrious in
that of four million horses.
that of four million horses.
In order to fix in the memory the relation between the velocity of the wind and the pressure exerted on a surface, it is best to remember that the velocity of a violent hurricane, of 100 miles per hour, exerts a pressure equivalent to 50 pounds on a vertical surface of one foot square, and that as the velocities decrease the pressures decrease as the squares of the velocities; so with half the velocity of the wind, or a storm of 50 miles per hour, the pressure is one fourth of 50 pounds or 125 pounds per foot; at one third the velocity, or a brisk wind of 33 miles per bour, the pressure is one ninth, or 7 pounds per square foot; at one quarter the velocity, 25 feet per hour, the pressure is one sixteenth of 50 , or 3 pounds upon each square foot, etc. These rules hold for one square foot while the wind is in motion and can glide off all around the surface; when several square feet are
united in one whole, so that the wind cannot glide off united in one whole, so that the wind cannot glide off
around each square foot, as in the case of the sails of a around each square foot, as in the case of the sails of a
vessel, the pressures pecome considerably greater, and vessel, the pressures become considerably greater, and
more still when the surface on which the pressure acts is enclosed in a tube or tunnel so that the wind or air is entirely prevented from gliding off or passing beyond the surface acted upon. The latter is practically the case with the system of pneumatic propulsion; and in order to see at once the great advantage of this mode of applying power, we have only to consider the effect of a difference of atmospheric pressure on both sides of the surface, acting as a piston in the tunnel of a pneumatic railroad, and separately at. tached to the car, or the effect on a well fitting car itself. Suppose the blowing machinery is able to raise the barometric column on one side of the car only one inch: this
will be nearly one thirtieth of the whole mercurial column will be nearly one thirtieth of the whole mercurial column; pounds, or half a pound per square inch, which is 72 pounds pounds, or half a pound per square inch, which is 72 pounds per square foot, will be exercised. If now the diameter of
the tunnel is $8 \frac{1}{2}$ feet, the surface of the section will be nearly the tunnel is $8 \frac{1}{2}$ feet, the surfact of the section will be nearly
55 square feet, and the total pressure, 55×72 or 3,960 pounds, 55 square feet, and the total pressure, 55×72 or 3,960 pounds,
almost two tuns. This means that such a car will be proalmost two tuns. This means that such a car will be pro
pelled with an initial velocity equal to the effect of two tuns suspended on a rope and the rope passed over a pulley to change the vertical traction into a horizontal one. As, now, on a level railroad, the friction resisting the propulsion is about one per cent of the total weight, the power thus obtained will be able to start any load less than 200 tuns weight, and this load will move with increasing velocity, only limited by the capacity of the air blasts to supply more air as fast as the motion of the car diminishes the pressure.

Another consideration, greatly in favor of the system of pneumatic propulsion, is that a column of air enclosed in a tube or tunnel is in fact equivalent to an infinitely flexible and elastic rod, which may push a load forward through any number of curves and inclines; but what is most curious, it may be also used as a rope for pulling trains towards the
source of power, by simply inverting the current and thus source of power, by simply inverting the current and thu
producing suction; or, in more correct scientific language, by diminishing the normal atmospheric pressure, it will propel the load by a simple excess of the ordinary pressure over
the partial vacuum produced in front of the car. But the
most beautiful consideration of all this, is that this wonder ul, infinitely flexible and elastic pushing rod and pulling pe costs nothing, never wears out, can never have a break condary but immensle, at the same time, we obtain the condary butilation in every part of the rage of a mos horough ventilation in every part of the road, which is a pheric vicissitudes of ho entirely excluded, from the atmos pheric vicissitudes of hot and cold, rain and snow, as will be
the case in the comfortable tunnel which, we flatter ourthe case in the comfortable tunnel which, we flatter our-
selves, will soon practically demonstrate its advantages to selves, will soon practically demo
the population of our metropolis.

PROPOSED BOOK ON PATENTS.

There is a very general but erroneous opinion among a large class of people that patents are humbugs, and that more money is lost than made by them. Now the fact is that the greater part of the wealth acquired by manufacturers in every branch of industry has been acquired through some advantage, gained by inventive skill and secured by patent. There is hardly a successful manufacturing business in the country but owes its success in some way to patents. We do not say that all inventions are improvements, or that ali patents are good; but we do say that nearly all valuable inventions are, or have been, patented.
We received a call a few days ago from a gentleman who is collecting facts and statistics for a book of successful inventions. We commend the idea as well calculated to remove the prejudice against patents, and as a matter of inter est to all who are connected therewith. Instances enough have come under our own observation, of men who have made ample fortunes from patents, to fill a large volume had we written them down. But among the cares of business, many details have escaped our memory, while others are so dim that we cannot state them with the precision necessary for such a work. Nevertheless, we shall afford the author such facilities as are in our power, and in his behalf we cordially invite the co-operation of our readers. If they will send us statements of such instances as they may be acquainted with
First. Where inventors have sold their patents in whole or in part for large sums.
Second. Where they have received or are receiving large ums as royalties.
Third. Where a large and successful business has been ailt up by manufacturing patented articles.
Fourth. Where articles are made cheaper by means of patted machinery.
Fifth. Where joint stock companies have been founded in part or wholly upon patents, and the stock has greatly adanced in value.
Names and figures and reliable information are wanted as far as possible. The book is designed to prove the actual benefit which has been derived from patents in the various branches of industry. If each one will contribute the facts within his knowledge, a work may be soon published which will be of inestimable value to inventors. Parties possessing such information will oblige by sending the facts to this office.

SUPPLEMENT TO THIS WEEK'S EDITION.

The attention of our readers is called to a supplement to his week's issue of the Scientific American, containing a full and exhaustive history of the discovery of petroleum, with complete descriptions of all the processes used in its refinement and manufacture. The works selected for illustra ing this article are those of Charles Pratt's extensive manu factory. His establishment and appliances afford the best opportunities for describing the most recent and improved ethods of treatment
Subscribers are requested to see that their news' agents de liver a supplement with each copy of our issue of May 18.

Balancing Slide Valves.

A correspondent, L. A. T., in commenting on the remark of a western engineer, published on page 121 of the current volume, states that "if a slide valve were relieved of all the pressure above and the cylinder filled with steam, the valve would of course be lifted from the seat.
When the engine is in motion and the steam chest filled with steam, the pressure on the slide valve is equal to that in any part of the chest; but then the valve gets considera ble relief, although it is constantly increasing and decreasing as the valve slides to and fro upon its seat. For instance, when the valve opens a port, it instantly fills with steam, and at the time the valve cuts off that port, the pressure is equal above and below that edge of the valve; but as the piston travels back in the cylinder, the pressure in the port decreases until the valve exhausts that port; and then, from the time of the exhaust until the opposite port is opened, the cylinder is empty; and at this time the valve needs the most relief and gets none.
Now, if we relieve the valve of all its pressure, we commit an error. Why? Because it relieves itself, and the longer the steam follows the piston, the more we relieve the valve. For instance, we relieve it more when it is working at full stroke than when at half stroke, because we let a greate amount of steam into the cylinder at full stroke than we do at half stroke; and consequently we get a greater amount o pessure therefrom to relieve the valve just when it cuts of nd before it exhausts.
To balance a slide valve successfully, we must take into consideration the relief as much as we do the pressure.
A man's actions are effaced and vanish with him. But his intellect is immortal and bequeathed, unimpaired, to posterity intellect is immortal and bequeathed, unimpair,

The Chinese government, influenced by the counsels of rung Wing, an intelligent and enterprising native who enjoyed the advantages of a thorough college education in this country, has now determined to send over to us quite a number of young men for educational and professional raining.
The plan, as it is now being carried out, is understood to be as follows

1. The Chinese government to select thirty boys each year for five consecutive years, 150 in all, without distinction of rank and by competitive examination. They are not to ex ceed fourteen years of age when they enter the preparatory school at Shanghai or other schools that may hereafter be organized. Their education in Chinese is to be made as thorough as possible before they are sent to the United States.
2. Th
3. The entire expense for their support and education in the preparatory schools and also while in the United States will be borne by the Chinese government.
4. An educated native of rank to be appointed as instrucor to each yearly instalment, who is to accompany them to the United States and remain with them. He is charged with the instruction of the youths in the Chinese language and literature while in the United States, and is required to devote a portion of each week to that object.
5. The students are required to prosecute their studies for welve years, and during that time each is expected to acquire one of the professions. They will not be allowed to remain in the United States beyond that period, nor to enter upon any private occupation.
6. Each student is regarded from the first as in the service of the Chinese government. A definite rank is assigned to him on the completion of his education, and he goes immedi ately into service on his return. In case the parents of any student are in narrow circumstances, a certain indemnity is to be paid them by the government.
7. The students will not be permitted to divest themselves of their Chinese nationality or become naturalized citizens of the United States.

From New York to New

ubes.
A bill is now pending in Congress to incorporate the "National Pneumatic Tube Company," capital one hundred millions of dollars, with authority to lay pneumatic tubes between New York and New Orleans. The freight is to be carried in hollow balls, which are to be blown through the tubes, and this the projector thinks can be done at a high velocity and cheap cost. This plan of using "hollow spheres" in pneumatic tubes is very old. It was patented in England, by James in 1842, and again patented in this ountry, by Brisbane in 1869.
The idea of competing with long lines of ordinary railways by means of pneumatic tubes is chimerical. Pneumatics is ell adapted for short routes in cities, where the traffic is large and the use of locomotives objectionable. But for ex tended lines through the country, the cost of construction maintenance, and operation would be greatly in excess of an ordinary railway of same capacity and speed.

Measuring the Velocity of Railway Trains.
Several duvices have been invented for registering the velocity of trains, but none of sufficient simplicity to come into general use have yet been suggested. Messrs Samman and von Weber's conistruction, a German invention, consists of a disk driven by clockwork and a reeording pencil. While the train is halting, this describes a circle, but during the journey, a crooked line is produced by the vibration. In M. Cremer's ap paratus, a strip of paper moves by clockwork. This paper is graduated and marked in minutes. A needle with an up and down movement, which is in connection with an axle, pricks the paper. The distance of the holes serves as a guide in ascer taining the speed. On French lines, an apparatus is met with in principle not unlike the centrifugal governor, the coupling box of which is in connection with and moves a pencil. In Schiff's apparatus, which is not unlike that of Cremer, the needle is moved by a battery, which renders it working more complicated and uncertain.

