To the Editor of the Scientific American:

Some years ago Professor Silliman traveled through this section of country, and made an analysis of the many differ ent minerals found in Nevada, and also madea report of the same.

William Troop, of California, got hold of some of his reports, and learned ly them that the Professor had discovered a saline marsh, near the Carson river, of some 2,000 acres, which contained traces of borax. He at once pros pected, but met with little success, and the marsh lay unclaimed and unnoticed until last May, when Mr. Troop and others located according to law. Since that time I have become interested in the affair, and put up small works and manufactured five tuns of borax and placed the same upon the market. The article is merchantable, and has a ready sale; and the demand is increasing.
Our crude material has an incrustation upon the surface, and is called borate of soda. From what little knowledge of chemistry I have, I believe ic contains boracic acid, soda, salt, magnesia, and ammonia, but may be mistaken as to the last named
In looking through the Scientific American for 1869, on page 202, I find some interesting information entitled "Ammonia and its uses in the arts." Thatarticle states that the most recent supply is from the boracic acid works in Italy, and that they had until recently lost a million of pounds of salts of ammonia during a year.
I have been paid double the price of the Scientific American, almost monthly for the last five years, by reading the many communications on different subjects; and I am desirous of knowing the best method for manufacturing borax from borate of soda; the best method of separating an excess of soda from the borax in concentrating; howto separate magnesia from borax, and also the best method of manufacturing ammonia.
If some of your readers will give me a description of the works at the Tuscan lagoon in Italy, and the manner of working, and the kind of material worked there, they would confer a great favor upon me and many others.
I am informed that these are the greatest borax works in the world.
Nevada, Jan. 17, 1872.

Technical and Classical Education.

To the Editor of the Scientific American:
In looking over the Scientific American for the past year, I notice a prevailing tendency towards technical education. Iam glad that this is so; but while we consider the value of a technical education, classical studies should not be neglected. To be successful in any calling, a man must have a well balanced mind; and a mind certainly cannot be well balanced which has continually run in one channel. It may be govd in certaia points, but problems are continually coming up, in the course of a man's life, which require other
faculties of the mind than those which a technical education faculties of the mind than those which a technical education
is likely to develope. To educate the other faculties of the mind will not require a very deep insight into classical learning; but a little cannot injure any one in his scientific attainments, and will undoubtedly add to his general culture.
The above is not intended to decry technical education in the least. But at this time it has so many able advocates that we may be in danger of running into extremes on this subject, and to neglect classical education entirely.
Princeton, N. J.
M.

To the Editor of the Scientific American:

I see by your No. 4 that nothing useful is so small as to escape your vigilant attention. I allude to instructions for easy shaving. This leads me to say that shaving with an expensive tool like a razor is all nonsense. The proper way to keep down the human stubble is to get two pieces of of pumice stone, cubes of one and a half inches. Keep them clean by rubbing their faces together; then rub them over your own face, that is all; no soap, no brush, no razor costing originally $\$ 1 \cdot 50$, and giving the seller a regular annual income of at least fifty cents in sharpening, no Emerson's patent strap required, no looking glass, no hot water. In travel ing you have only to sit still and move the cube around; the shaking of the car, carriage, horse, donkey, or boat will do the work clean.
The moral effect of pumice stone can be imagined when you think of the statistics on suicides by razors, the vituperations of irascible men with hard beards when their razors do not cut smoothly, or when they shave with bad water, bad soap, or by a bad light.
Many other considerations for giving up the razor might be named, if time and space would permit; but I must content myself on giving you this hint on domestic and, I may tent myself also, political economy.

Watch Cleaning.

A correspondent says: "To clean a watch, even it it be of the lowest grade, the barrelor mainspring box should always be taken apart, the arbor and spring taken out and cleaned, fresh oil being applied before the cover is replaced. That there is nothing better than naphtha for cleaning purposes, is the opinion of most watchmakers. If the watch has a fusee, that also should undergo the same treatment as the mainspring box. The pivots also form an important part of the
mechanism of a watch; and, to be examined as they always should be, necessitate the act of taking the watch apart. Such attention, no honest practitioners will overlook."
The population of London, by last year'scensus, is $3,883,092$.

[For the Sclentific American. 1. MIDDLE PARK, COLORADO.

