
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
$\underset{\text { [NEW SERIES.] }}{\text { VOI. X. }}$
NEW YORK, DECEMBER 23, 1871.
$\left\{\begin{array}{c}\text { \$3 per A nnum } \\ \text { [IN ADVANCE.] }\end{array}\right.$

COFFER DAM, MAIN SHAFT, AND ENTRANCE TO HEADINGS, HELL GATE, EAST RIVER.
THE TUNNELING AND BLASTING OPERATIONS AT HELL |tween 700 and 800 yards square of the reef were blown around, and over which was once Diamond Reef. A contract GATE, EAST RIVER NEW YORK. away. Surveys were made of three blasts, which disclosed was soon made to have the débris removed, a work which has at the bottom of the river a mass of crushed rock, innumer- almost been finished; and which has demonstrated the fact We give this week some engravings illustrating the opera- able detached boulders, and huge hillocks of sand, lying that no additional blasts will be required, and that the dreadtions now in progress for the removal of the ob structions at Hallett's Point, East River. Having often referred to this great work, our present no tice will be rather historical and general than tech nical

SECTION VIEW OF a TRANSVERSE AVENUE, HELL GATE ed Diamond Reef is no more. Soon after the work of the drills upon Diamond Reef was concluded, the drill scows were securely moored over Coenties Reef, and immediately commenced operations. The number of cubic yards of rock to be removed at Coenties Reef is roughly estimated at over 3,000 and much of this has already been blasted out by General Newton's indefatigable workmen. Besides at Coenties Reef, General Newton's drills are now at work on the Shell Drake, Way's Reeff Hog's Back, Pot Rock, at the Hell Gate, or Horll Gatt as the old Dutch navigators termed it, and at Willett's Point. The operations at the Hell Gate are the mostextensive, the most important, and decidedly the most interesting. The Hell Gate as every New Yorker knows, is a narrow, rocky passage in the East River, and in the old Knickerbocker times its raging current was the terror of the Dutch skip pers and their heavy and unwieldy craft. Of late years, many improvements have been effected by blasting away the surface rock, and the most salient points of the jagged ridges; but only since August, 1869, has the United States Government commenced to deal with the dangers of Hell Gate in a measure corresponding with their importance.

The operations undertaken by General Newton at Hallett's Point, for the Hell Gate, involve the solution of an im portant problem of engineering as regards the most effective and economical process of submarine blasting. Tho modus operandi employed at Hallett's Point is entirely different from the manner in which the work of removing the obstructions has been accomplished at Diamond and Coenties Reefs, and is what is technically termed tunnel blasting. At Hallett's Point, in August, 1869, a coffer dam was commenced under the superint
The dam is an irregular polygon in shape, having a circumference of 443 feet and a mean interior diameter of about 100 feet. The dam is built between low and high water 100 feet. The dam is built bet ween low and high water
marks. The excavation of the shaft immediately followed marks. The excavation of the shaft immediately followed
the construction of the dam, and during the spring of 1870 the shaft was sunk to the depth of twenty-two feet below water.
The theory of the mining operations contemplates the removal of as much rock as can be excavated with safety previous to the final explosion, the result of which will be the sinking of the remaining mass into the deep pit excavated for its reception. The mass of rock remaining for the final explosion will be supported by piers, each of which will be charged with nitro-glycerin. These piers are simply a portion of the solid rock left standing. From the bottom of the main shaft, tunnels proceed in all directions, and are ten in number. Each of the tunnels extends from 150 feet to 350 feet outward, and they are all connected together by crossgalleries at intervals of twenty-five feet. The tunnels were begun towards the close of July, 1870, the shaft being at the same time sunk to a line nearly forty feet below low water
mark. The tunneling is really an object of a great deal of mark. The tunneling is really an object of a great deal of
interest, as much from the novelty as from any other feature. interest, as much from the novelty as from any other feature.
The tunnels are of various cross sections, some over twenty The tunnels are of various cross sections, some over twenty feet in hight, and varying in width from ten to fifteen feet. pany, recently illustrated and described in the Scientific american, has been recently introduced into one of the headings, and, we are informed by General Newton, gives prospect of affording efficient aid in hastening the completion of the work, which will take probably two or three years more continuous labor. As the work advances, room is made for more miners, and therefore the rate of advance may infor more miners, and therefore the rate of
crease with the progress of the excavation.

The liberal views of the Engineer in Chief, General NewThe liberal views of the Engineer in Chief, General New-
on, are rendering this work important in another respect. ton, are rendering this work important in another respect. He has made it a sort of engineering arena for the trial of
different explosives and drilling machines; and the relative different explosives and drilling machines; and the relative
value of most of the mining appliances in market will be devalue of most of the mining appliances in market will be de-
termined during the progress of the work. In this way, important contributions to engineering science will be made, whose value will be second only to the splendid results anticipated by the removal of the obstructions from the Hell Gate passage. These out of the way, the upper end of the island will become a scene of busy thrift, scarcely. less prosperous than that which fills with unintermitting hum the lower part of the city.

The Holly System of Hydrants for Extinguish-

 ing Fires.A correspondent, Mr. J. H. Balsley, of Dayton, Ohio, writes to in form us that the Holly system has been adopted in that city. Twenty-one miles of pipe have been laid, and the propelling power is a stationary engine, capable of producing a water pressure of 130 ibs . on the inch. A pressure of 80 lbs. on the inch will throw water 100 feet high, through 100 feet of hose, out of a one inch nozzle. With iron pipes to
stand this pressure, all the connections mus be equally stand this pressure, all the connections mus; be equally
strong, especially in buildings, as the bursting of a pipe unde strong, especially in buildings, as the bursting of a pipe under apparatus will throw six or eight good fire streams when run ning at a safe speed. As the supply of water for domestic and manufacturing purposes is taken from these pipes, the engine must be kept always in motion to keep up a pressure sufficient for fire extinguishing purposes; in any other case two sets of engines and pipes would be needed. The burst-
ing of a four inch pipe will destroy the fire streams, and a ing of a four inch pipe will destroy the fire streams, and a
large consumption for domestic or manufacturing purposes large consumption for domestic or manufacturing purposes
will have the same effect. The consumption of fuel in proportion to the water raised is considerable, and the expenses of the fire department, and the insurance premiums have not decreased in consequence of the introduction of this system

The Eclipse of the Sun.-In the number of our journal for October 21, of the present year, we informed our readers of the preparations being made, at home and abroad, for ob taining accurate and detailed accounts of the solar phenomena visible during the eclipse taking place on December $11 ;$ and we are glad to be able to report that the most favorable conditions existed during the critical period, and that perfect photographs of the corona were obtained. A party of astronomers, English, French, and Italian, journeyed to the East for the purpose of observing the eclipse, the most approved instruments having been forwarded in advance; and party were fully satisfied, and that the settlement of severa! disputed facts as to the sun's composition, atmosphere, and luminosity may be looked for on the publication of the report. Mr. Norman Lockyer had charge of the expedition, port. Mr. Norman Lockyer had charge of the expedition,
Italy being represented by Signor Respighi, and France by Italy being
M. Jannsen.