The polarizing instrument, known as the Nicol prism, is composed of a prism of Iceland spar, divided at an angle int wo halves, the angular surfaces polished and again unite with Canada balsam. Professor H. F. Talbot finds that glas prism will be thus produced

Not long ago, the whole stock of the paraffin wax in the world did not exceed four ounces, which was carefully pre served in the laboratory of Professor Liebig as a chemical curiosity. There is now produced in Scotland alone a quantity of not less than 5,800 tuns annually.

Here is the business done by the Western Union Tele graph Company in one hour, by means of one wire, between New York and Boston, employing the Stearns instrument for sending messages both ways at the same time. From New York to Boston, 72 messages; from Boston to New ment in telegraph instruments.doubles the capacity of ever existing wire without increasing the cost of maintenance.

Edwin F. Johnson, one of the most eminent of American engineers, died on the 12 th inst., and was buried at his home in Middleton, Conn. He was Engineer in Chief of the Northern Pacific Railroad until a little more than a year go, and since has been Consulting Engineer of that com pany.

At a recent meeting of the American Institute, President Henry Morton, of the Stevens Institute of Technology, read a paper on "Fluorescence," or that action by which rays of the higher purple or even invisible light, such as produce photographic action most strongly, excite in certain bodies ower rates of vibration, resulting in the emission of jight, generally of a red, green, or clear blue color. This paper was illustrated by a number of striking experiments. Thus, a flask of solution of chlorophyll (green coloring matter ob tained from leaves), which is of an olive green color, being held in a beam of blue light proceeding from a "vertical lantern," appeared to be full of a blood red liquid. Various solutions, colorless in ordinary light, were then shown to exhibit the brightest hues, when illuminated by the violet rays of th 9 lantern or those obtained from the electrical discharge of the Professor's large coil in rarefied gases. The speaker then announced that, in the course of the examination which he had been making of such substances, he had encountered one which he believed to be as yet unknown, and which possessed the property of developing light by fluorescence in a preëminent degree. This body was obtained from petroleum, and he would propose to take for it the from petroleum, and he would propose to take for it the
name " viridin." The word viridin had been already apname "viridin." The word viridin had as aynonym for chlorophyll, but was now practically plied as a synonym for chlorophyll, but was now practically obsolete, and too appropriate to the present substance to be
thrown away. A large drawing of a flower, with leaves thrown away. A large drawing of a flower, with leaves painted seemingly in light umber tints, was then shown and
illuminated by electric discharges, when it appeared of the illuminated by electric discharges, when it appeared of the
most vivid green. The peculiar fluorescent spectrum of this body and its relations to the spectra of other substances explained, and many other illustrations were exhibited.

Experiments in a compressed Atmosphere.

MM. Deville and Gernez are making a series of experiments in a chamber containing compressed air. In a cylindrical iron chamber of one hundred cubic feet contents, the sides of which have been proved to 165 pounds to the inch, these gentlemen have installed a complete set of apparatus. When the operators are shut in their cylinder, the air is compressed by means of a steam pump, when they proceed, as if in the open ain, to ascertain the real condition of various substances, at the moment they combine in homogeneous flames, and the resulting temperatures. With certain precautions, the compression to which they are subjected presents no serious danger, and after a few moments, the difficulty of breathing disappears, even though the pressure amounts to nearly 45 lbs . to the square inch. At present the experiments are made only with the homogeneous flame of oxide of carbon and oxygen. With this and a pressure equal to one and seven tenths atmospheres, platinum melts, flying off in sparks with a facility that it never exhibits in the air; it melts in the elevated portions of the flame, which in the air would only heat it to redness. The temperature of these flames then augments with the pressure which they support, and, by consequence, the quantities of matter which combine a:e greater, and the dissociation diminished. Mr. Frankland's experiments have shown that the brilliancy of the flame of hydrogen gas increased considerably with the pressure, so that with a pressure of twospheres it when a mixture of oxygen and hydrogen is burned in an enwhen a mixture of oxygen and hydrogen is burned in an endiometer, the flame is briliant, while it would be nothing in
the open air. M. Deville is of opinion that if you measure the the open air. M. Deville is of opinion that if you measure the brilliancy, the result would not be the same in operating with brilliancy, the result would not be the same in operating with
an opaque calorimeter as in one which allows the light and chemical rays to pass through it. This deserves noting for industrial applications.

Old Leather

What becomes of all the old leather? We know that the scraps and trimmings that fall from the shoemaker's bench are collected and sold, and that these finally reach manufacturers of leather board, which, in cheap shoes, is used to give thickness to a sole which has but little real leather in it But what becomes of worn out boots and shoes, and all other articles made of leather which have been cast aside as of no further use? It was in pursuit of this inquiry that we learned that worn out hose and belting are cut up into soles for boots, and that the "uppers," of boots and shoes whereof
the soles have become demoralized, are carefully separated, the soles have become demoralized, are carefully separated,
subjected to various processes, which make them take on the subjected to various processes, which make them take on the
semblance of newness, and then trimmed round, leaving them semblance of newness, and then trimmed round, leaving them
sufficiently large to make the "uppers" for smaller feet than they covered before. Thousands of such "uppers" are marketed annually, and it is not safe for those who buy their boots without regard to the standing of the dealers to assume that their understandings are new throughout

A Mechanical Cat.

Leonard, of the Cleveland Leader, has invented a sheet iron cat, with cylindrical attachment and steel claws and teeth. It is worked by clockwork. A bellows inside swells up the tail at will to a belligerent size, and by a tremolo attachment, causes, at the same time, the patent cat to emit all noises of which the living bird is capable. When you want fun, you wind up your cat and place him on the roof. Every sallies forth. Frequently fifty or one hundred attack him at sallies forth. Frequently fifty or one hundred attack him at
once. No sooner does the patent cat feel the weight of an once. No sooner does the patent cat feel the weight of an
assailant than his teeth and claws work with lightning rapidassailant than his teeth and claws work with lightning rapid
ity. Adversaries within six feet of him are torn to shreds ity. Adversaries within six feet or a similar fate, and in an hour several bushels of hair, toe nails and fiddle strings alone remain,

Californian Estimates.

Californians are making estimates of the probable gross value of the products of the State during the present year. They give $\$ 38,054,500$ as the aggregate for wheat and barley; wool, $\$ 12,000,000$, or $30,000,000$ pounds ; fruit, $\$ 6,000,000$. The whole value of agricultural products is put down at $\$ 50,000,000$, of which, it is claimed, at least $\$ 35,000,000$ will $\$ 50,000,000$, of which, it is claimed, at least $\$ 35,000,000$ will this $\$ 18,000,000$ as the yield of the mines, and as much more this $\$ 18,000,000$ as the yield of the mines, and as much more
for lumber, fish and live stock, and the total will reach for lumber, fish and live stock, and the total will reach
$\$ 89,000,000$. A great many persons believe it will not fall short of $\$ 100,000,000$. Such an immense production and export, from a State comparatively so sparsely settled, shows that its producing powers are enormous.
The American Builder, Chicago, says, unsolicited, that Among the exchanges that come to our table we find none of greater value than the Scientific American, published by Munn \& Co., New York; and if, during the three past years, we have quoted freely from its columns, our readers will bear witness that the matter has been well worth repro ducing. It is not an easy task to conduct a journal devoted to industrial interests in such a manner that it shall be adapted to the tastes and capacity of the average reader, and yet command the respect and patronage of more thoughtful and scholarly minds. The Scientific American, while its contributors, many of them, rank among our most noted men of letters and science, is, nevertheless, most emphatically the people's paper. And there is not an artist or apprentice among our growing family of readers that would not be richer, in every true sense, at the end of every year, if he were to subscribe for it and take it regularly."

A correspondent says: "The most deadly physical danger, threatening the whole community, in this country is the absorption of metallic poisons in water, food, medicines washes, paints, dyes, enamels, etc., prepared and sold by the thoughtless and unprincipled; and the demand of every thoughtful patriot should be that no description of poisons should be sold under any other than its proper name. The public, in the segregate, is, and always will be, powerless to adequately protect itself against insidious poisons used in the many adulterations of the present day, and must per force look for that protection to a government professing to guard the life and property of the citizen. Health is the most
self.
F. E. Williams, of Mount Washington, Md., writes as follows: "Sirs: I have received the steel engraving in good order, and I am exceedingly pleased with it. I am well rewarded for my exertions in raising a club for your paper and I shall use my influence to keep it up, and to get all can to become subscribers to it."

The annual meeting of the American Railway Master Mechanics' Association is to be held at the American House Boston, Mass., June 11th, 1872.
The Engineer states that the oxyhydric light has not proved a success in Paris, and that it has been discontinued in the public lamps on the Boulevard des Italiens.

Facts for the Ladies.-Mrs. Sarah J. Fredericks, Toledo, Ohio, has
sed Sewing Machines for 17 years, the last 10 years Whecler \& Wilson' Lock-Stitch, and finds it fir better than the other kinds; it runs lighter, with less fatigue, and holds a truer tension. She has used it for all kinds of dress-
making and fancy work. See the new Improvements and wods' making and fa
Stitch Ripper.
Watch 1079 , Stem Winder-bearing Trade Mark "Frederic Atherton \& Co., Marion, N. J."--manufactured by United States Watch Co.
(Giles, Wales \& Co.,) has been carried by me two months; its total variation from mean time being half a second.--I. Caivin Shafer, 76 Cortandt Street, New York.
Burnett's Cocoaine dresses the hair perfectly, without greasing, dry
g, or stiffening it. ing, or stiffening it.

象usimess and zexsman.

exceed Four Lines. One Dollar and a Half per Line will be charged.
Dry Steam, dries green lumber in 2 days ; tobacco, in 3 hours and is the best House Furnace. 直. G. Bulkley, Patentee,Cleveland, Ohio. The paper that meets the eye of manuiacturers throughout
the United States-Boston Bulletin. 8400 a year. Advertisements 17 c . a line For Sale or lease: Planing Mill with 30 horse Engine and return flue boiler-one double surfacer and flooring machine-mouldiog machine-two circular saws wati iron tables. All in first class order.
machinery sold separately if desired. I.Parker \& Co.,Gilmor st., Balt., Md Notice to Builders of Steam Fire Engines.-Please send De scriptive Catalogue and Price List to Matt. Thornton, Master Mechanic, M. \& B. R. R., Macon, Ga.