Colorado is the apex of the United States; within her borders is the culminating point of the Rocky Mountains. Here are those huge vertebre of the continental back bone, whose cloud-piercing, cloud-compelling summits collect the anow and distil the water to form those mighty rivers-the Platte, the Arkansas and the Colorado-which, flowing to the two oceans, begin their journey in the eternal snows of the dividing range. Beyond the boundary of Colorado the mountains become less abrupt, lose one third of their altitude, and, stooping as it were, form a passage for the iron pathway of the nations.
The main range in Colorado is flexed and doubled upon itself like a huge anaconda; within one of these immense folds lies Middle Park.
It is a region but little known outside of Colorado. There are several reasons, mostly negative, that will account for the meagerness of our knowledge of this gem of American mountain scenery. The principal reason is that he pretities. How little would be known to day of the greater portion of our western Territories, but for the presence within thei borders of gold and silver, those powerful lodestones of hu manity!
Middle Park lies on the western or Pacific side of the great continental divide, and is about sixty miles 1 ng from north to south by twenty-five miles in breadth, with an area about equal to that of Rhode Island.
An immense wall of granite, porphyry and queissoid rocks bounds the Park on every side, rising from 3,000 to 7,000 feet above the surface: Long's Peak, with its 14,000 feet of altitude, forming the north-east corner stone. The altitude of the park proper is from 6,000 to 8,000 feet above the sea Middle Park is drained by Grand river and its tributaries; the Grand rises near the base of Long's Peak, and, flowing diagonally through the park, passes out at the south-west corner.
This
This river is one of the principal branches of the Colorado, and its waters, after flowing through the three hundred mile cañon of that stream, finally reach the Pacific by way of the Gulf of California.
The surface of Middle Park is, for the most part, rough and hilly, the hills frequently becoming mountainlike in their proportions.
Some of the streams are bordered by broad, level savannas, covered with a dense growth of sage brush. This tough, aromatic plant grows here from one and a half to two feet high, and is very abundant in most of the Territories west of the Rocky Mountains; but no true sage brush has ever been found east of the main range. The spherical cactus or, more scientifically, cactus mammilacis grows in the more arid portions of the park. There is but little timber in the park proper, and that is generally confined to the summits of the higher hills; the foot hills of the mountains, how ever, are covered with forests of pine. Grass is abundan and so nutritious that cattle and horess require no other food, summer or winter. The climate in summer is pleasant and exhilarating, though there is more or less frost every month in the year.
In nearly
In nearly the lowest part of the park, your correspondent noted a temperature of 22° Fahr. at $6 \mathrm{~A} . \mathrm{M}$. August 28, and for $\&$ week the temperature at this hour averaged as low as the freezing point.
One thing to be said in favor of this climate, however, is that frost has not the same blighting effect upon vegetation in this rare, dry atmosphere that it would have in the damp, dense atmosphere of the States. It is a well attested fact, improbable as it may seem, that flowers and even strawberries will mature, in the open air, in this elevated region where there is frost every week in the year. The annual snow fall is from 12 to 15 feet, commencing in September The ending in May
The fauna of Middle Park include deer, coyotes, trout, mountain hares, beavers and Indians; the latter are rather scarce in summer, but infest the park in considerable num bers during the winter. Trout are the principal fish found in the lakes and streams. Beavers are abundant, and their dams may be found on most of the smaller streams. On a regular boaver city.
Near the head of Grand river, just within the foot hills of the mountains, lies Grand lake, a beautiful sheet of water, of small area and great depth; though not more than two miles long, a sounding line of five hundred feet failed to reach bottom. It is set as a mirror in a framework of moun tains, which rise abruptly from the water's edge. The altitude of the lake, as deternined by the temperature of looiling water, is 7,551 feet above the sea.
Grand river forms at once its inlet and outlet. Up through the cañon, where the river comes tumbling down, are seve-
ral smaller lakes ; and higher still is Estes Park, a wee bit of a park on the verge of timber line, wearing its mantle of greenigrass and beautiful Alpine flowers 11,000 feet above the sea and in close proximity to the eternal drifts.
The hills along all of the larger streams are terraced There are generally three terraces, verydistinct and regular rising steplike to a hight of two hundred or three hundred feet.
The geology of the park is unique, and forms one of its America, from the features. All the formations known in here. It is a well established principle of geological science that, generally speaking, the highest mountains are the