Thes Russian Grand Duke, Prince Alexis, has contributed wom for distrihution among the poor of New York rity,

notes on flying and flying machines.

[From the Cornhill Magazine.]

number if.

We owe to M. de Lucy, of Paris, the results of the first ctua! experiments carried out in this direction. The following account of his observations (made in the years 1868, 1869) is taken from a paper by Mr. Brearey, the Honorary Secretary to the Aëronaut cal Society. "M. de Lucy asserts," says Mr. Brearey, "that there is an unchangeable law to which he has never found any exception, a mongst the considerable number of birds and insects whose weight and measurements he has taken--namely, that the smaller and lighter the wingedanimal is, the greater is the comparative extent of supporting surface. Thus in comparing insects with one another-the gnat, which weighs 460 times less than the stag beetle, has 14 times greater relative surface. The lady bird, which weighs 150 times less than the stag beetle, possesses 5 times more relative
surface, etc. It is the same with birds. The sparrow, which weighs about ten times less than a pigeon, has twice as much relative surface. The pigeon, which weighs about eight times less than the stork, has t wice as much relative surface. The sparrow, which weighs 339 times less than the Australian crane, possesses 7 times more relative surface, etc. If we now compare the insects and the birds, the gradation will become even more striking. The gnat, for example, which weighs 97,000 times less than the pigeon, has 40 times more elative surface; it weighs $3,000,000$ times less than the crane of Australia, and possesses relatively 140 times more surface than this latter, which is the heaviest bird M. de Lucy had weighed, and was that also which had the smallest amount of surface, the weight being nearly 21 lbs., and the supporting surface 137 inches per kilogramme (2 lbs. $3 \frac{1}{4} \mathrm{oz}$.). Yet of al travelling birds the Australian cranes undertake the longest and most remote journeys, and, with the exception of the eagles, elevate themselves highest, and maintain flight the ongest."
M. de Lucy does not seem to have noticed the law to which these numbers print. It is exceedingly simple, and amounts in fact merely to this, that instead of the wing surface of a flying creature being proportioned to the weight, it should be proportioned to the surface of the body (or technically, that instead of being proportioned to the cube, it should be pro portioned to the square of the linear dimensions). Thus, sup pose that of two flying creatures one is 7 times as tall as the body surface of the larger will be 49 times (or 7 times 7) that of the other, and the weight 343 times (or 7 times 7 times 7) hat of the other. But instead of the extent of wing surface eing 343 times as great, it is but 49 times as great. In othe words, relatively to its weight, the smaller will have a wing
surface 7 times greater than that of the larger How closely surface 7 times greater than that of the larger. How closely this agrees with what is observed in nature will be seen by the case of the sparrow as compared with the Australian crane; for M. de Lucy's experiments show that the sparrow weighs 339 times less than the Australian crane, but has a relative wing surface 7 times greater.
It follows, in fact, from M. de Lucy's experiments that, as we see in nature, birds of similar shape should have wings similarly proportioned, and not wings corresponding to the elative weight of the birds. The same remark applies to the common fly-insects not unlike in their proportions-have wings proportioned to their surface dimensions; the same holding amongst long bodied insects, like the gnat and the dragon fly, and the same also among the different orders of lying beetles.
So that, setting apart differences of muscular capacity and adaptation, a man, in order to fly, would need wings bearing the same proportion to his body as we observe in the wings of the sparrow or the pigeon. In fact, the wings commonly assigned to angels by sculptors and painters would not be so
disproportioned to the requirements of flight as has bee disproportioned to the requirements of flight as has been commonly supposed, if only the muscular power of the human frame were well adapted to act upon wings so placed and shaped, and there were no actual inferiority in the powe with those birds
So far as the practicability of actual flight on man's part is concerned, these two points are, indeed, among the most important that we have to consider. It was to Borelli's remarks on these points, in his famous treatise, De Motu Animalium that the opinion so long entertained respecting the impractic ability of flight must be referred. He compared the relative dimensions of the breast muscles of birds with those of cor-
responding muscles in man, and thence argued that man responding muscles in man, and thence argued that mans pared also the relative muscular energy of birds and men that is, the power of muscles of equal size in the bird and the man; and was yet further confirmed in the opinion that But never be a flying animal.
But although the reasoning of Borelli suffices perfectly well to show that man can never fly by attaching pinions to his arms, and flapping these in imitation (however close) of a be suation in flying, it by no means follows that man must are called into action to move suitably devised pinions. M. Besnier made a step in this direction (towards the close of the last century) when he employed, in his attempts to fly, those powerful muscles of the arm which are used in supporting a weight over the shoulder (as when a bricklayer carries a hod, or when a countryman carries a load of hay with a pitchfork)
But the way in which he employed the muscles of the leg But the way in which he employed the muscles of the leg
was less satisfantory. In his method, a lomer rod passed oper
each shoulder, folding pinions being attached to both ends of each rod. When either end of a rod was drawn down, the descending pinion opened, the ascending pinion at the other nd closing ; and the two rods we worked by ward pulls with the arms and legs. The downward pull with the arms was exceedingly effective; but the downward pull with the legs was altogether feeble. For the body lying horizontally, the muscles used in the downward pull witb. the legs were those by whicin the leg is carried forward in walking, and these muscles have very little strength, as any one will see who, standing upright on one leg, tries, without able weight with the front of his leg.
Yet even with this imperfect contrivance Besnier achieved a partial success. His pinions did not, indeed, serve to raise him in the air; but when, by a sharp run forward, he had him in the air; but when, by a sharp run forward, he had spoken above into action, the pinions, sharply worked, so far spoken above into action, the pinions, sharply worked, so far
sustained him as to allow him to cross a river of considerable sustained him as to allow him to cross a river of considerable
width. It is not unlikely that, had Besnier provided fixed width. It is not unlikely that, had Besnier provided fixed
sustaining surfaces, in addition to the movable pinions, he sustaining surfaces, in addition to the movable pinions, he