If you want a perfect motor, buy the Baxter Steam Engine. Lyman's Gear Chart, with full directions for Laying ou Teeth. Price fifty cents. Address, Edward Lyman, C.E., New Haven Grindstones for Edge Tool Manufacturers. Worthington \& Sons, North Amherst, Ohi
Glass Cutters' Wheels-J. E. Mitchell, Philadelphia, Pa. Grindstone Shafts and Pulleys-J. E. Mitchell, Phila., Pa. The Baxter Stean Engine is safe,and pays no extra Insurance, Brown's Coalyard Quarry \& Contractors' A pparatus for hoisting Mining, Wrecking, Pumping, Drainage, or Irrigating Machin ery, for sale or rent. See advertisement, Andrew's Patent. inside page.
To Ascertain where there will be a demand for new Machin ery, mechanics, or mannacturers' supplies, see Manufacturing Ne
United states in Boston Commercial Bulletin. Terms 84.00 a year.

Millstone Dressing Diamond Machine-Simple, effective, du rable. For description of the above see Scientific American, Nov. 27th
1869. Also, Glazier's Diamonds John Dickinson, 64 Nassau st., N. Y. 1809. Also, Glazier's Diamonds John Dickinson, 6 .
Power Punching and Shearing Machines.

For car builders, smith shops, rail mills, boiler makers, etc. Greenlea Jac ineWorks, Indianapolis, Ind
Everything for Cider Mills and Vinegar Factories. Address J. W. Mount, Medina, N. Y.

Peck's Patent Drop Press. For circulars address the sole manufacturers, Milo, Peck \& Co., New Haven, Ct.
For Tri-nitroglycerin, insulated wire, expluders, with pam phlet, as used
Adams, Mas
All kinds of Presses and Dies. Bliss \& Williams, successor to Mays \& Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogue. For Steam Fire Engines, address R. J. Gould, Newark, N. J. Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y.
In the Wakefield Earth Closet are combined Health, Cleanliness and Comfort. Send to 36 Dey St., New York, for descriptive pamphlet. L. \& J. W. Feuchtwanger, 55 Cedar St., New York, Manufac turers of Silicates, Soda and Potash, S
cals and Drugs for Manufacturers' use.
Enameled and Tinned Hollow-Ware and job work of all kinds. Warranted to give satisfaction, by A. G. Patton, Troy, N. Y Best and Cheapest-The Jones Scale Works,Binghamton, N.Y. A full set of dies, power-presses, etc., for making several kinds of dissectable tin hand lanterns for sale, to close an estate. Terms
liberal. For particulars, apply to Clarence Sterling, P. O. Box 363, Bridge port, Conn.
5,000 Tinners should Manufacture and Sell Wilcox Self Sealing Fruit Cans, patented March 19, 1872. State and County Rights for
Sale. Ficor f you want to know all about the Baxter Engine, address Wm. D. Russell, offlice of the Baxter Steam Engine Co., 18 Park Place,N.Y. Hoisting and Pumping Engines (Locomotive principle); best and simplest, from 6 to 40 H.P. J. S. Mundy, 7 R. R. Av., Newark, N.J. want a Machine for rapidly trimming Printed Labels to a want a Machine
Round form. Addr
Wanted-A Partner, with Capital to perfect and patent a new Hay Conveyor. Walter Smith, Weston, Mass.
Send for matter relating to the Huntoon Governor. It will save its cost in three months, on heavily loaded engines. In use in the largest manutactories in A
Lynch \& Co., Boston, Mass.
Wanted-Parties having Light Planers and Good Shingle Machines for Sale, will send Circulars and Price to D. B. Cade, Jr., Dan burg, Wikes Co., Ga.
Callow's New Patent Mode of Graining Wood,
Makes Painters grain all woods first class who never grained before; Likewise makes Grainers lightning fast who thumbed it out before Address, with stamp, J. J. Callow, Cleveland, Ohio
See advertisement of Dederick's Self-adjusting Crank Box.
A competent Superintendent for the manufacture of MalleaIr Iron may hear of a situation
Iron Works, Springfield, Ohio.
The most economical Engine,from 2 to 10 H.P., is the Baxter. An experienced Patternmaker, has a good knowledge of Draughting, used to Steam Engiue, Mill, and House Work, wants a situ
Partner or Purchaser wanted for an agricultural implement and wagon factory, at Kansas City, Mo. Machinery first class ; bu
well established. Address O. C. \& Co., Box 2077, Kansas City, Mo.
Wanted-To rent or lease, a building with good water power suitable for woolen manufactures. Address W.K.N., Box 2090, N. Y. City.
Owners of patents for articles in general hardware trade can sell, or have made and introduced on royalty to advantage by Van Wa oner and Whan, ha Wanted-A Purchasing Agent in every city and county, to supply Nye's fine Sperm Sewing Machine Oil. Put up in Bottles, Cans, and Barrels, by w. F. Nye, New Bedford, Masi,
Presses,Dies \& all can tools. Ferracute MchWks,Bridgeton, N.J. The Patna Brand of Page's Patent Lacing is the best. Or Absolutely the best protection against Fire-Babcock Extin guisher. F. W. Farwell, Secretary, 407 Broadway, New Yorb.
For Steam Whistles, address Exeter Machine Works, 75 Congress Street, Boston, Mass
Over 800 different style Pumps for Tanners, Paper Makers FirePurposes,etc. Send for Catalogue. Rumsey \& Co., Seneca Falls, N. Y.
Lord's Patent Separator for Ores, or any dry material, built to order. State rights for Sale. 232 Arch St., Philadelphia, Pa.
Important.-Scale in Steam Boilers-We will Remove and prevent Scale in any Steam Boil
Arch Street, Philadelphia, Pa.
"Anti Lamina" will clean and keep clean Steam Boilers. No injury to iron. Five years' use. J. J. Allen, Philadelphia, Pa
Williamson's Road Steamer and Steam Plow, with Rubbe Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809
Billiard Cushions-Manufacturers of Billiard Tables, use Murphy's Patent Cushions. The finest made. Send for sample set. Gutta For the best Recording Steam and Indicating Gauges, address The Recording Steam Gauge Co., 91 Liberty Street, New York.
Farm Implements \& Machines. R.H.Allen \& Co., New York. For Solid Wrought-iron Beama, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Belting as is Belting-Best Philadelphia Oak Tanned. C. W Arny, 301 and 303 Cherry Street, Philadelphia, P
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A 6 foot cross cut and buck saw, $\$ 6$. E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor

Hydraulic Jacks and Presses, New or Second Hand, Bought

Hotoresequeries.

LWe present herevouth a serres of inquiries embracing a variety of toptcs of greater or less general interess.. The questions are simpl.
prefer to elicit p practical answers from our readers. $]$
1.-Porsonous Collars.-What is the best test for discov
2.-Paris Green.-What is the chemical composition of Paris green, which is much used to kill the
it known in works on chemistry?-J. C. K.
3.-Sewage.-Where can I find reliable information rela tive to the value and management of sewage?-F. T. F.
4.-Kiln-Drying Lumber.-I wish to know how to construct a building for kiln-drying lumber, the length of time required for
drying, and how such lumber compares with that seasoned out of doors.a.
5.-Annealine Steel.-What is the best and easiest way to anueal pieces of steel, say $\%_{2} \times 1 /$ square and about six inches long? I use
them in lots of 100 and $200 \cdots \mathrm{U}$. E .
6.-Power for boat Propulsion.-Will some corres pondents tell us how large a boat can be driven by a boiler with twenty
one feet fre surface? What should be the power of the engine? Should the boat be a stern wheel, side wheel or screw propeller, in order to get the greatest speed and power? -F. \& W.
7.-Dieing or Staining Horn.-Will some reader of the Scirntipic Americaxi inform me how I can dye or stain horn a jet black
without injuring it I I would prefer somethlog that will not stain the hands without injuring it? 1 would prefer somethlng that will not tain the hanc races dye their hager nalis black. Wat do they use?-E. C.
8.-Worms in Hickory.- Will some of your correspond ents inform me what will stop the ravages of worms in the sap of hickory
plank? The plank was cut in winter, put up under cover, and the bark plank? The pla
taken off. $\mathrm{B} . \mathrm{C}$.
9.-Protecting Sheet iron from Corrosion.-How can I coat my sheet iron hood inside, to protect it from the corrosive effects
of acid or chemical fumes, so that the coating will not be impaired by heat? of acid or
G. B. M.
10.-Electro-deposit of Steel.-How may electrotypes e faced with steel?-G. в. m.
11.-Transparent Varnish.-Can any of your readers inform me how to make a thin glaze or varnish that will not dim a pure white
ground or pigment, but allow the white to shine through clearly and transground or pigment, but allow the white to shine through clearly and trans-
parently? It must at the same time be capable of peing cleaned with soap parentily? I must at the same time be capable of beng cleaned witr soap
and tepld water, and not te sticky to the touch. The ordinary varnishes and tepid water, and not be sicky to the touch. The ordin.
tend to make the white ground appear a pale yellow. $-\mathrm{W} . \mathrm{s}$.
12.-Dissolving Wool out of Mixed Fabrics.-Which is the best method of extracting wool from woolen and cotton rags? At present I use muriatic and sulphuric acid: but I have been given to under
stand that there is a much better process with vegetable and mineral matte
13.-Hydrogen Lamp.-Will E. X., who gave directions for making a hydrogen lamp, or some one elese, please inform me: First,
how to tell w hen the air is expelled and 1 it s safe tolight the lamp? second,
 closed, will the gas keep on forming untilit forces out the cork or break ing until some is let out at the vent? Thirr, about how long would a lam (of say about four or six ounces) keep in order without a renewal of the m a erials being required?-L
14.-Removing Ink Stains from Paper.-A valuable Work of mine having been damaged by ink on the margins and the plates,
witiiito to remove it without defacing the paper. I I have tried to remove it but am unable to keep the paper from wrinkling and buckling. Hhave use oxalic acid and also salt of lemon, and I can partly succeed, but still it
leaves a stain. What process is used to remove the ink from checks when they are altered? The process must work well, as I have seen checks rrom which the ink was so completery removed that it could not be found by
acid or the microscope. There can hardly he any secret init, as it is done so often. - R. W. W .
15.-Paint for Iron Work.-What is the best paint to put on iron railing, so that it will keep glossy and shining? I have used
asphaltum and shellac, but the effect of the weather soon makes itlook dead 1 want something that will make the railing look as if just varnished.- - . 0
16.-Preserving Bird Sifins.-Is there any preparation or preserving sking of birds, etc., that is not potisonous? Arsenic, strych
nine, etc. are rather unsafe to hande and to have about the house, -G.C.T.
17.-Smooth Brass Castings.-Will some one please in form me how smoth brass casting, such as globe valves, etc., are p p
Has the composition ofthe brass anything to do with it ?-P. . Q .
18.-Cement for Textile Fabrics.-Can any one tell tact?-E. F.
19.-Finishing Gas Fittings.-Will some one inform me, through your paper, how I may produce the bright brown finish we see

Samucrs ta Correspondents.