York are the oldest and the Rocky Mountains are the young. est mountains in the United States; while the Green Mountains and the Appalachians occupy intermediate positions in point of time.
At the close of the cretaceous age only a few isolated ridges of azoic rocks appeared above the waste of waters of the great interior sea, and the elevation of the Rocky Mountains was just beginning. But early in the tertiary age communication with the exterior ocean was cutoff, never to be resumed; and fresh or brackish water lakes took the place of the previous interior sea. Middle Park probably formed the bed of such a lake.
The great thickness of tertiary rocks over the Rocky Mountain region proves that this lacustrine condition coninued for a long time. The stratified rocks of Middle Peak form an immense quaquaversal; this is the natural result of the elevation of the mountains after the deposition of the strata.
Tertiary rocks are found high up on the flanks of the mountains, above timber line and 12,000 feet or more above the sea ; this shows conclusively that the Rocky Mountains received most of their present altitude after the beginning of the tertiary age.
The tertiary beds are composed of soft, light colored sandtones and marls, alteruating with conglomerates and some laminated, argillaceous beds.
The absence of limestone and marine fossils from this formation is evidence that the water in which the beds were deposited was fresh or nearly so.
Fossil wood is abundant in the rocks of this age; fossil palm trees are recognized by their characteristic endogenous structure, but most of the trees were exogens. In the argillaceous beds mentioned above are many impressions of fossil leaves. A species of magnolia has been identified.
The presence of the remains of these tropical plants in this semi-arctic region is some indication of the great climatic changes that have taken place over the surface of the globe, within quite recent time, geologically speaking.
In the valley of the Blue river, the cretaceous beds have an immense development, and they follow this stream neary to its source, running high up on the mountains, where the beds have been broken and faulted on a grand scale. Marls and shales are the predominating rocks. In the shale Ifound boculites (cephalopod molluscs) and inoceramus (a pecies of conchifer), fossils characteristic of this age.
The carboniferous beds of Middle Park contain the only rue carboniferous coal in Colorado.
During the closing epochs of the tertiary age, there was tormy time, strongly marked in the rocks of this era; fire In Middle Park, there were extensive eruptions the land. In Middle Park, there were extensive eruptions and overof well defined mesas, whose frowning battlements form an interesting feature in the topography of the park. The most remarkable of these eruptions occurs fifteen miles below Grand lake. Grand river cañons here (making a verb of the noun). The cañon is an enormous gorge cut through high ridge of basaltic rocks. The ridge is from 800 to 1,200 feet high, and seems to be an intrusive bed, for it is conformable to the sedimentary beds above and below.
The underlying cretaceous shales were converted into late by the metamorphic action of the fiery mass.
The hot sulphur springs still bear witness to this geological storm. They are situated near the center of the park on the west bank of Grand river, and form the chief attraction of the park at present.
The water issues, from the ground, strongly impregnated with sulphuretted hydrogen, and flowsintoa capacious basin, f its own handiwork, which forms an excellent tub.
The volume of water is about twenty-five inches, an inch being the amount of water that will flow through an orifice one inch square under six inches head. The temperature of the water is 112° Fahr., which indicates that it comes from a onsiderable depth, and an analysis of it would probably af ford some clue to the mineralogical character of the rock for a long distance below the surface.
The monumental rocks in the valley of Troublesome Creek are interesting examples of the erosive action of wa ter and frost. During the lapse of ages, the original sandstone beds have been worn down and cut out by the degrading eloments, leaving these strange, weird monuments to be the wonder of the world.
Near the mouth of Troublesome Creek is a rectangular hill, about 200 feet high, composed of light colored marl and sandstone; the sides are nearly perpendicular and have been so fashioned by the elements that the whole resembles a huge castle. The resemblance is quite complete; towers, abut ments, massive gateways, all are here. When seen by moonlight or in the early morn, the effect is enchanting.
The quantity of agates, jasper, chalcedony and silicified wood in Middle Park is sufficient to supply the world. Agate and chalcedony are found in the volcanic rocks, and were formed by the deposition of silica in the vesicles of the lava; the subsequent disintegration of the lava leaves the minerals free. There are thousands of acres in these agate patches. Much of the agate contains that dendritic forma ion of the oxides of manganese and iron, supposed by some persons to be petrified moss, which gives it the name of moss gate
The Park is much visited by Coloradoans during the summer, but the permanent white population is small, including only a few hunters and trappers who spend the wintera in
the vicinity of the springs and Grand Lake. The Indians still claim the Park, and are jealous off all attempts of the pale faces to make permanent settlements.
W. o. c.