migit have increased the distance he could traverse. But, as regards flight, there was a further and much more serious defect in his apparatus. No means whatever were provided for propulsion. The wings tended to raise the body (this ten dency only availing, however, to sustain it); but they could give no forward motion. With a slight modification, it is probable that Bessier's method would enable an active man to travel over ground with extreme rapidity, clearing impedi ments of considerable height, and taking tolerably wide rivers almost "in his stride :" but we believe that the method could ever enable men actually to fly.
It may be remarked, indeed, that the art of flying, if it is ver attained, will probably be arrived at by means of at tempts directed, in the first place, towards rapid passage along terra firma. As the trapeze gymnast avails himself
of the supporting power of ropes, so the supporting power of the air may be called into action to aid men in traversing the ground. The following passage from Turnor's Astra Castra shows that our velocipedists might soon be outvied by half ying pedestrians:-" Soon after Bacon's time," he tells us, projects were instituted to train up children from their in fancy in the exercise of flying with artificial wings, which seemed to be the favorite plan of the artists and philosophers of that day. If we credit the accounts of some of these experiments, it would seem that considerable progress was made that way. The individuals who used the wings could skim over the surface of the earth with a great deal of ease and celerity. This was accomplished by the combined facul ies of running and flying. It is stated that, by an alternat continued motion of the wings against the air, and of the eet against the ground, they were enabled to move along with a striding motion, and with incredible speed."
A gymnast of our own day, Mr. Charles Spencer "" one of he best teachers of gymnastics in this country," says Mr. Brearey), has met with even more marked success, for he has been able to raise himself by the action of wings attached to his arms. The material of which these wings were made was too fragile for actual flight; and Mr . Spencer was prevented from making strong efforts because the wicker work, to which the apparatus was attached, fitting tightly round his body, caused pain, and obstructed his movements. Yet he tells us that, running down a small incline in the open air, and jumping from the ground, he has been able, by the action of the wings, to sustain flight tor a distance of 150 feet; and when the apparatus was suspended in the transept of the Crystal Palace (in the spring of 1868), he was able, as we have said, to raise himself, though only to a slight extent, by the action
of the wings. It should be remarked, however, that his apparatus seems very little adapted for its purpose, since the wings are attached to the arms in such sort that the weak breast muscles are chiefly called into play. Borelli's main objection applies in full to such a contrivance; and the wonder is that Mr. Spencer met with even a partial success. One would have expected rather that the prediction of a writer have been fulfille himself Apteryx, or the Wingless) would at all, would come to grief, like the sage in Rasselas and all others who have tried flying with artilicial wing."
The objection founded on the relative weakness of the muscles of man as compared with those of birds (without reference to the question of adaptation), seems at first sight more serious. Although there can be little question that the superior strength of the muscles of birds has been in general enormously exaggerated, yet such a superiority undoubtedly exists to some degree. This gives the bird a clear advantage over man, insomuch that man can never hope by his unaided exertions to rival the bird in its own element. It by no means follows, however, that because man may never be able to rival the flight of the eagle or the condor, of the pigeon or the swallow, he must therefore needs be unable to fiy at It
It should be remembered, also, that men can avail them selves of contrivances by which a considerable velocity may be acquired at starting; and that when the aëronaut is once Lunched with adequate velocity, a comparatively moderate velocity of force may probably enable him to maintain that velocity, or even to increase it. In this case, a moderate ex-
ertion of force would also suffice to enable him to rise to a higher level. Te show that this is so, we need only return to the illustration drawn from the kite. If a weight be at tached to a kite's tail, the kite, which will maintain a certain hight when the wind is blowing with a certain degree of force, will rise to a greater hight when the force of the wind is but slightly increased.
Kites afford, indeed, the most striking evideare of the ele
vating power resulting from the swift motion of an inclined plane through the air, the fact being remembered always that,
whatever supporting and elevating power is obtained when whatever supporting and elevating power is obtained when
air moves horizontally with a certain velocity against an inclined plane, precisely the same supporting and elevating power will be obtained when the inclined plane is drawn or propelled horizontally with equal velocity through still air. Now the following passages from the History of the Charvolint, or kite carriage, bear signiffcantly on the subject we are now upon. The kite employed in the first experiments square feet. "N present century) had a surface of fify five nental department when larg progress made in the to raised or transposed. While on this subject, we must not omit to observe that the first person who soared aloft in the air by this invention was a lady, whose courage would not be air
denied this test of its strength. An arm chair was brought on the ground, then, lowering the cordage of the kite by slackening the lower brace, the chair was firmly lashed to the main line, and the lady took her seat. The main brace being hauled taut, the huge buoyant sail rose aloft with its fair burden, continuing to ascend to the hight of a hundred yards. On descending, she expressed herself much pleased with the easy motion of the kite and the delightful prospect
she had enjoyed. Soon after this, another experiment of a she had enjoyed. Soon after this, another experiment of a
similar nature took place, when the inventor's son successful similar nat ure took place, when the inventor's son successful ly carried out a design not less safe than bold-that of scaling dred feet in perpendicular hight. Here, after safely landing, he again took his seat in a chair expressly prepared for the he again took his seat in a chair expressly prepared for the
purpose ; and, detaching the swivel line which kept it at its purpose; and, detaching the swivel line which kept it at its
elevation, glided gently down the cordage to the hand of the director. The buoyant sail employed on this occasion was director. The buoyant sail employed on this occasion was
thirty feet in hight, and had a proportionate spread of canthirty feet in hight, and had a proportionate spread of can-
vas. The rise of the machine was most majestic, and no thing could surpass the steadiness with which it was manœuvred, the certainty with which it answered the action of the braces, and the ease with which its power was lessened or increased. . . . Subsequently to this, an experiment of a very bold and novel character was made upon an extensive down, where a wagon with a considerable load was drawn an observer aloft in the air, realizing almost the romance of flying.'