SPECIILL NOTE. This colum is defigned for the general inter est and in
 wnen patafor as addertisements at 1.0 a une, under the nead of "Bustness ${ }_{L}$ and Personal.
A. D. T., of Mo.-The white specimens which you send are chalcedony; the translucent red is carne
The carnelian 18 the only one of any value.
S. H., of Pa.-The specimen you send consists of mica and
F. \& W.-We publish your first query ; the second is a busi

Preparing Skelfton.-If G. J. F., query 10, page 200 , will place his animal on an ant hill, the ants will make the skeleton
clean as a contribution box in dog days.--s. A. uzone.-C. R. will find directions for the preparation of ozone on pages 32 and 325 of this issue of the Sorimityric Ayrrions.
Cone Puduevs.-E. B. T., of Pa., is referred to pages 138, 170,186 of Vol. XXV. of the Solrmitific Amritcan for a full discussion of
this subject. this subject.
Telegraph Sounder.-To C. P. P.. query 17, page 281. Your magnet is wound with No. 16 wire, which is too coarse. Use No. 20
or 22 , and your sounders will work together perfectly. - s. G. S., of N. \mathbf{x}.

Inflammable Liquid.-Is there any iiquld sufficiently in flammable (retaining its infammabl, quallty when exposed for any
length of time) to insure a cord or thread, that has been thoroughly saturated with it, being seth a a baze by the lassi of a gan cap in its immed ate vicinity?-A. B.C. Answer.-There is no liquid suffliciently infand posed for a short time withont being evaporated. But there are pulverulent solids which you may make to a paste and then incorporate into your cord; such are dualln, glant powder, dynamite, picrolin, etc. Rhubarb in Tin Cans.-Some rhubarb stalks were washed In cold water, bofled in an iron kettle, put into cans made of good char
coal tinned plate, and then soldered down. In December last my famil were all made sick by eating.a pie made of this fruit. To be sure of the cause of the sickness, we tried the rhubarb azain with the same result
The effects were vomiting and purging Can any one The effects were vomiting and purging. Can any one give me an expla
nation?-C. H. G.-Answer. The acidity of rhubarb is caused by oxalic acid, and this has dissolved the alloy of tin and lead of your tin cans forming an oxalate of tin and of lead ; these metallic oxalates are poison producing vomiting, etc.
roportions of Telebcope.-To T. J., query 16, page 281 Your evepiece is too strong for your object glass. Use a longer and
larger eyepiece, say one θ inches long, which will give you a power of about forty times. This is ample for a two inch object plass for terres trial objects.-S. G. S. of of X .
Bats.-I would say, in answer to J. E. P.'s query, that if he will find the hole that the bats visit, and put oume cayenne pepper in it
and around the edges, ene will never be troublec with bats. Rats also
cond canmo stand it: they are sure to leave. - H. C. R
durable Whitewash.-To E. C. W., page 265.-The addi tion of one pound of sulphate of zinc in solution, to a pail of whitewash
will improve the color and prevent the wash from rubbing off.-E. H. H. of Mass.
Mortar for Drying Ovens.-To J. K. C., query 13, page 265.-1 have use, for a similar purpose, a mortar made with commo
glycerin
and litharge to glycerin and litharge eo a not ery thick constentence. Int and in the latte case, more glycerin will be absorbed, and the joint will not be good if the cement is too dry. My sucess was
hard and frm. - E. H. H., of Mass.
Coating Iron with Emery.-To J. M., query 3, page 281 -First paint your cylinder with a good body of white paint, and when
perfectly dry and hard, apply your glue and emery.-E. H. H, of Mase. Cleaning Cotton Waste.-Query 9, page 281.-S. R. F will Ind the following plan to answer: Pack the waste in a tin cylinde
with a perforated false bottom and tube with topack with a perforated false bottom and tube with stopcock at bottom. Pour
on the waste, bisulphide of carbon sumflient to cover, and allow to few minutes, then add more of the blealphide, and so on for a time or
 sulphide, or nearly all, can easily be recovered and so be used ove
again. The cotton may remain soiled with fine metallic particles, but 1 t again. The cotton may remain soiled wlth ine metallic particles, but it
will be free from grease. - E. \mathbf{H}. H., of Mass. eparation of Mercury in a Thermometer.-To F. D. H., query 1, page 281.- Fasten a string two or three feet long securely to the instrument, and then swing it vigorously round your head for a tura
or two. The centrifugal force will be sumflielent to cause the broken col umn to unite, provided neither tabe nor bulb is cracked. An almost im. perceptible crack in either is quite suffcient to utterly spoil a thermome
 latter instrument, it can oniy occur in a very smalit tube, where capiliar,
attraction, or friction from a soiled tube, overcomes the gravity of the elegraph Sounder.-To C. P. P., query 17, page 281-If your magnet were wound wut the armaikre covered wire, your instru
ment would probably work, but meni
a very distinct sound. The resistance in the relay coll is too great; an in order to have your sounder work well, you must equalize this restis. tance. Therefore construct a magnet of the same size as the relay.
w. Eolian Harp.-To J. F., query 4, page 297.-This instru ment consistat of a long narrow box, of yery thin wood, about ifve inchee
deep. A circle is cut, in the middele of the upper side, an inch and a hal deep. A A circle is cut, in the middle of the upper side, an inch and a halt
io diameter. Stretch on this side, over bridges, seven or more strings of very ine catgat; these must be taned in unison. rent of air will pass over the estrings.
length of harp is a good place.-G. C. \mathbf{T}

Zecent sumeticam aud forcigm 安atents.

nder this heaaing we shall pubisish
nent home and forevon vatents.
Grain Straming Apparatus.-Samuel W. Campbell and James C. Evane, of Kansas city, Miss.-A new apparatus for steaming wheat or other grain
preparatory to its introduction to a grind mill, with the object of thereby preparatory to its introduction to a grind mill, with the object of thereby
toughening the bran and preventing the flour from being specked by smal toughoning the bran and preventing the fifor from being specked by small
paricles of the bran constitutes the subject matter of this patent. The inention consists in the arrangement of a vessel containing a pertorated nclined partition, over which the gratn moves in its passage to the mill nd through which the steam reaches the grain
Railwar Siqnal.-Joseph F. Andrews, of Nashau, N. H.-This invention has for its object to provide an improved ipractical means of operat-
ing signals at rallroad crossings by the trains that approach such crossings nd at a suitable safe distance therefrom, to give timely warning to person isproaching the track when the trains are crossing. The invention con is crowded down by the weight of the train passing over it, and connected with the signal, moving the same when depressed.
Link block for Slide Valve.-Edward Marsland, of Sing:Sing, N. Y.-
To counteract the reduction in the size of a link block occasioned by wear is the object of this invention, which consists in making the block expans ble and contractable-that is to say, making it in sections-so that it can be
enlarged to fit the curved guides, or made to firmly embrace the pin that connects it with the valve. The invention seems well adapted to all link Washing Maceine.-Newton C. Goodioe, of Okalona, Miss.-This inve tion relates to a new dashing apparatus of a washing machine, and con sists in making the same in form of a hollow three sided prism, with
perforated sides and a hinged door, and provided with projecting gudgeons Whereon it can be rapid
and expeditious results.
Sawing Machine.-Cornelius B. Morehous, of Washington, Iowa.-This rewood and for other purposes; and it consists mainly in an automatic feeder, in combination with one or more saws.
Patint Compound.-Samuel F. Mathews, of Harrisburg, Pa.-This in-
vention relates to paints for covering and preserving various substances. brezch Loading Fire Arm.-Orville M. Robinson, Plattsburgh, N. Y assignor in full to "The Robinson Arms Co.," same place.-This invention
relates to an improvement in the loading, cartridge extracting, and adjusting mechanism of breech loading fre arms, and consists in a new arrang ment of reciprocating carrier block, vibrating breech block, adjustable gage, and operating levers, whereby the necessary processes can be rapidly
carried out.

