New Method of Propelling Canal Boats．
Notwithstanding the numerous attempts to substitute something better for canal boat propulsion than the wheel or screw，it may be safely said that the majority of mechan－ ics and engineers still adhere to these time honored devices as being superior to anything else yet produced or likely to be produced for the purpose．The question of position is however，still a moot－point．Side，bow，and stern have each their advocates，and arguments pro and con are not wanting for either of these positions．Resort to practica experiment can only determine which is the best，and this will，no doubt，soon be brought about，by the action of the New York State Commission and the alluring prize it has a its disposal for the successful competi－ its dis

The inventor of the method illustra－ ted in the accompanying engraving be－ lieves the bow is the position for either a propelling wheel or screw，and in or der to produce direct longitudinal dis－ placement and obviate side swells，he proposes to combine one or other of the devices referred to with a tube or pass－ age from bow to stern of the boat tbrough which the displaced water shall pass， while the boat is made to advance cor－ respondingly．
Although we have shown in our engrav ing only the screw thus applied，the ap－ plication of a paddle wheel instead will easily be comprehended．No special peculiarity in the engine or construction of the boat is involved，with the excep－ tion of the longitudinal tube or passage． The most approved practice in steamen gineering can，therefore，be applied in the construction of the engine，and its application to driving the propelling wheel or screw．There can be no doubt that the displacement taking place through the tube will obviate side swells． How far power can be economically ap－ plied to propulsion in this way can only be settled by actual trial．The inventor desires to enlist capital to enable him to make such a trial and to compete for the prize offered．Those who would lik further information or to correspond with the inventor，Dr． L．Heins，can address him till the 20th May at 36 Platt street New York，care of Sprague and Close，or，after that date，at his residence，Brunswick，Ga．

Chinese by Telegraph．

The managers of a telegraph company in China hav recently solved the problem of how to transmit telegraphic messages in Chinese．At first sight the difficulty of an al phabet which is made up of about fifty thousand distinc characters appears almost insurmountable，but the obstacles have been overcome，and A．Fat at HongKong encounters n more difficulty，in communicating with A．Chum at Shanghai than does Brown with Jones under similar circumstances The plan adopted is this：Some few thousands of the mor common Chinese characters are cut on wooden blocks after the manner of type，and on the reverse end of each is a num ber cut in the same way．Now A－Fat，having handel in hi message written in Chinese，the native clerk selects in orde the corresponding blocks from the case，and prints off th numbers on their reverse．This he hands to his English col league，who telegraphs the numbers to the destination de sired．Here the reverse process is gone through，and，the numbers having been taken from the cases，the characters ar stamped on paper，and thus A－Chum is put in possession o the cherished wishes of A．Fat through the medium of his na tive language．

POCKET BOOTJACK．

This device consists simply of a leather strap about an inch in width and eighteen inches in length，which is united at its ends，and slit as shown．The foot，upon which is the boot to be removed，being put through the slit，a pull on the

part，B ，by the other foot，is claimed to readily remove th boot．If this invention is effective，there will be a large de mandfor it foom travelers and others，who desire an article of this kind which occupies only a small space．Patente Feb．8，1870，by Charles Brown，Cbarlotteville，Va．

Iron Telegraph Pole．
A galvanized iron pole comprising two sections jointed to gether where the upper one，which is the smallest，screws into the top of the other，has its base set in a box and packed in with cement，concrete，etc．The box is to be planted
in the ground for holding the pole erect．At the top of the box is provided a hub，with arms，extending laterally to the edges of the box；and at the upper enll of this section is ring or collar，for the connection of the upper ends of guys
whose lower ends are connected to the lower end of the whose lower ends are connected to the lower end of the
lower section；while near the center the said guys are stretched over the two ends of a cross tree used for bracing the section． Below the collar is a screw threaded ring or collar，employed for forcing the collar upward for straining the guys；and below this ring is another hub，with arms for straining an other set of guys，which are connected at the lower ends of the hub and at the top of the upper section．These guys may be tightened like the others by an adjustable collar，or － a

EINS＇METHOD OF PROPELLING CANAL BOATS． burning it＇in．
upposed to confer permanency upon the impression．The ordinary ink is used in this process，which appears to con－ sist，in reality，of＂soldering＂the design on the plate and