We have here abundant evidence of the supporting an elevating power of the air. This power is, however, in a sense, dormant. It requires to be called into action by suita ple contrivances. In the kite, advantage is taken of the mo tion of the air. In flight, advantage must be taken of motion athwart the air, this motion being, in the first place, communi cated while the aëronaut or flying machine is on the ground.
Given a sulficient extent of supporting surface and an ade quate velocity, any body, however heavy, may be made to rise from the ground; and there can be no question that me chanicians can devise the means of obtaining at least a suffici ent velocity of motion to raise cither a man or a flying machine, provided with no greater extent of supporting surface than would be manageable in either case. It is not the difficulty of obtaining from the air at starting the requisite sup porting power that need dollow. The velocity of motion must be maintained, and should admit of being increased. There must be the means of increasing the elevation, however slowly. There must be the means of guiding the aeronaut's flight. And, lastly, the aëronaut or the flying machine must Hy with well preserved balance-the supporting power of the air depending entirely on the steadiness with which the supporting surfaces traverse it.
We believe that these difficulties are not insuperable; and not only so, but that none of the failures recorded during the long history of aëronautical experiments need discourage
us from trusting in eventual success. Nearly all those fail ures have resulted from the neglect of conditions which have now been shown to be essential to the solution of the probtempts hitherto made: and indeed, the only wonder is that failure has not been always as disastrous as in the case of Cocking's ill judged descent. If a man who has made no previous experiments will insist on jumping from the summit not greatly be wondered at that he falls to the ground and not greatly be wondered at that he falls to the ground and
breaks his limbs, as Allard and others have done. If, notbreaks his limbs, as Allard and others have done. If, not-
withstanding the well known weakness of the human breast muscles, the aëronaut tries to rise, by flapping wings like a bird's, we cannot be surprised that he should fail in his purpose. Nor again can we wonder if attempts to direct balloons from the car should fail, when we know that the car could not even be drawn with ropes against a steady
breeze without injury to the supporting balloon. And we need look no further to the supporting bare failure of all the flying machines yet constructed, than to the fact that no adequate provision has yet been made to balance such machines so that they may travel steadily through the air. It seems to have been supposed that if propelling and elevat ing power were supplied, the flying machine would balance itself; and accordingly, if we examine the proposed construc
tions, we find that in nine cases out of ten (if not in all) the tions, we find that in nine cases out of ten (if not in all) the
machine would be as likely to travel bottom upwards as on machine would be as likely to travel bottom upwards as on
an even keel. The common parachute (which, however, is an even keel. The common parachute (which, however, is
not a flying machine) is the only instance we can think of in which a non-buoyant machine for aërial locomotion has pos sessed what is called a "position of rest.
Perhaps the gravest mistake of all is that of supposing that, on a first trial, a man could balance himself in the air by means of wings. Placed for the first time in deep water,
man is asterly unable to swim. and if left to himself will in
evitably drown; although a very slight and very easily acquired knowledge of the requisite motions will enable him
to preserve his balance. And yet it seems to have been conceived by most of those whohave attempted flight, that, when first left to himself in open air, with a more or less ingenj ously contrived apparatus attached to him, a man can, not only balance himself in that unstable medium, but resist the down drawing action of gravity (which scarcely acts at all on the swimmer), and wing his way through the air by a series of new and untried movements
It encourages confidence in the attempts now being made o solve the problem of aërial locomotion, that they are ten tative-founded on observation and experiment, and not on vague notions respecting the manner in which birds fly. Fresh experiments are to be made, more particularly on the supporting power of the air, upon bodies of different form moving with different degrees of velocity. These experi ments are under the charge of Messrs. Browning and Wen ham, of the Aëronautical Society, whose skill in experimental research, and more particularly in inquiries depending on mechanical considerations, will give a high value to their de ductions. The question of securing the equipoise of flying machines has also received attention; and it is probable that the principle of the instrument called the gyroscope will be call into action to secure steadiness of motion, at least in the experimental flights. What this principle is, need not here be scientifically discussed. But it may be described as the tendency of a rotating body to preserve unchanged the direc tion of the axis about which the body is rotating. The spin ing top and the quoit (well thrown), afford illustrations o his principle. The peculiar flight of a flat missile, alread eferred to, depends on the same principle: for the flight only xhibits the peculiarities mentioned when the missile is cause whirl in its own plane. But the most striking evidence yet given of the steadying property of rotation, is that af orded by the experiments of Professor Piazzi Smyth, the Astronomer Royal for Scotland. During the voyage to Teneriffe (where, it will be remembered, his well known Astrono mer's Experiment was carried out), he tested the power of he gyroscope in giving steadiness by causing a telescope to be so mounted, that the stand could not shift in position with out changing the axial pose of a heavy rotating disk. The disk was set in rapid rotation by the sailors, and then the Pro essor directed the telescope towards a ship on the horzon. wayed in lively sort by the tossing vessel; nor did the telesope seem a whit steadier-the motion of objects round it giving to the instrument an appearance of equal instability But the officers were invited to look through the tube, an their amazement, the distant ship was seen as steady i the middle of the telescopic field as though, instead of being set up on a tossing and rolling ship, the telescope had been mounted in an observatory on terra firma. The principle of
the gyroscope has also been used for the purpose of so steadythe gyroscope has also been used for the purpose of so steady
ing the stand of a photographic camera placed in the car of ing the stand of a photographic camera placed in the car of ency of the balloon to raphs As applied to flying machines, the gyroscope would to be so modified in form that its weight would not prove an overload for the machine. This is prac icable, because a flat horizontal disk, rotating rapidly, wil support itself in the air if travelling horizontally forwar with adequate swiftness. In other words, since travelling machines must travel swiftly, the gyroscopic portion of the achine may be made to support itself
It is this property of enforced rapidity of motion which renders the probable results of the mastery of our problem o important. It has been well remarked that two problem will be solved at once, when the first really successful flying
machine has been made-not only the problem of flight, but machine has been made-not only the problem of flight, bu the problem of travelling more swiftly than by any contri vances yet devised. In the motion of a tlying machine, as distinguished from the flight of man by his own exertions, the swiftness of the bird's flight may be more than matched It is a mere mechanical problem which has to be solved; and few mechanicians will deny that when once the true principles of flight have ljeen recognized, the ingenuity of man is capable of constructing machines in which these principles shall be carried out. Iron and steam have given man the power of surpassing the speed of the swiftest of fourfooted creatures-the horse, the grayhound, and the antelope. We have full confidence that the same useful servants place it in man's power to outvie in like manner the swiftest
winged creatures-the swallow, the pigeon, and the hawk.