Pratrie breaker.-Cornelius M. Clark, Seward, Neb.-This invention relates to a new plow for breaking prairie land, and consists in a new wir
mold board for turning the sod with the least amount of friction, and in now arrangement of cutter, guide wheels, and handles for facilitating th operation.
map and Chart Rages.-Frank G. Johnson, Brooklyn, n. y.-The ob ect of this invention is to provide convenient means for exhibiting maps, charts, sheets of music, engravings, etc., designed more especially for isiol and lecture rooms, but applicable to all similar purposes; and in con and in suspending wires or rods, and in tension rods for straining the su be allowed to slide laterally, and so that any single on way be exhibited in full or in part.
Spring for Railway Cars.-Henry Jeffrey and Henry Fisher, Aurora tation, Indiana.-This spring consists of a series of plates of square form case, one above the other, two opposite diagonal corners being free. When case, one above the other, two opposite diagonal corners being free. Whe
reight is applied, each plate springs diagonally from corner to corner. Cart Body catch.-Charles F. Chew, Swedesborough, N. J.-In this Contion the cart body is hiaged to the axle in the usual maaner, ana the hook may pass down far enough to catch over the edge of a cross bar whic xtends across the shafts. When the hook is unfastened and thrown back,
he body may be readily tilted and the load dumped. The body is again
astened on being simply raised, as the hook, by gravitation, secures itself pon the cross bar.
Sred Dropprr.-Williani C. Willey, Limerick, Ill.-This invention ha orits object to furnish an improved seed drupping device, so constructed he sametime be simple in construction, easily and conveniently operated and reliable and accurate in operation. It may be attached to any ord ary planter, and consists principally of the following parts: A vertic
ever, giving reciprocating motion to a horizontal bar, and thereby oscilating the arms connected with horseshoe-like bars whose ends project up
ward into the seed chambers. These ends carry cups to take up the righ uantity of seed: and, as the curved bar oscillates, the caps are alternatel Fire Place.-Samuel D. Dearman, Rocky Hill, South Carolina.-This
nention furnishes an improved cast iron fire place, so constructed as to erve as a security against fire and as a radiator of heat, and at the sam ime is simple in construction, easily a pplied, and durable. This fire place work of the hearth. The back plate is bent forward until jis top edge bout midway The rear front of this; plate is provided with projecting ribs to hold the wood forward, and to form a channel up which the heate ir may pass to an opening in the upper front which leads to the space lef between the back part of the plate and the brick work of the chimney.
This arrangement produces a strong dratt and prevents smoking. The opening is closed, when required, by shutting a damper hinged to its uppe from the forward curve of the plate, hangsopen iff in case of fire.
Cultivaror.-Hugh Paxton Jordan, Victoria, Texas.-This improvement invended to make this invention, patented January 10, 1871, more
convenient and effective. To describe it in detail would occupy too much space. By this construction, the levers which guide the inner plows plows by their lateral movement. By depressing these levers, the inner olow standards are raised from the ground, and may be kept so while turning, etc., by catching the lever ends on catches provided for them. To these attached to the outer standards; so that the outer standards are raised and outer plows masponding motion given to the inner ones, and so that tha asting the hooks in the plate.
Frott Dryer.-Charles A. Boynton, Vineland, N. J.-This invention re reservation proved apparatus for rayidy arsing fruit and vegetables for the fruit supporting shelves, with stationary top and bottom plates and con aits, whereby a series of up and down hot air passages through the sever rees of hostained, exposing all the fruit in the apparatus to varying de The invention also consists in the combination, with the apparatus, of a fan by means of which air is drawn through it with desired effect
Combined bureat and Wash Stand.-Joseph Schneemann, New York city.-The object of this invention is to produce a convenient piece of fur
iiture for hotel and private use, of pleasing exterior, and which will, thoug apparently a bureav, also fulfill the offlces of a wash stand. The inventio onsists in the gencral arrangement of parts, and also in the combinatio vith a sliding wash bowl holder, of a vibrating soap cup.
Car Coupling.-George W. Loyd, Markleysburg, Pa.-This invention
relates to a new car coupling, in which the system of detachable or removble coupling pins is dispensed with, and swinging hooks are substituted in heir place. The entire mechanism seems to be extremely simple, not likel easons, better adapted to railroad cars than the couplings in common use Plow.-William B. Bradford, Charlotte, North Carolina.-The object nd other construct a plow conveniently adjustable for use for subsoiling orward, so as to serve as a standard for the subsoil plow to be attached to. The handles are pivoted by their forward ends to the beam, a little in fron
of its downward curve. The upper plow standard is sloted or divided from its upper, to, almost, its lower end. The arms formed by the division pas outside the beam and are pivoted together to the handles some distance behind their pivoted ends. The standard is secured to the bsam by a bol passing through its arms and the enclosed beam. Several holes being mad in the beam, tue slirling or the bolt from one to and of them efects the upper standard is astained by brace pivoted into its slot; which brace also slotted, so as to slide over the lower standard, to which it is again pivoted.
band Saw Mill.-Henry Peterson, of East Germantown, Ind.-It would be impossible to give an adequate description of this invention withou rrangement for operating the carriage and knees, on and a against whic the timber rests while being sawed, by means of a toothed bar and gea Wheels which give motion to screws connected with the knees, and a com ally the apparatus for setting the timbor of throwing out of gear automatic ingenious device.
Potato and PranutDigarr.--James M. Lumbard, of Decatur, Mich.The axle of the digger is bent four times at right angles, so as to bring the middle part nearly to the ground. The rear end of the tongue has four arms,
whichare severally connected with the angular bend of the axle, and form Whichare severtical rectagle. The rear end of the plow or scoop is so bent as to rest on the lower bar of the rectangle withoutslipping when the draft strain comes on it. The front part is supported at the required inclination
by chains attached to the lower arms, and the back end is provided with two by chains attached to the lower arms,

Ovatrer Drsdge.-Thomas W. Landon, of Fairmount, Md.-To a frame work of ordinary construction is attached the nsual wire bag or net; and a
tooth plate is pivoted by its ends to the lower ends of the bows of the frame. tooth plate is pivoted by its enas to the lower ends of the bows of the frame and its ends are bent in ward and attached to it. The whole is so arrangel that when thrown overboard the resistance encountered by the trip bar will the weight of the oysters in the bag will bring it back into line with the
frame so as to pass readlly over the roller.

Lining For Furnacrs, SAFRS, etc.-Augustus C. Hamlin, of Bangor, Me.
-This invention consists in the application of itacolumite, as a lining for Thes, furnaces, tweers, to the manufacture of crucibles, and similar us where its heat resisting qualities can be utilized. The material named is a aminated granular quartz rock, consisting mainly of quartz sand, but containing a little talc, and possessing a degree of flexibility when in the lamina.
It is, at present, mostly found in the States of North Carolina, South Caroinn, and Georgia. Its flexibility allows it to be easily worked into the lin ing of heat resisting articles specified, and permits thus the direct and inex pensive application to practical purposes of the valuable properties of uartz and quartzite. The peculiarity of structure or composition of the itacolumite permits the expansion and contraction of heat and cold without
destruction, and the material is therefore admirably adapted to all operations where the action of heat is to be resisted. It may be separated into sheets or slabs, and may also be pulverized and molded into crucibles.
Overcoming Dead Centers and Preventing Back Motion of Crank Wheres.- John Coy, of Oswego, N. Y.-The invention consists in taking
the pitman off the dead points by constructing it with a loose joint near end; pitman off the dead points by constructing it with a loose joint near end; motion.
a wining Framb.-Jabez w. Loane, of Baltimore, md.-The invention consists in a frame and side pieces so constructed that the awning can be quickly taken to pieces and packed in a small compass for transportation. This device has great advantages, and should be in the possession of every ae who uses a tent or awning.
band Cutting Fork.-David Arnold, of West Lodi, Ohio.-A fork which has an attachment for cutting the bands of grain sheaves, and other attach-
ments for holding the cut band and the sheaf while the same are on the fork, ent for holding the cut band and the shear while the same are on the fork thrashing machines it is important to have the bands cut promptly prior to the entry of the sheaf into the machine. This object is attain by the use, on he main fork, of a knife and a yielding fork, and also oy a peculiar kind of main fork. When a fork of this kind is applied to a sheaf in a position to
bring the knife at right angles across the band wherewith such sheaf is tied, he knife will, after the prongs have entered the sheat, commence to cut the band. The small fork will, at the same time, enter the band below the main ork and yield to the progress of the cutter
Frrtilizer.-Joseph Ramsey Black, of Ninety-Six, s. C., has invented a new fertilizer compound, of such nature that by its use the most beneficent esults on growing crops are intended to be obtained without impoverishf stable manure with cheap chemicals, that thereby the elements of an excellent fertilizer are produced at comparatively little expense, and at a mall outlay of labor. The chemicals are saltpeter, common salt, lime, and ashes.
Die for Shaping Tea Kettle Bails.-James Britton, of New York city, proposes the use of a new set of punches and dies for shaping tea kettle bails fron flat sheet metal bands. The arrangement of projecting beads and on the middle part of the bail constitutes the principal features of the invention.
Door Spring.-Friedrioh Stemmler, of East New York, N. Y.-This is a new means of connecting a door with a spring for closing it from both sides and consists in anew combination of the door pivot with two spring con racting ines, ane to either side the apring will be tracted for shuttin as soon as the power opening the door is detached from the band.
Maching for Making Chains. - William C. Edge, of Newark, N. J -This machine is intended for the manufacture of fine chains by jewe.ers, and con-
sists principally in the use of reciprocating punches whereby the end of each hain link is expanded after it has bean infore in the place in the hain and previous to being bent.

[OFFICIAL.]

Index of Inventions
For which Letters Patent of the United States were granted
for the week ending May 7, 1872, and each bearing that date.

Alarm and door fastener, combined burglar, W. W. Marston Artillery, field, S. W. Wood
Awning frame, J. W. Loa
Baggage check, J. H. McAlvi
Bags, handle strap for traveling, A. Alexandre
Bale tie, C. Sweet, (reissue)
Bed bottom, spring, w, B. Brown
Bee hive, J. Williams.
Bit brace, W. A. Ives.
Blacking spreader. H. s. Kerr.
Bleaching pea nuts, F. M. Ironn
Blind, slat, window, A. Kohler.
Boiler, safety attachments to steam, H. Kaempf
Boller, strengthening steam, J. Hibden...................
Boiler fire boxes, water legs of steam, R. Montgomery Bolt, P. Lecloux
Bolts, device for cutting off, T. J. E. Emery
Boot heel, shells, flling metallic, Richardson, Hacker, and Blake
Boot for horses, Murray and Koch
Boots and shoes, machine for bending the shanks of, H . Barnes..
Boots and shoes, seam for, L. H. Farnsworth.
Bowl, water, Howson and Sweeney
Brick machine, J. C. Culver
Broiler, reversible, s . Smith

Burner, vapor, W. H. Smith...
Burner, vapor, Smith and Fisch
Button and locket, combined sleeve, w. C. Almy
Calendar, advertising, R. C. Ogden.
Camera stand, E. P. Spahn..................
Camera, photographic, Stock and Sto
Can, armored, W. F. Thompson.....
Car coupling, E. Lane..
Car coupling, w. Kenyon.
Car coupling, Inge and Wheeler
Car seat, Philips and Coleman..
Card stripping machinery, J. F. Foss
Carding machine, E. Bede.
Carpet fastener, C. Harting.............
Cartridges, tapering, S. W. Wood 126,608, 126,609, 126,610, 126,611, 126, ...
Caster, furniture, Arnold and Hanschild
Chair, folding, P. B. Viele
Chair or stool, support for, H. Wadsworth
Churn, W. McKeeyer