Improved Gas Burner.
Having ourselver pxperimented with one of these gas burners, we are in a position to opeak from knowledg of its mer its. We regard it as one of the 6 st , if not the bert ever e:nployed for burning gas. Professor Henry Wuriz, editor of the American Gas Light Journal. states that "on the evening of June $1 \dot{3}, 1870$, in tise photometric room of the Metropolitan Gas Light Co., at their 42d street station, in company with Mr. Dietrich, the engineer of said company, he made comparative tests of burners of Mr. Cremin's pattern in comparison with an ordinary three feet fish tail. The gen eral result was that, the pressure being one inch, and the consumption of gas being $3 \frac{1}{2}$ feet per hour, the ordinary bur ner indicated an illuminating power equal to seven candles, ner indicated an illuminating power equal to
while the Champion Gas Burner of Mr. Crewhile the Champion Gas Barner of Mr. Cre-
min went up as bigh as 11.5 candles; thus min went up as high as 11.5 candles; thus
isdicating, according to the experiment, a clear gain, by the employment of his peculiar principle, of over sisty-four per cent of the light from the same materials."
This testimony, from one of the most re liable authorities on gas lightiug in this country, is sufficient to establish the reputation of this burner, which is, we are told, being rapidly adopted by such as are cognizant o°. its economy and value.
Our engraving \leadsto give a view of the flame of a five fret burner full size, and drawn, as it actaally appeared, by our artist, and also a secimn showing the construction of the bur ner.
Toe general principle is the heating of the gas b-fore it is delivered to the air for burn lug, whereby the gas is expanded, and a bigh er illuminating power secured with a given flow as measured by the meter.
In the engraving, Fig 2, 4 is the burner proper, from which descends a tube, B, into a tube or cur, C. This cup is closed by a dia phragm passing acro.sit just abuve th-scred thread, at. F. by which it is attachrd to the delivery pipe. Small holes pr rforated in the part, F , allow the gas to flow nut into the annular space between the cup and the outer shell. D. and its flow, indicated by arrows, is thence upward within the outer shell, down into the cup, and up to the burner pr per through the tube, B Thit tubir, B, conducts beat diswnward into the shell and tius the gas is hearel and expanded before reaching the point of combuntion at A.
The invention was paceut-d January 11 1S70, by Joseph W. Cremin. whom, for trrritorial rights or other purposes, address at 213 E ist 51 st street, New York.

Cloth Measuring Machine.
The measuring of cloth by the ordinary method is a tedious and laborious operation. The machine herewth illustrated is de igned to replace manual labor and to render cloth measnring very much more rapid than bas heretofore been the case. The invention is extrenely simple. insures accuracy, and indicates correctly the quantity, while it may be operated readils by a boy.

The construction is as follows
A is a hollow receptacle for the unmeasured goods; B is a measuring roller covered with cloth; C is a tension roller di rectly under the measuring roller. The cloth is passed between thene two rollers and around the measuring roller, and then connocted with the reel board, D. which is turned by the cratik, E. I'he giods on the reel board, D, are quickly disengaged from the same by turning the scr -ws , the rame by turning the scr -ws ,
F, half round. The dials, G. inF, half round. The dials, G. in-
dicare the exact measurement. dica'e the exact measurement.
The machin \rightarrow will, it is claimed, nnroll, measure, re-roll and correctly count every yard and fractional part of a yard with rapidity and exactness, fifty-two yards having been passed through the machiue iu one minute and a half, to do which, in the ordianry way, would require the work of six or eight men.
Patented Jane 25, 1871, by Isaac Miller, whom address for further information as to rights or machines, Hamilton, Ontario

The Science of War.

Oaptain Layman, Instructor in Tactics at the German Military School at Cassel, in a series of lectures before the students of that Institute, attributes the vic torles of the German armies to the efforts which their comman. ders use to secure the offensive in their own hands. This vis of movements constantly of these particles were completely surronnder by a halo of of the late Franco-Prussien war. The moral force of attack The prinoipal color evident in such cases was a deep green

Building Blocks.
This invention relates to a new manner of forming brick for practical building purposes; and bas for its object to facilitate th-ir transportation and handling, and to increase the strength of walls erected from the same. The invention consists principally in forming blocks from a number of blocks from a number of
bricks, within molds or boxes, bricke, within molds or boxes,
in such a fashion that they in such a fashion that they
(the blocke) will form sectinns of walls with interlock ing jointe. For certain purposes -as, for example, in the forma tion of pillers, $t \mathrm{t}$:- -the blocks may be made without interlocking projections. Another advantage of thus forming the blocks preparatory to building is that ornamental bricks may be baked on the blocks by subjecting the same to heat This will permit the applica tion of all-even the most art-istic-kinds of ornaments to tbe faces of brick structures Blocks thus formed, with or without ornaments, can, in building, be placed so as to project one beyond the face of an. ject one beyond the relitving the tireother, thus rolitving the tire-
some monotony of the modern some monotony of the mod
plain brick bui.ding fronts. plain brick bui.ding fronts.
The invertor of this improve ment is Mr . Andiew Derrom, of Paterson. N. J.

Dispatches from Teheran state that the Pamine in Persia is unabated. Many porsons are dying daily.