The Pigeon's Wonderful Flight.

In September last a certain pigeon was heralded forth as having been let off the deck of a vessel near Capė Hatteras, and bearing to its birth nest, at Montclair, a message from been m. Bleecker. The dis so ance and speed said to have doubts as to whether they had really been done, but lately the distrust culminated in dowrright unbelief when a second bird was made to perform 1,004 statute miles at an average ate of over 196 miles an hour, and still a third, a distance of 1,596 statute miles at an average of 202 miles an hour; the ast bird, appropriateīy named " Typhoon," exhausting itself by the effort and blowing out his last gasp as he reached his nest.
These birds all came from Harry C. Bleecker and to Montclair, and at once a rush was made to Montclair to find the consignee pigeon man. It got to be quite the thing for the depot hackmen to be asked to drive strangers to Harry C. Bleecker's, and one hackman is reported to have driven a stranger all day, and to the tune of $\$ 25$, looking for the
mythical H. C. B. Butalas! he was found not. At the Post mythical H. C.B. Butalas! he was found not. At the Post
Office the official was fain to confess he knew no such man,
and to add that he wished he did, for letters were accumulating for him, and the box accommodations for stray letters were getting overcrowded. At last in Montclair forbearance ceased to be a virtue, and the man who whispered pigeon
or H. C. B. to a citizen of that town did it at the risk of his or H. C. B. to a citizen of that town did it at the risk of his
life. But when celebrated pigeon fanciers, mèn of science and others of the believing and unbelieving stock, pretty equaily mixed, began to call at the Daily Advertiser, and ask for further facts, pointing to the columns of that paper from which they had gained their first information, it became time for a representative of this paper to plunge into the pigeon war.
Not at Montclair, but near Whippany, a small village some five miles north of Morristown, Harry C. Bleecker was found at last, and proved to be a bright faced intelligent lad of 14 , the son of a farmer. Both Mr. Bleecker and his so willingly gave all the information in their power, and laugh d heartily at being told of the excitement caused by H. C. B nd his pigeons.
Mr. Bleecker having determined to send Harry on a sea voy ge, arranged for him with Capt. William Bacon of the brigantine George W. Chase; and, on the 8th of September last, that vessel sailed from pier 17, East River, New York with Harry on board and bound for Galveston. With Harry was a small coop, in which were three slate colored pigeons, perfect models of symmetry and beauty. These were brought to the vessel by a friond of Harrys father, a res dent of Montclair, who instructed the lad to let off a pigeon was a landsman and got very sick, but on September 10, the vessel being then beyond Cape Hatteras, he scribbled a note to his father, fastened it to his youngest pigeon, and amid the sneers and jeers of the ship's crew, placed the bird Tempest sneers and jeers of the ship's crew, placed the bird Tempest
on the deck of the vessel. In an instant it arose perpendicuon the deck of the vessel. In an instant it arose perpendicu-
larly, and, when at an immense elevation, took a direct home ward course. The captain would not countenance such folly s letting a fine bird be lost at sea, and did not see it star but entered the fact in the log to please the lad. This bir was but six months old, was a male, and had never had any practicing flights whatever. During its two day's sea voyage it had been sea sick, had eaten little and was thought to be too weak to fly. Yet it accomplished its journey with ease, nd reached its dove cot in the quick time given
On the 15th, the vessel being off Key West, the female bird Tornado was let loose, and also made a direct course, first upward and then homeward. This bird was two years old and had made short journeys around its neighborhood, hav ng also flown from Troy and Syracuse. Like the first bird it had been sick and refused to eat, and again captain and crew laughed at the plucky lad who was so wilfully slaugh ering his pets. Yet the ship's log bears the entry, giving atitude and longitude, with the hour of the start. This bir flew the 1,004 statute miles at an average speed of 196 miles
per hour, and was in perfect condition on reaching home, ating and drinking freely.
On the 21st, the vessel being then in the middle of the Gulf of Mexico, and 1,596 miles from home by the captain's reckoning, the veteran bird Typhoon was let loose. This male bird was three years of age, and had made several trips flying last year from Chicago. It had not been sick at all but had eaten greedily, all the voyage, pieces of meat and wheat, with bread crumbs and anytbing the men fed to it. The crew had become attached to it, and it was with the great est trouble that Bleecker persuaded them to let him release it They were positive no bird could reach land, but the lad deermined to obey orders and let it go at all hazards, although in consequence of a gale blowing off the shore, he had thought it best not to let the bird go when the vessel was at 1,500 miles distance. Again the entry was made in the log, the
Captain still protesting against such foolishness. The noble Captain still protesting against such foolishness. The noble
bird safely accomplished its fearful voyage, but, after alightind safely accomplished its fearful voyage, but, after alight perts saping that he had been over fed and was too fat His average speed was 202 miles per hour.
As to the question: Were these flights accomplished ? they may now be safely believed, the testimony of the captain and his log all going to prove this. As a furthər proof, however, young Bleecker is soon to start on a much longer journey, and is to be provided with a large coop of birds. Among these are to be Tempest and Tornado, the latter of which is o be let loose at five hundred miles distance, and its owner is prepared to bet heavily on its flying the same in under two hours. Tempest is to fly at 1,000 , and other birds at 1,500 ,
$2,000,2,500$, and even 3,000 . Experts have denied in toto that $2,000,2,500$, and even 3,000 . Experts have denied in toto that
a bird can sustain itself in continuous flight over 1,500 miles. a bird can sustain itself in continuous flight over 1,500 miles.
Typhoon has done it, and more too, and his owner is confident that he has others, of the same breed, who will still further outdo him.-Newark Daily Advertiser.

Fireproof Roors.

A wash, composed of lime, salt, and fine sand or wood ashes, put on in the ordinary way of whitewash, is said to render shingles fifty fold more safe against taking fire from falling cinders, or otherwise, in case of fire in the vicinity It pays the expenses a hundred fold in its preserving influence against the effect of the weather. The older and more weather beaten the shingles, the more benefit derived. Such shingles are generally more or less warped, rough, and cracked. The application of wash, by wetting the upper surace, restores them to their original or first form, thereby closby filling up the cracks, prevents the warping.-Fireman's Journal.

The mind, as well as the body, needsits gymnasium. Eaeh aculty should bedeveloped to its appropriate power, and the whole molded into symmetry

MANUFACTURE OF ARTIFICIAL STONE FOR THE CARTHAGENA BREAKWATER.

One of the marks of Spanish revival is the attention paid to its commerce and the improvement of its harbors.
After the harbor improvements successfully carried out at Gijon, it was resolved to carry out a similar work in the port of Carthagena, in the hope of restoring its ancient importance. The main works were to be two breakwaters, called Curra and Navidad-one 800, the other 180 meters in length -a pier for loading and unloading, 700 metres wide, and a

CHARLES BABBAGE.

The following interesting sketch of the life of this extraordinary man is condensed from Nature
There is no fear that the worth of the late Charles Babbage will be over estimated by this or any generation. To the majority of people he was little known except as an irritable and eccentric person, possessed by a strange idea of a calculating machine, which he failed to carry to completion. Only those who have carefully studied a number of his writings can adequately conceive the nobility of his nature and

Bridgewater Treatise," "The Reflections on the Decline of Science," or "The Account of the Exposition of 1851," are generally incomplete sketches, on which but little care could have been expended. We have, in fact, mere samples of what he could do. He was essentially one who began and did not complete. He sowed ideas, the fruit of which has been reaped by men less able but of more thrifty mental habits.
It was not time that was wanting to him. Born as long ago as the 26th of December, 1792, he has enjoyed a work ing life of nearly eighty years; and, though within the last

MANUFACTURE OF ARTIFICIAL STONE FOR THE CAR'THAGENA BREAKWATER.
general dredging of the port to secure a uniform depth sufficient for vessels of any size.
The work was begun March 29, 1870, by Angoitia \& Co., under the direction of Don José Rodriguez Acerete, a skillful engineer, and was to cost thirty-two millions of reals.
The base was to be of rough stone, on which rose two walls of artificial stone; but after the foundation was laid up to the surface of the water, it was found that the weight was too much for the ground that the weight was too much for the grou
below, and a gradual sinking took place.
The engineer was thus compelled to adopt something different from an upright wall, and decided on the plan shown in our illustration. One tier of blocks of artificial stone is set vertically, and then others inclining at an angle of 45 degrees.
The weight is thus divided, and the sea, instead of dashing against a dead wall, requiring great strength and power of resistance; is met by a series of angles which break up its impetus with very little shock to the structure. A central wall of artificial stone runs through the length of the breakwater. Our other illustration shows the operation of manufacturing the blocks of artificial of manufacturing the blocks of artificial
stone, which are four meters, or about four yards long, by one and a lalf meters thick, and as many high.
The cement, composed of hydraulic lime and sand, is mixed by steam, which drives large wheels in the receptacle containing the mortar. This, when ready, drops into cars, running on a track, as do others with crushed stone, to cylinders in which the whole, revolving by steam, are thoroughly and densely worked together. These, in turn, run on another track to the molds, where the blocks receive their final shape. The blocks are then allowed to dry for ninety days, by which time they have ali the character of real stone and are slung on chains in the same way, for transportation and are slung on chains in the same way, for transpor
$+\rightarrow$ the portion of the works where they are required. Spaniards now hope to make Carthagena the center of th Spaniards now hope to make Ca
hort route from Paris to Algiers.