Clamp, hand, s. 亡. Thompson................................... Corn and other grain, curing, H. H. Beach......
Corsets, children's, Emery and Fuller, (reissue) Cultivator, c. Billups
Cultivator, J. Rebma
Derrick, W. J. Perkins
Door check, w. O. Clough.
Dryer, gra, Stannard and
Dyeing, apparatus for, G. M.
Emery wheel, w. T. Vose
Engine, compound steam, for steam,
Engine, oscillating steam, J. Bobertson
Enginery for surface condensers, steam, W. A. Lighthall (reissue) Fence, R. R. A. Riggs.............
Fence post, iron, M. M. Manly
Fire arms, breech loading, F. E. M. Nillu
Fire arms, breech loading, J. W. Cochrane
Fire arms, lubricating pellets for, S. W. Wood
Fire arms, lubricating wads for, S. W. Wood
Fire escape, H. G. Sedgwick
Flag hoisting apparatus, J. W. Mackenzie.
Fruit corer and slicer, Thurston and Wilkinson Fruit box, C. A. Blair.
urnace for treating ore, Whelpley and Storer (reissue)
Furnace and tempering oven, combined, Hewett and Hewet Furnace, draught regulator for hot air, F. E. Chatard, Jr Furnaces, shield for feed air pipes for
Funnace, soldering, G. A. Townsend.. Furnace for the manufacture of iron Gaiters, machine for goring, J. Walde
Gas apparatus, J. H. Steiner (reissue)
Gas, manufacture of, J. H. Spang.......
Gas, manufacture of, A. D. Bell (reissue
Gas from oil, manufacture of, M. J. Barry
Girder, P. H. Jackson.
Grain birder, E. Chapman
Grain cleaner, J
Grain cleaner, J. A. Krake.
Grain, machine for washing, G. Copeland
Hair restorative, P. Trautwein.
Harpoon, bomb, C. Freeman
Harpoon, bomb, c. Freeman....................
Harvester, gaveling attachment for, c. c. Shults.
Heater, gas, A. H.
Hinge, J. K. Otis
Hinge, spring, B, Turier
Horse power, A. B. Farquhar
Horse radish, preserving grated................
Horseshoe, J. Stickney,
Horseshoe, toe calks for, G. Custer (reissue)
f, E. M. Chaffee (reissue)
Hulling machine, w. Seck.
Husker and pickere for, A. C. Meyn.
Husker and picker, corn, S.
Ink, printing, J. C. White....
Jack, lifting, Smart and Smart,
Jar, fruit, McSpedon and Steger
Lamp snuffer and extinguisher, M. L. Bates
Lamp, street, J. H. Robinson.:
Lamp, mirer's, W. C. Winfield
Letter box, alarm, S. H. Morris
Level and clinometer, plumb, N. Barnum.
Lock, hasp, T. Slaight.
Locomotive fender with fuel, apparatus for supplying, H. C. Land
Loom weft stop mechanism,
Loom weft stop mechanism, T. Naylor.
Lubricator, car axle, M. W. Woodruff.
Lubricator, car anle, M. W. Woodruff......
Lubrisator for steam englne, c. H. Parshall
Marking pot, J. L. Tarbox......
Medical compound, N.
Medical compound, N. C. Jarrell.
Medical compound or ointment
Medical compound or ointment, w. H. Jones.
Metal, machine for rolling sheet, J. Hall.......
Metal, machine for cutting and punching, A. L. Hastings
Metal surfaces, tool for matting, D. Mosman
Milk cooler, N. W. Miller.
Milk strainer, H. Hassenpflue
Mill, fanning, c. Altringer
Min, fanning, C. Altringer.............
Mill, fanning, Wright and Hogaboam
Mitering
Molding for picture frames, etc., manufacture of, A. C. Enger
Movement, mechanical, C. R. Squier
Music leaf turner, C. P. Brown.
Nipper, cutting, W. X. Stevens.
Nipper, cutting, w. X. Stevens...
Nut, lock, Peabody and Champlin
oils, solidiffying, C. A. Jordery..
Ore, apparatus for chlorinating and bleaching, M. H. Stowe.
Paper box machine, G. R. Clark..
Pavement, wood, G. H. Chinnock.........................
Pavement from rot, preserving wooden, A. B. Tripler
Pavement from rot, preserv,
Pavement. wood, z. E. Fobes.
Pavement, wood, A. Wycko
Pencil cases, W. H. Davis..
Pipe coupling, D. C. Kellam
Pipes from percussion, regulator to protect, E. A. Chameroy
Plane, carpenter's O. R. Chaplin
Planing machine, G. B. Durkee
Planter W. Beall.
Planter, cotton, Pope and Pop
Plow, wheel, J. Cochrane
Plow, F. R. Willson....
Powder for cleaning metals, etc., Musgrave and Beidel...
Press, baling, L. W. Liles.
Press, baling, c. H. Schnell.
Press, baling, c. H. Schnell..............
Press, baling, Huntington and Carter
Press baling,
Press, baling, Myers and My
Pruning shears, B. Bullard.
Pulley, J. J. Cowell.........
Pulley block, T. B. Brown.
Pulley block, T. B. Brown...................
Pnlley block, differential, Hall and Hubner
Pump, G. W. Preston
Pump, rotary, J. s. Godfrey
Pump, steam, H. Epping.
Pumping and measuring liquids, E. F. F. Wilde.
Railway tie. E. J. Fenn.
Rein holder, L. D. Howa
Rods, die for upsetting, M. Seward.
Rope machine, tension device for filiers of, H. Perking.
Rope machine, tension device
Ruffing machine, Barney and Hubbell.
Sash holder, E. Culver
126,425
$.126,541$
126.511

Saw, T. P. Marshall
Saw mill, Sawing machine, g. Sangford.. 126,580 Sawing machine, band, B. D. whitney.. 126,602
Sawing staves, machine for, B. D. Whitney.........
Scissors sharpener, E. Fuller....... 126,539
Screen, grain, D. D. Schamp.
Scraper, street, C. Osgood . 126,493
126,570

Sewing machine, braider tor, Ellicott and Prince................................. 126,882
Sewing machine, motive power for, A. Bouchard.......
Sewing machine, needle bar for, G. M. Pratt..................................... 126,688
Shade fixture, reversible, w. b. Hazzard.................................. 126,467
16,458
Shafting, machine for turning, J. Fensom................................... 126,538
Sifter, ash, G. F. Millard... 126,475
Shoe, J. J. Drown....... ... 126,450.518

Spade, Lake and Elliott... 126.465

Steam generator, aerated, L. W. Werner... 126,600
Stills of gas, etc., relieving oill, S. Van Syckel.............
Stool and book holder, kneeling, G. Watson...................................... 126,430
Stove, heating, S. D. Vose..66,43
Stoves, radiator for, C. Williams...............
Stove cover lifter, handle for, E. A. Beardsley..
Stump extractor, J. R. Ames............
Teeth to the pyroxylin base, attaching artici...................................... 126,5 Telegraph, printing, T. A. Edison...... 126,528, 126,529, 126,530, 126,531, $126,532,126,533,126,534,126,53$

Telegraph transmitting apparatus, clutch for, G. C. Wessmann....
Thrashing man
Thrashing machines, grain measuring attachments to, J. Hemingway 126,392
Tools, combination, D. Heaton......................... 126,544
y steamboat, E. P. Ryder.
Trap, mole, C. Polley...126,321
Umbrella staff collars, punch and die for finishing, R. Marshall...... 126,45
Valve, saferary, A. Lawres
Valve, rotary, A. Lawrence............
Valve, balanced slide, c. H. Hutchinson
Valve, balanced slide, A. Stilling.
Valve, balanced slide, R. Freeman.
Vessels, apparatus for elevating and imme............................... 126,427
Wan, trussed axle for lumber, Tumersing, J. Jacobs........... 126,461
Wash basin with urinal attachments, J. L. Mott.
Washing machine, w. G. Knowles
Water ejector, steam, Cox and Cox
Water wheel, M. Millard.................
Weather strip, , , M. La wless (reissue)
W
Weather strip, L. M. Lawless (reissue)..
Wells, cutter for removing casings from artesian, Lawrence Luther
Whips, manufacture of, G. P. Overin................................. ... 126,411
Wrench, pipe, w. C. Westerfield...5658
Wringer, clothes, Smilie and Cooley.............
DESIGNS PATENTED.
5, 837.-CARPRET. - W. De Hart, Amsterdam, N. Y.
,
5,840.-Mrtallio Grating.-J. K. Ingalls, Starkey, N. Y.
5,841.-CARpet.-L. Jullien, Passy, France.
5,842 .-Carper.-H. Robinson, Halifax, England.
843.-Range Stove.-G. Smith, H. Brown, Philadetphia, Pa.

5,844.-BURIAL Casket.-F. Weseman, Brooklyn, N.
$5,845 .-G A D E E N$ VAsm.-R. Wood, Philadel hhia, Pa.
TRADE MARKS REGISTERED.
799.-Toys.-Althof, Bergmann \& Co., New York city.
800.-LInsiment.-C. F. Brown Chemical Company, New York city.
801.-Leather.-J. Davis \& Son, Pawtucket, R. I
802.-MARQUETRY.-J. Dill. Boston, Mass.
802.-M M RQEETRTY.-J. Dill. Boston, Mass.
803.-Corfry, ETC.-E. H. Garbutt \& Co., New York city.
804--Writing PAPER.-J. M. Goodall, London, England.
805.-Polishing Brick.-T. T. Luscombe \& Co., St. Louls, M
806.-MEDICINE.-W. Renne \& Sons, Pittsfield, Mass.
807.-PERFTME.-J. Rose, Dover, N. H.
808.-MEDICINE.-Russell \& Seabold, St. Louis, Mo.

809--SHirts, RLC.-Thalheimer \& Hirsch, Philadelphia. Pa
810--Tobscco.-J. and L. Whorley, Nashyille, Tenn.

sCHEDULE OF PATENT FEES:

For Copy of craim of any Patent issued withtn 30 years.................... $\$ 1$
4 sketch from the modelor drawing, relating to such portion of a machine
as the Claim covers, rrom ..
as the Clatm covers, rom
tull Specffcation of any patent issuedsince Nov. 20,1866 at which time
the Patent Offce commencedprinting them........................81•2
orctal Copies of Dravings of any patent tissued since 1836, we can supply at a reasonable cost, the prrce devending upon the amount of labo
involved and the number of vievos.
Involved and the number of otevos.
Full information as to price of drawings in each case, may be had by MUNN de CO..
Patent Solicitors. 37 Park Row. New York.
APPLICATIONS FOR EXTENSIONS
Applications have been duly filed, and are now pending, for the extension
of the following Letters Patent. Hearings upon the respective application are appointed for the days hereinafter mentioned
20,863.-Rooking Chatr.-I. P. Carrier. July 10, 1872.
25635.-Labela for Periodicals.-R. Dick. July 10, 1872
21,329.-Trleqraphing.-M. G. Farmer. August 14, 1872 .
2,1,099.-SLLERPing CAR.-EE. Wheler, July 17, 1872.
21,879.-SBLF Mousing Hook.-J. R. Henshaw. October 9, 1872
21,879.-Shlf Movsing Hooz.-J. R. Henshaw. October 9.1872
21, $122 .-$ Treatment of Caoutchouc.-A. G. Day. July 24,1972
EXTENSIONS GRANTED.
20,051.-Cotron Gin.-J. Du Bois
$0,091 .-$ Fly Trap.-W. Riley.
,
20,106.-Register and Ventilator.-E. A. Tuttle.
20,111.-Damping Apparatus.-C. A. Waterbury.
$20,120 .-$ Cotron Gin.-J. N. Wilison and G. W. Payn
20,086.-Cotron GrN.--s. R. Parkhurst.
20,173.-SRwing Machine.-E. H. Smith
20,136 ,-Stram Engine.-D. Barnum.
20,136.-STRAM Engind.-D. Barnum.
20,180.-HARvestra.-Three divisions. L. Miller.
20,181.-HARVEster. -Two divisions. L. Miller

Practical Fints to Inventioss.