Underground Rope Tramways in Germany．
The coal mines of the Saar are situated in a hilly district， and this configuration of the country，and the circumstance that the coal measures come up to the surface over a large rea of the district，is singularly favorable for adits and lev－ els，instead of shafts；and although a great part of the coal beds above these adits is already exhausted，they are still used to bring the coal on the surface to the smaller valleys． The wagons or tubs used to be drawn by horses in trains of 15 to 20 ．but this sys－ tem is now abandoned，and the wagons are drawn by stationary steam engines， after being fastened to long ropes or chains．There are now three different systems of rope tramways in use．The counter rope system has been adopted in ne mine，in an adit 1,024 fathoms long， and in another， 1,420 fathoms；it is also used at a third mine for a length of 800 fathoms．This system consists of two engines－one in the mine，one outside，al－ ternately pulling a train of 30 to 36 wag－ ons out or in，when the end rope runs freely off the winding drum，which is for a time disconnected from its engine．The tail rope system，used also at some col－ lieries near Newcastle and Durham，has been adopted in two otherplaces，for 1,400 and 1,020 fathoms of length respectively． With this system a single steam engine is required，which drives two drumsin op． posite directions－one hauling in the rope，the other paying it out，when the rope at each end of the tramway．is car－ ried round a sheave back to the engine． The train being connected to one branch of the rope，and the empty wagons to the other branch，the engine pulls the loaded train out，and drags the empty one into they may have swivels for tightening them．Any number the mine，and is reversed after every journey．The endless的 he body of the pole may be made round，square，or other－ wise，or of any size．One or more tubes in each section may e used side by side，and confined together by a band or hoop for strengthening one by the other．If the pole is not to be more thän fifteen or twenty feet high，one section of tube will do，with one stt of guys；but if higher，it will be better to have two sets．The box may have a bottom，as shown in he drawing，for holding the lower end of the pole resting on and connected to it，and the lower hub and arms may be attached to the top of the box by straps of iron bent over and nailed to it．But instead of having the box for holdin the pole，it may be mounted on a stone or other suitabl base or planted in the ground．The arms at the top of the pole for holding the insulators may be insulated by mean of an inverted cap，mounted on the top of a wood，glass， ndia rubber，or other block，placed in the top of the upper tube．In the top of this cap is placed a composition poin to which a copper rod or wire is attached with its lower en revent the ground to convey away the elechis and conductor may be placed inside of the pole，if preferred． If，however，it be desired to use the pole as a conductor the insulators at the top will be dispensed with，and in this cas the hub at the top of the pole will serve both as a suppor for the message wires and for tightening the guy rods，which may then be connected to it．
The message wire supporter and cap which cover the in ulators may be made of malleable cast iron or other suita ble material．The cap is made larger than the cup，at the top of the pole，which holds the insulators and fits over it o as to shed rain．
Mr．Alfred Homer Trego，of Philadelphia，Pa．，is the in ventor．

Substitute for Lithographic Stone

A substitute for lithographic stone has been introduced For the purpose in question，the inventor takes a block o slab of slate，or other material，which is to be made per fectly smooth and true，and then coated with glue or other elatinous matter．In some instances he adds a solution of silicate of soda and bichromate of potash，or uses this solu tion alone．The coated block is exposed to sunlight，and then washed to remove the superfluous coating；and after being dried，it is ready for drawing or writing upon．The ink or pigment is prepared with albumen or other gelatinous matter，dissolved in a saturated solation of bichromate of otash，either with or without chrome alum，and with small quantity of ivory black，to render the ink visible．The picture is drawn upon the prepared block with this ink，an exposed to sunlight，and afterwards the surface is covered with gum or glycerin．The block is theu ready for the printer．Another method consists in using，as substitutes， metallic substances，as tin，brass or zinc，preparing them first by rubbing with a solution formed of one ounce o hydrochloric acid，one fourth of an ounce of z inc，and one dram of glacial acetic acid．After the plate has received the impression from the stone or wood in an ordinary litho raphic press，or by means of a＂transfer，＂the ink thereon is dried by heating the plate，which is afterwards plunged while still hot into cold water；this latter operation being
driving a rope continuously round in the same direction， when loaded trains are fastened to it on the way out and empty trains on the way in．This system is adapted to short distances．Instead of attaching the wagons in trains it is now found more useful to fasten them singly at certain intervals outhat the tipmen have time to empty one wa so the the creen bere only in connection with the endless system they can be fully developed．The difficulty of the increasing dead weight of the rope for great distances must be overcome by the adop－ tion of auxiliary engines，and the regulation of their speed can be effected by the use of telegraphs and self acting brakes and governors．The underground transport through the road ways has always been a heavy ittm in colfieries．There is much still to be done in this matter，and the use of electric telegraphic apparatus inconnection with underground trans－ port is at present far too little valued．

Potash from Corn Cobs．－Dr．Herbert Hazard suggests the use of corn cobs for supplying potash，the ordinary sources of which are rapidly failing．He states that the average yield of corn cobs is 7.62 parts of carbonate of potash in 1,000 parts of the cobs，which is nearly twice as much as the best specimens of wood furnish．The present corn crop of this country will supply $15,400,000,000$ lbs．of cobs，from which $115,500,000 \mathrm{lbs}$ ．of potash can easily be manufactured．

GARDENER＇S STOOL．

This invention，recently patented by Eliphalet Whittlesey of Mullica，N．J．，is intended to afford a convenient support o gardeners in such operations as，without it，would require continued stooping．

The stool is strapped to，and carried by，the foot，leaving the hands free，so that whenever the operator desires he may sit upon the pad or seat．The same device is appli－ cable as a milking stool．and perhaps for other purposes where it is desirable to avoid the fatigue of continued or often repeated stooping．

The Engineer states that the oxyhydric light has not the public lamps on the Boulevard des Italiens．