BREAKWATER AT CARTHAGENA.
who can create new methods or reform whole branches adequate notion of the vast mechanknowledge. Unfortunately the works of Babbage are strangely fragmentary. It has been stated in the daily press of the means, there can be little doubt that everything which that he wrote eighty volumes; but most of the eighty publi- Mr. Babluage asserted to be possible would have been theoretications are short papers, often only a few pages in length, cally possible. The engine was to possess a kind of power of published in the transactions of learned societies. Those to prevision, and was to be constructed that intentional disturb$\begin{aligned} & \text { published in the transactions of learned societies. Those to } \\ & \text { which we can apply the name of books, such as " The Ninth }\end{aligned}$ $\begin{aligned} & \text { prevision, and was to be constructed that intentional disturb- } \\ & \text { ance of all the loose parts would giveno error in the final result }\end{aligned}$

Although for many years Mr. Babbage entertained the intention of constructing this machine, and made many preparations, we can hardly suppose it capable of practical realization. Before 1851 he appears to have despaired of its completion, but his workshops were never wholly closed. It was his pleasure to lead any friend or visitor through these rooms and explain their contents. No more strange or melancholy sight could well be seen. Around these rooms in Dorset street were the ruins of a lifetime of the most severe and ingenious mental labors perhaps ever exerted by man. The drawings of the machine were alone a wonderful result of skill and industry ; cabinets full of tools, pieces of mechanism and various contrivances for facilitating exact workmanship were on every side, now lying useless.
Mr. Babbage's inquiries were not at all restricted to mathematical and mechanical subjects. His work on the "Economy of Manufacturers and Machinery," first published in 1832, is in reality a fragment of a treatise on political economy. Its popularity at the time was great, and, besides reprints in America, translations were published in four Continental languages. The book teems with original and true suggestions, among which we find the system of industrial partnerships, now coming into practice. It is, in fact, impossible to overpraise the work, which, so far as it goes, is incomparably excellent. Having assisted in founding the Statistical Society of London in 1834, Mr. Babbage contributed to their transactions a single paper, but as usual it was a model research, containing a complete analysis of the operations of the Clearing House during 1839. It was probably the earliest in which complicated statistical fluctuations were carefully analysed, and it is only within the last few years that bankers have been persuaded by Sir John Lubbock to recognize the value of such statistics, and no longer to destroy them in secret. In this as in other cases, many years passed before people generally had any notion of the value of Mr. Babbage's inquiries; and there can be little doubt that, had he devoted his lofty powers to economic studies, the science of political economy would have stood by this time in something very different from its present pseudo-scientific form.
Of all Mr. Babbage's detached papers and volames, it may be asserted that they will be found, when caretully studied, to be models of perfect logical thought and accurate expression. There is, probably, not a sentence ever penned by him in which lurked the least obscurity, confusion, or contradiction of thought. His language was clear and lucid beyond comparison, and yet it was ever elegant, and rose at times into the most unaffected and true eloquence. We may en-
tertain some fear that the style of scientific writing in the tertain some fear that the style of scientific writing in the
present day is becoming bald, careless and even defective in philosophic accuracy. If so, the study of Mr. Babbage's writings would be the best antidote.
Let it be granted that in his life there was much to cause disappointment, and that the results of his labors, however, great, are below his powers. Can we withhold our tribute of admiration to one who throughout his long life inflexibly devoted his exertions to the most lofty subjects? Some will cultivate science as an amusement, others as a source of pebage was one of those whose genius urged them against everything conducive to their immediate interests. He nobly upheld the character of a discoverer and inventor, despising any less reward than to carry out the highest conception wisch his mind brought forth. His very failures arose from no want of industry or ability, but from excess of resolution that his aims should be at the very highest. In these money
making days, can we forget that he expended almost a formaking days, can we forget that he expended almost a for-
tune on his task? If, as people think, wealth and luxury tune on his task? If, as people think, wealth and luxury
are corrupting society, should they omit to honor one of are corrupting society, should they omit to honor one of
whom it may be truly said, in the words of Merlin, that the single wish of his heart was " to give them greater minds?"

Feed and Treatment of Horses.-Hay and oats make the best feed for horses that are obliged to work hard and regularly. If the hay is cut fine and the oats bruised or ground, the whole mixed and moistened, the horse will eat his rations quicker, digest them sooner, and thus have more time for resting and renewing his power for labor. Farmers' horses that work little during the winter time may be kept cheaper by cutting and mixing bright straw and hay in equal quantities, and adding a ration of steamed potatoes or raw carrots. Colts should be fed liberally on good hay-bright clover is best-and bruised oats; give them a roomy box stall in stormy weather and during nights. Ieitter freely, and do not let the manure accumulate under them. Sawdust or spent tan makes good and convenient bedding; in cities and villages they are often cheaper than straw. Groom horses well and let them have exercise every day; a run in the yard is excellent. See that stable floors over basements are sound and strong. Arrange the feeding racks so that dust and hay seed will not fall into the horses' manes or eyes; some horse men build their mangers too highे, thus forcing the animal to take an unnatural and painful position when eating. Farm horses that are not worked should have their shoes taken off, and those that are driven on the road should be kept well shod.-Stock Journal.
M. Devergie, a French chemist, finds that water contain ing only one four thousandth of its weight of carbolic acid sufficed for the disinfection of the Morgue in Paris during the hottest weather, when it contained six or seven bodies.

Truthfulness is a corner stone in character; and if it be not firmly laid in youth, there will always be a weak spot in the character.

MACHINE FOR ROLLING TAPERED BARS.

Mr. Henry Kesterton, of Birmingham, Eng., has patented an ngenious arrangement of rolls for rolling taper tubes or rods. According to his plan, there is employed a pair of rolls, each roll having a spiral groove of variable depth, and of half round section, turned on it. The groove in one roll is a right hande 3 , and that in the other, a left handed spiral, as shown in the engraving, and when the rolls are placed to-

gether and geared, so as to revolve in union, the grooves form a series of eyes, which, as the rolls revolve, appear to move laterally, and gradually decrease in size. Thus, if a bar or tapered strip of iron, bent so as to approximately form a tube, be introduced between the rolls at that end where the grooves are largest and deepest, it will be gradually shifted towards the other end of the rolls as it passes between the
latter, and will thus be rolled tapered. latter, and will thus be rolled tapered.

MAINE'S PORTABLE WINDOW VENTILATOR.

We have been using the above ventilator (an engraving of which is annexed) in our office, with much satisfaction, for some time. By its means we find the condition of the air in the apartment much improved.
The principle of the invention is the deflection of the in flowing current directly up toward the ceiling, where it be comes diffuced, and gradually falls without creating sharp currents.

Short sheet metal elbow.ed tubes are fixed in pieces of board, which overlap and are held together by a bolt which passes through a slot in one of them, so that they can be ad justed to fit windows of different widths. These boards are placed with their outer ends flush to the window casing, and the lower sash is raised to rest upon the upper edge of the apparatus. The joints are made tight with suitable packing. Each elbow tube has a damper to regulate the admission of air.
The apparatus is cheap and simple. It can be applied any where; and, if others are as well pleased with its working as we have been, it will gain a wide-spread popularity.
Patented March 1, 1870. Underhill \& Co., 95 Duane street, New York, will give further information on applica tion to them.