M^{v}
NNN \& CO., Publishers of the Scientific American have devoted the past twenty-five years to the procuring of Letters ed themselves of their services in procuring patents, and many millions of dollars have accrued to the patentees whose specifications and claims they ries obtain patents on the same terms as citizens.

How Can 1 Obtain a Patent?

thich cosing inquiry in nearly every letter, describing some invention which comes to this offfce. A positive answer can only be had by presenting a complete application for a patent to the Commissioner of Patents. An application consists of a Model, Drawings, Petition, Oath, and full Specifica-
tion. Various offlial rules and formalities must also be observed. The effirts of the inventor to do all this business himself are generally without suscess. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work done over again. The best plan is to solicit proper advice at the beginning. It tne
parties consulted are honorable men, the inventor may safely conflde his parties consulted are honorable men, the inventor may safely confide his
id a as to them: they will advise whether the improvement is probably patentable, and will give him all the directions needful to protect his rights.

How Can I Best Secure My Invention?

Thas is an inquiry which one inventor naturally asks another, who has had
so ne experience in obtaining patents. His answer generally is as follows, a.ad correct:

Tonstruct a neat modeldnot over a foot in any dtmension-smaller if pos-
sible-and send by express, prepaid, New York, together with a description of its operation and merits. On veipt thereof, they will examine the invention carefully, and advise you as tc its patentability, free of charge. ©r, if you have not time, or the means at and, to construct a model, make as good a pen and ink sketch of the im. provement as possible, and send by mail. An answer as to the prospect of a
patent will be received, usually by return of mail. It 1s sometimes best to patent will be received, usually by return of mail. It 18 sometimes best to
have a search made at the Patent Offce; such a measure often saves the cost of an application for a patent.

Preliminary Examination.

1n order to have such search, make out a written description of the inven-
tion, in your own words, and a pencil, or pen and ink, sketch. Send these with the fee of $\$ 5$, by mail, addressed to MUNN \& Co., 37 Park Row, and in due time you will receive an acknowledgment thereot, followed by a writ-
ten report in regard to the patentability of yonr improvement. This specia search is made with great care, among the models and patents at Washington, to ascertain whether the improvement presented is patentable

To Make an Application for a Patent

The applicant for a patentshould furnish a model of his invention, it sus-
ceptivle of one, although sometimes it may be dispensed with; or, if the invention be a chemical production, he must farnish samples of the ingredients of which his composition consists. These should be securely packed, the els, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to the order of MUNN \& Co. Persons who live in remote parts of the country can
usually purchase drafts from their merchants on their New York corresnsually pu
pondents.

Persons desiring to file a caveat can have the papers prepared in the shortest time, by sending a sketch and description of the invention. The Govern-
ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding applications
for patents and caveats is furnished gratis, on application by mail. Address MUNA \& CO., 37 Park Row, New York.

Heisw mes.

A retssue is granted to the original patentee, his heirs, or the assignees o the entire interest, when, by reason of an insufficient or defective specifica-
tion, the original patent is invalid, provided the error has arisen from inad vertence, accident, or mistake without any fraudulent or deceptive nten
A patentee may, at his option, have in his reissue a separate patent to each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re-
quirements of the law, as in original applications. Address MUNN \& Co. 37 Park Row, for fall particulars.

Trademarks.

Any person or firm domiciled in the United States, or any firm or corpora tion residing in any foreign country where similar privileges are extended to citizens of the United States, may register their designs. and obtain pro-
tection. This is very important to manufacturers in this country, and equally so to foreigners. For full particulars address Munn \& Co., 37 Park Row New York.

Design Patents.

Foreigndesigners and manufacturers, whosend goods to this country, may
ecure patents here upon their new patterns, and thus prevent others from tabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether citizen or ailen, or any new and original design for a manufacture, bust, statue, alto
relievo, or bas relief; any new and original design for the printing of wool relievo, or bas relier; any new and originaldesign for the printing of wool-
en, silk, cotton, or other fabrics; any new and original impression, orna ment. pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For
tull particulars send for pamphlet to MUNN \& Co., 37 Park Row, New York
Rejected Cases.
Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate. Address MUNN \& Co., stating particulars.

European Patents.

MUNN \& Co. have solieited a larger number of European Patents than any other agency. They have as"nts located at London, Paris, Brussels Berlin, and other chief cities. A pamphlet pertaining to foreign patents and the cost of procuring patent t^{5} in all countries, sent free.

MUNN \& Co. will be happy to see inventors in person, at their oflice, or to advise them by letter. In all cases, they may expect an honess opinion. For
such consultations, opinion, and advice, no charge is made. Write plain do not use pencil, nor pale ink: be brief.
All business committed to our care, and all consuitations, are kept secret
and strictly confdiential.
In all matters pertaining to patents, such as conducting interferences procuring extensions, drawing assignments, examinations into the validity
of patents, etc., special care and attention is given. For information, and fo pamphlets of instruction and advice

> EITHNN \& CO.,
> Publishers scientific american
> 37 Park Fow, New York.
> Orfick in
Patant Omes

Value of Extended Patents.
Did patentees realize the fact that their inventions are likely to be more
productive of profit during the seven years of extension than the first tull term tor which their patents were granted, we think more would avail themselves of the extension privilege. Patents granted prior to 1861 may be
extended for seven years, tor the benefit of the inventor,or of his heirs in case extended for seven years, tor the benefit of the inventor,or of his heirs in case
of the decease of the former, by due application to the Patent Otlice, ninety days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignees under the first term having no rights under the extension, except by special agreement. The Government fee for an extension is $\$ 100$, and 1 is necessary that good. professional service. tion as to extensions may be had by addressing

MUNN \& CO., 3y Park Row.
Inventions Patented in England by Americans.
[Compiled from the Commissioners of Patents' Journal.]
From April 9 to April 22, 1872, inclusive.
Air Brake.-G. Westinghouse, Jr., of Pittsburgh, Pa., London, England. Engine Engine and Pump.-O. C. Lewis, Brooklyn, N. Y.
Filling Boot Heed Shelse-F. Richardson Providence, R I Shells.-F. Rich Lamp Burner, etc.-A. G. Myers, Ne
Sorew Driver.-C. Law, Pittston, Pa.
Steam engine for Street Vehicles.-W. Baxter, Newark, N. J. Stereopticon.-A. G. Busby, W. B. W
Treadle.-S. K. Herrick, Boston, Mass Treadle.-S. K. Herrick, Boston. Mass. Treating Bristles, etc.-W. Adamson, Philadelphia, Pa
Treating Substances. \cdots W. Adamson, Philadelphia Pa TVok Marier, bTC.-Howe Machine Company, Bridgeport, Conn. Ype Case.-R. M. Hoe, New York city
Utiluzing Rail Butts.-H. Chisholm,

FOREIGN PATENTS---A HINT TO PATENTEES.

It is generally mueh better to apply for foreign patents simultaneously with the application in the United States. If this cannot be conveniently done, as little time as possible should be lost after the patent is issued, as
the laws in some foreign coutntries allo $\#$ patents to any who first make the application, and in this way many inventors are deprived of valid patents tor their own inventions. It should also be borne in mind that a patent is issued in England to the first introducer, without regard to the rights of the real inventor; therefore, it is important that all applications should be
entrusted to responsible agents in this country, who can assure parties that their valuable inventions will not be misappropriated. The popnlation of Great Britain is $31,000,000$; of France, $37,000,000$; Belgium, $5,000,000$; Austria, $36,000,000$; Prussia, $40,000,000$; and Russia, $70,000,000$. Patents may be secured by Americancitizens in all of these countries. Mechanical improvements of all kinds are always in demand in Europe. There will never be a better
time than the present to take patents abroad. We have reliable business time than the present to take patents abroad. We have reliable business
connections with the princi pal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are obtained through our gency. Address

MUNN \& CO.
$\underset{\text { oreign patents, furnished free. }}{\text { 37 Pa }}$.
NEW BOOKS AND PUBLICATIONS.
a Treatise on Railway Curves and Locations.
W. Beans, C. E. Price, $\$ 1.50$. Philadelphia: Henry W. Beans, C. E. Price, $\$ 1.50$. Philadelphia: Henry
Carey Baird, Industrial Publisher, 406 . Wanut Street. Carey Baird, Industrial Publisher, 406. Wanut Street.
Mr. Beanhas published, in this book, ten propositions in the geometry ot Mr. Bean has published, in this book, ten propositions in the geometry of
curves, with comments thereon, and rules aud directions for practical curves, with comments thereon, and rules and dire ctions for practical
application, which appear to be of intrinsic value and convenience.

advertisements.

Back Page - - - - $\$ 1 \cdot 00$ a line,

 Inside Page or each insertion. En eacravings may mead advertisements aLine, by measurement, as the letter-press , The value of the SOIENTIFIO AMYRIDAN as an advertising
medium cannot be over-estimated. Its circulation is ten times greater than that of any similar journal nowo pub. kished. It goes into all the States and Territories, and is read in all the princt pal libraries and reading-rooms of ake their business knovon to the annexed rates wish vo ness man wants something more than to see his advertisement in a printed nevospaper. He wants circulation.
If it is worth 25 cents per line to advertise in a paper of three thousand circulation, it is worth $\$ 2.50$ per line to

COAL

 CHEMICAL PHENOMENA IRON SIIELTING: An Experimental and Practical Exam InATION OF THE CIRCUMSTANCES Which
DETERMINE THE CAPACITY OF THE BLAST FURNACE, THE TEMPERATURE OF THE AIR, AND THE PROPER CONDITION OF THE MATEmials to be operated upon.
 D. VAN NOSTRAND,
 dederick's automatic crank box

PRICE REDUCED.
A Manual or practical asseying. by
 (Went free of mall on recelit of price. d. van nostrand

23 Murray St. \& 27 Publishere and Importer

THE HEALD \& SISCO

Patent Centrifugal Pumps,

Poteler Portable Railload Congany,

TO CONTRACTORS, MINERS, etc.
By this invention one horse does the wor

A New and Valadille Book. STIILIL Mifoin 1872

A NEW COLONY IN KANSAS!

 $W^{\text {Cod worlites. Freizing Machinery-Spe. }}$

Trade-Mark Patents. MUNN \& Co. desire to call the attention of manufacurers and business men generally, to the importance of
the law of patents, as applied to trade-marks for business purposes. Any person, firm, or corporation, domiciled in the
United States, or in any foreign country affording similar privileges to citizens of the United States, can obtain the right to the exclusive use, for THIRTY YEARS, of any
TRADE-MARE, consisting of any new figure, or design, or any new word, or new combination of words, letters, or gigures upon their manufactures.
This protection extends to trade-marks already in use
or any length of time, \oplus about to be adopted. or any length of time, or about to be adopted.
Full information on this important subject
Full information on this important subject can je ob MUNN \& CO.

Canadian Inventors,

Onder the new Patent Law can obtain patents on
For tull particulars a 3y lpark Row, New York.
§゙itutuific

BAIRD'S Bouk

for praciciak men.
 HENRY CAREY BAIRD, INDUSTRIAL PUBLISAER,
406 WALNUT STREET. Philindelphia WATSON'S
Praclice of American Machinists. THE MODERN PRACTICE OF AMERICAN MaCHiNISTS AND ENGINEERS: Including the
Construction, Application, and Use of Drills, Lathe Construction, Application, and Se of Drills, Lathe
Tools, Cutter for borng CYlineers, and Hollow
Works Generally, with the most
 Workshop Management, Economy or Manuracture,
the steam Engina Boilers, Gears, Belting, etc., etc.
 n new eatition. In one vol., 12mo............. 8.2 .50
The above, or any of my books, sent by mail, ree of postage, at the puhication prices.

HENRY CAREY BAIRD, 406 walduct stret, Philacelphi BLAKE'S PATENT STEAM PUMP.
 $S^{\text {END FOR }}$ CIRCULAR.

51 CHARDON $\underset{\text { Boston, }}{5 T}$, Mass. 99 Liberty ${ }^{2}$ STw.

PROPETTER PUTMPS

$\mathbf{A}^{\text {LCOTTMN }}$ LATHES for Broom, Fork, Hoe, A. and Rake Handes, Chatr Rounds, tekt, New York. DRAULIC JA" $\boldsymbol{C} \boldsymbol{K}$.

$\mathbf{M}_{\text {are }}^{\text {ASON'S PATTM }}$ FRICTION CLUTCHES

PRINCAS METALLIC PAINF BEST \& CHEAPEST PAINT

 To Rear Admiral William Radord Commander: Mealic

 For Sale, Dry and in oill by the Trade ander by
PRINCE \& BASS, MANUFACTURERS,
96 Cedar btreet, New York.
P

票 Reytalds (6) Bry
 A CAREFULLY SELECTED assortment of

$\$ 10$ from 50 cts. 12 2 SAMPLES sent (postage paid) for Fifty Machinery,

Machinists Tools.

Punching Presses.

 Cold Rolled Shafting.

Sturtevant Blowers

 Cons Lowell, Mass.
F in Morris County, N. J., two miles from Canal, one

CA M. MAYO'S BOLT CUTTER-Patente
E. M. MAFTROVised anT imporved in 1881 and 1872

F OOT LATHES, Back Geared and Plane
 Hergrava Stequm Perma CHAS. B. HARDICK,

$\overline{\text { A }}$ GENTS W ANTED to sell articles needed AUSTRALIAN COLONIES.

Gumtricau.

NHW PATTERNS.
 PORTABLEETEAM ENGINES, COMBIN

 NE YORK STENGIL WORKS, S7 NASSAU ST., NEW YORK.

TMPROVED FOOT I A	

Coje \& Maxweir Man'fy Compant, 118, 120 \& 122 East Sec
CINCINNATI, 0.
$\$ 100 \pm 250 \begin{aligned} & \text { per month guar anteed sure }\end{aligned}$

THE WOODWARD
 STEAMPUMP.

L ATHE CHUCKS-HORTONS PATENT
Andmeps's Preterts.

Authinur
Bond fox ceir

P. $B L A H E D L L \& O$

A GEvTs \& Pedilerg for our Press \& Strinicr. Prese

$\mathbf{M}_{\text {and experimental machinery of anil kind }}^{\text {ODFL }}$ HOICE

VALENTINES IMPROVED
Fourmeyron Mewelbinc.

WE warrant every Steam Gauge

UTICASTEAMI GAUGE CO., Utica, N.x.

T He Union Iron Mills, Pittsburgh, Pa. The

Lig itning ROD POINTS AND NUTS
L in every style. S. Samper free

1832. SCHENCK'S PATENT. 1871 WOODWORTH PLANERS
 UNIVERSAL WOOD WORKER,
 WOD.WORKING MACHINERY GEN Cidentrel eorner Union st.. Worcester, Mass 24 an
MACHINISTS.

STANDARD, UNIVERSAL, INDEX AND
 A GENTS Wanted. Agents make more mon A. at aork for us than at anything else. Particaniar R ICHARDSON, MERIAM \& CO.
RIMAARDDSON, MERIMM

 S Improved Law's Barent sh MAcHiNERY.
 VARIETY MONT IMPROVED MOCHINERY CIRCULAR AdA ANB Babie BENCHES.

Buy Barber's bit Brace.
B UERR'S WATCGMAN'S TIME DE

 SCIENTIFIG AMERIGAN (1)

A year's numbers contains over 800 pages, and makes two volumes, worth as a book of

KMGRATMRTG

by our own artists, will not only be given, of all the best be directed to the description and illustration of MENTS, MACHINES, TOOLS AND

Inventors and Patentees gether, with desescriptions of the more important Inven nt Cases and points of law affectung the rights and inter

THE NEW VOLUME OF
SCIENHMC MCAN
commenced JANUARY FIRS r ; therefore, now is the
ime to organize Clubs and to ferward subscriptions Clubs may be made up from different post offlces. TERMS FOR 18\%2.
One copy, one year
One copy, six months
$\$ 3.00$
1.50

One copy of Scientific American for one year, and
one copy of engraving, "Men of Progress,", $\quad 10.00$
One copy of Scientific American or or one year,
and one copy of "Science Recor d," ${ }^{-} \quad-\quad-\quad 4.0$
Che Scientific Americar for one year PREMI
CLUB
Any person who sends us a yearly club of ten or more copy, gratis, of the large steel plate engraving, "Men of
Remit by postal order, draft or express.
The postage on the Scientific American is five cents per
uarter, payable at the office where received. Canad ubscribers must remit, with suoscription, 25 cents extra to pay postage.
Address all le

MUNIN © OO.
37 PARK ROW, NEW YORK.

gavertisements.

A WELL tested article of good thickness

 $\underset{\text { Mill Site at Public Sale-Hightstown, }}{\text { Mitan }}$

PATENT SAFETY Steam Engine Governors and Water Gauges.

Nilies Mod Woiks

Machinists' Tools. CARPENTER These Books in The Art of

Brass \& Copper

 SEAMTRPSS TUBITNG FOR LOCOMOTIVE, MARINE, ANDSTATIONARY BOILERS.
 $\underset{\text { 50f market street, Philade }}{ }$ TUURRTATORS.

PYROMETRERSS, ${ }^{\text {For or ovens, } \text { Boill }}$,

WIRE ROPE.
JOHN A. ROEBLING'S SONS
F Bridgelined Perries, Stanes, Standing Ship Rigging

A. S. Cameron \& Co.,

ENGINEERS,

Works, foot of East 23d Street, New Yorl City. STEANT PUNTS,
Adapted to every Possible Duty.-Send for a Price List Swain Turbine.
"OnrLow-Wiater Wheel fron this on"
WN ILL DO TEN PER CENTMOREWORE

THES SWAIN TURBINE CO.,
"First Find a Leader who has Go in Him, then Go and Do Likewise."

The following correspondence explains itself :

S. $\mathrm{s} . \mathrm{wood} \& \mathrm{Co} ., \mathrm{Newburgh}, \mathrm{N}$.

Good \& CO., Newburgh, N. Y.
pily disappointed. And as for the Organ you ordered, we do not wish a b better these taking it at this offlece are hap delighted, and children of a larger growth are generally pleased. Perhaps I can no better show our satisfaction in the suce ess of our undertaking, than to send you the inclosed [following), written [for the South Haven Sentine)
by Mr. O. S. SEA w, the leader of our Choir.

Yours truly,

How to Do It.

Mr. Edtror:-On the ninth day of January last, a copy of Wood's Fousehold Magazine stray yed into the Covert Post-offtce, and our Post-master, Mr. D. B. ALLENK, who is also superintendent of our sabbath School, in
 tunty; We need an Organ, a d we need good readng-why may we not have both? The price of the Magazine
one dollar per yent: and for one hundred and twenty-flve subseribers we can have a No. 1 Organ; price 8 yzas. With

 Was promptly for warded, and last Sabbath its powerrul tones niled one place of worship for the first time. We
can cheerfuly teestify to the reliability of the pubishers of Wood's
 clubs, or societies, that are in want of an Instrument, frrst find in leader who has go in him, then to and do like wise. **O. s. s.-[From the Sentinel, South Haven, Mich., for Mareh 30, 72.$]$
W ood's Household Magazine is an original dollar monthly, employing the very be contributors, and an able corps of editors, including Gail Hamilton. Specimen copie mailed free. Address

Diamond Pointed STEAM DRILSS:
T ThE adoption of new and improved applica

SITAM HANWERS FERRIS\&MILES 24ㅍNWOOD SISPHIL VEnteers

HARDWOOD LUMBER.

EXTRA HEAVY AND IMPROVED PATTERNS L ATHES, PLANERS, DRILLS, of all sizes; Mill iverican Boring Mills, ten feet swind ald
 American saw Co., Manufacturers os

The fact that this, santuwn nas 75 per cent greate

D. b. allen.
$T H E B A N D S A W!$
$\mathrm{H}_{\text {M }}^{\text {ISTORY, }}$ Its onith Engrin and
 G EORGE PAGE \& CO., Manufacturers of $G_{\text {Portable and stationary }}$ STEAM ENGINES AND BOILERS; Patent circuar. Gang, Mulay and Sash
SA $W M I L L S$, woith $O U T H I T S$
O

Steam Super-Heaters.

Working Models

SPECIAL NOTICE.

.
io

\qquad
$\mathbf{R}_{\text {and maintains racuum on Steam }}^{\text {ANSOM }}$ SYPHOR perfects

H.W.COLLENDERR SUCCESMELAN\& COLLENDER. H38 Brondway, New York.
ILLUSTAATED PRICE-LIST SENT BY MAIL.
COITrest ARMORY TESTING MACHINE-

\qquad

 The Tanite Co.'s Saw Gummer.....

The general and great advance in the price of Metals dditiop i es, together with re cent improvements in and
ance.
 and one of our improved aojustable
Rests can be set at any angle.
Address,
 chinists's suodsples. and Dealers in Railway, Mill, and Ma-
con