THE APPLICATION OF MECHANICS AND MECHANICA PRINCIPLES IN AGRICULTURAL OPERATIONS.

We copy from the Ohio Convention Reporter, published at Columbus, Ohio, some extracts from the introductory address by Hon. L. F. Ward, delivered before the Ohio State Agricultural Convention at its last meeting. We would also state that from the Reporter we learn that another meeting of the convention will be held on the 3d and 4th of January 1872, at Columbus. We hope it will be well attended. Such associations do a vast amount of good in the dissemination of practical knowledge among the agricultural producers of State, and we are glad to see that a growing interest is manifest among the farmers throughout the country to enighten themselves on subjects so important to their pros perity. The speaker thus accords to the mechanic and in entor, due credit for the great advances made in the agri ultural field
" We may rejoice that we live in a period of mechanical triumph. The dreams of past ages are already more than realized. The " alchemy" of invention has learned the world more than the transmutation of baser metals into gold. By machinery, crude iron ore, in the hands of scientific manipu lators, is wrought into delicate hair springs and tiny watch screws, worth far more than so much gold; and so isit in a thousand places. There is something truly wonderful to tand among the machines, and
he mechanic arts of the age
By the electric telegraph we have almost distanced time and by steam locomotion we have nearly destroyed the ide of terrestrial distance.
This rapid advance of the world announces the dawning of
those of steel; when exhausted muscles rest and let sinews of iron endurance do the hard work; when, indeed, emanci pated humanity may rest, and the mind preside over mechanical agencies doing his work; when we may have leisure for cultivation of intellect and such development of both mind and matter as will elevate our race.
There is something impressive in contemplating the triumphs of mechanical skill exhibited in this nineteenth cen tury. These triumphs come so rapidly, are being developed everywhere, that we scarcely note the wonders before they are displaced by others. Every department of industry has its new machinery and new modes of accomplishing wonder ful results. New fields of enterprise are being constantly developed, while inventors are handing out new devices and improved machines to accomplish new work, and are teaching the world how to do things better and more surely.
I need hardly say that agricultural pursuits are entirely different and surrounded by a different kind of machinery than when we were boys on the farm. Do any of you remember the thump, thump, of the winter's flail, and the long weeks of hard threshing? These have given place to the weeks of hard threshing? These have given place to the
thresher and separator, and the work of the winter is done in thresher and separator, and the work of the winter is done in
a day. We can some us remember the old flax brake, the "scutching" board, the old spinning wheels and hand looms, and the months it took our mothers and sisters to produce the wearing apparel of the family. These are all gone, and steam has been harnessed on to automatic machinery, and a thousand spindles hum and power looms "weave away the web" to warm and adorn us. You can remember the long weeks of back aching hand mowing. Since then the mowing machine, in a hundred forms, has been wheeled in, and with his team the farmer does in a few days and easily what was a tedious and long "haying." All departments of farm labor have improved tools and machinery, and new modes of accomplishing the work that used to make farm labor so wearying.

demand for the practical application of science.

A competent amount of knowledge of the fitness of ma chinery and its auxiliaries is a valuable attainment for him who would make agricultural work a success. The honest farmer, who had learned a part when he had learned that the axles of his wagon needed lubricating, and so kept his ar bucket filled and at hand, showed that he had not matur ed his mechanical knowledge when he applied tar to the cogs and pivots of his Yankee clock, and was, himself, much surprised when he found it would not run!
The use of machinery on the farm implies the want of mechanical principle, and the farmer would hardly use his steel plow for a stump machine, or his reaper for clearing brushwood, or his mower for trimming his hedges; yet as absurd things as these have been done. We do not expect the enlightened farmer will insist on putting his corn in one end of his sack, and a stone in the other, to balance it, even on going to mill on horseback; but we do often see the laborer working away at the wrong end of the lever, doing his work wrong end first, and in the hardest way. A little clear headed thought, that weaves in mechanical ideas, wonderfully helps on even herculean tasks.

AS AN IMPROVER OF FARM IMPLEMENTS.

The farmer ought to be the bestjudge of farm implements and farm machinery; and, if properly instructed in mechani cal principles, could not only (as he now does) discover the defects of tools and machinery, but could at once cure and perfect them. He should indeed, select an easier and more rapid accomplishment of many agricultural employments now involving hard muscular labor.
It is the mission of applied mechanics to emancipate the agricultural laborer from that exhaustion that holds both soul and body in the slavery of a mere animal drudgery Why may not a great deal that is now done by muscular ex ertion be accomplished by inproved mechanical adaptations? Why not harness up the unmeasured power of steam to do sorne of his work? And what objection can there be to let ting the idle winds pump water, for his stock or for irrigating his lands in time of drought? With a little mechanical and engineering skill, a whole farm could be well watered at a comparatively trifling expense. Can you see any reason why in the future, steam may not do our plowing-and indeed a great deal of our farm work?
Thought and mechanical science will enable any to judge as to how power should be applied-whether with rapid or low motion, or whether great power is to be attained by reducing motion. I have no doubt that this single fact will account for the difference we find in the ease with which some accomplish much with little effort, while others do everything by the hardest. The farmer should know so much, of the strength and nature of the material and construction of the machinery he uses, that he may form an accurate judgment of its capability and durability. He is the only proper judge of his own machines.

the farm shor.

The farm should have a good shop, well furnished with material and tools, where, in stormy weather, tools and impl $\leqslant m e n t s$ can be repaired, and new labor-saving machinery constructed; and if half the time lounged away by many in ar-rooms and saloons were used in this shop, it would make he farmer so much a mechanic that he could repair much of his machinery in a great deal less time than is now spent in hunting for and being disappointed by mechanics.'
After referring to the proposed new agricaltural college of Ohio, and recommending the Professor to insist upon the pupil doing the science as well as reciting from text books, Mr. Ward closes with a word in behalf of
the mechanic and inventor.
a very unenviable place, and speaking of them as the "greasy mechanic" and "poor inventor," and has assigned to them a subordinate place in the social scale. "Yet by their works ye shall know them." and rank them too.
The mechanics and inventors of the nineteenth century are the "royal family" of the world-the true "aristocracy," before whom, if any, we should uncover. Inventors' and mechanics' skill have developed and opened this whole nation as it could not have been done without this agency. Without these (as the world was iwo huadred years since) it would have taken a thousand years to do what has been done in the United States in the last fifty years with steam and the fruit of invention. How magical the facts that meet us! How like enchantment the wonderful results attained! See the magnificent palaces flying along our railroad lines, at the rate of thirty or forty miles an hour, and ourselves talking with the wings of lightning across continents and through oceans! Ingenuity and mechanical skill, guided by science, have attained this glory. To the scientific mechanic and in ventor is the chief honor due. Capital has aided and sustained this enterprise, but it has been repaid, principal and intered this enterprise, but it has been repaid, principal and interest, and the chief pœan should be given to these active man-
ipulators. Let us grasp the honest hand of skillful indus ipulators. Let us grasp the honest
try, and honor them as we ought."

$\mathfrak{C u x r c s p}$ andente.

Traction Engines--Steam plowing.

To the Editor of the Scientific American
The combined efforts of inventors, to surmount the difficul ties attending the practical use and introduction of steam road wagons and plows, may make a few words upon this hackneyed theme of some interest, especially to your many readers who are directly connected with agricultural pursuits. The Williamson road steamer and plow, New York, the Parvin steam plow, Philadelphia, the Redmond steam plow, Rochester, N. Y., the New Albany, Ind. road wagon and plow, the Porter \& Aveling heavy road locòmotive, and a num ber of others which are now being perfected, make the list quite respectable.
The steamers enumerated above, in their efforts to get traction or hold to exert power upon the road, may be divided into three classes. The first class is by the resistance of the main bearing wheels at each contact, and embraces the William. son, the Parvin, the Porter \& Aveling, and most of the other heretofore unsuccessful machines. The second class consists in thrusting, through the tire, at earth contact, a pointed instrument; this includes, besides the Redmond, two or three more machines not now fully perfected. The third class consists of the use of shoving legs, hanging at an angle of 45° to 39°, which includes the New Albany machine.
The Williamson steamer is one of the most perfected forms of the first class of steamers. Yet when it is at its greatest strain, the machine will not exert a dead lift of more than one half its own weight, and to do that it requires 56.53 inches piston surface at one hundred pounds, compounded in the gearing 16 to 1 . The weight of the machine, with wood and water, will be probably 16,006 lbs. Why $5653 \times 100 \mathrm{lbs}$. pressure $\times 16$ to 1 gearing $(=90,480)$, should not produce beter results, is incomprehensible to me.
The operations of devices of the second class (the Red mond) are much better; with only one half of the weight of machine of the Williamson, it can exert as much of a lifting power, or pulling force, in open field plowing ; but the machine is not adapted to road service, as upon hard surfaces the thrusting points do not act; hence, as a road wagon it should be placed in the first class. Inventors are forced to make a machine equally efficient as a road wagon, portable power, or steam plow.
We witnessed a few days since the operation of the New Albany machine; weight 2,000 lbs., cylinders 2 inches diameter and 4 inch stroke, ten in number; steam 50 lbs. The cylinders were evidently too small, yet the movements were novel, and seemed to be suggestive of a principle that will yield better results than either the first or second class of machines mentioned. In this machine a toothed yoke, worked on the main engine shaft, operated backward and forward four horizontal slides; to each of these slides were suspended two straight pushing legs, with a hoof on each, resembling a horse's hoof. At the first trial these legs were suspended at an angle of 33°, and would slip occasionally, in soft ground. In the second trial they were shortened to 39°, and there was ound no disposition to slip. At 45° angle of leg this machine would pull its own weight of lifting force; at 39°, one a
half times its weight, and at 33°, twise its own weight.
The inventor claims he is only using the mechanical movements of a horse, which can very readily, when required to
do so, lift its own weight. Upon the machine was an eight do so, lift its own weight. Upon the machine was an eight
horse power boiler, 50 gallon water tank, coal bunkers, etc. My attention was particularly directed to the boiler, it being a vertical sectional safety boiler, entirely surrounded by an outside exhaust case, where the feed water was heated and condensed, and waste water saved to use again. With engines in proportion to boiler, I look for good practice in this machine.
The urgent demand, all over the country, for the devices mentioned, makes any information in regard to them watched with more than ordinary interest. The writer is a farmer, not weil versed in mechanism, but feels very much like purchasing some one of the implements mentioned above as soon as he can intelligently do so. I believe there are many farm-
ers just like myself; hence the impor nce of scientific men expressing their opinions, that parties about purchasing may profit by their views.
Greenville. Ind.
Advocate of Stanm Farming.

An Underground Railroad in New York. To the Editor of the Scientific American:
On reading your article on the "Progress of the Underground Railway System " (Scientific American of Decem ber 2d.), I cannot help calling attention to some points in the history of this important question, which now requires only a little public spirit, on the part of the inhabitants of New York city, to be finally set at rest in the manner most consistent with the economy and convenience of the business community. In view of the simplicity and cheapness of construction, the avoiding interference with structures and streets, and the safety in traveling, all of which are secured by the tunnel system, it may be fairly taken for granted that the superiority of this mode of construction is demonstrated Especially is it so when the locality under consideration is a crowded city, of which every square foot of the surface is crowded city, of which every square fout of the surface is
covered with costly buildings, and every street filled with covered with costly buildings, and every street filled with daily increasing traffic. Leaving, then, this part of the sub-
ject, I propose to consider its special adaptation to the wants ject, I propose
The length and narrowness of this city necessitate a rapid means of transit from one end to the other; and the stream of traffic, as well as the already expressed public opinion, point out Rroadway as the road under which the tunnel should be made. Another recommendation of this course is its termination at the Battery, the only situation at the southern extremity of the city where a depot, sufficiently large to accomodate the traffic could be constructed. Thus the route of Broadway will certainly be the best for the low er and business portion of New York; and it may be left an open question, for the present, as to whether the railroad should, at some point up town, diverge into one of the ave on the west side of the city. It would probably be necessary, on the west side of the city. It would probably be necessary,
in the latter case, to make a bifurcation about halfway up in the latter case, to make a bifurcation about halfway up
the island, so that a branch might diverge to the east side and Harlem. If this plan were adopted, the branch should, if the non-interference of house property be kept in view, leave the main line at the junction of Fifty-ninth street and Eighth avenue, and pass under the Central Park. But it would be less expense, and it would afford accommodation to all parts impartially, to let the railroad quit Broadway at Union Squ
to Harlem.
Public needs would demand depots, not farther apart than half a mile, in the lower portion of the city. Starting from the Battery, these depots would be situated as follows: at Wall street, Worth street, Spring street, Washington Place, and Union Square. Beyond this point, the depots need not be in such close proximity to each other
Trains stopping at all stations would reach Union Square from the Battery in nine or ten minutes. To effect this, lo comotive engines specially designed to accomplish a high velocity as soon as possible after starting would have to be constructed. This has been done on the Metropolitan Railway of London, on which trains frequently attain a speed of twenty-five miles an hour between stations that are not more than half a mile apart. To free this traffic from perils of persons crowding on to trains that have started, a lesson from European management would have to be learned. No person under any pretence whatever should be admitted to the platforms after a train is in sight. If such a rule be rig in one minute, and so the detention world be as short a possible.
Under these regulations, trains at three minute intervals can be run with perfect safety. By never permitting a train to leave a station till the previous one has quitted the sta tion in advance, trains can travel with complete immunity from disaster; an end which has not yet been reached on
lines, with trains an hour or two apart, worked on the old happy-go lucky system(?) of signaling.
There are many other suggestions I could give you, such s the construction of cars with several side entrances to facilitate rapid ingress and egress, but I forbear for the pres ent. The chief point for the public consideration is how to get rid of the Ring and the viaduct thereof. This seems in a fair way to be accomplished; and when the course is clear the Underground Railway will only require impartial consideration on its merits, and then we can go ahead and make

New York city.
D. B.

Testing Kerosene oll

To the Editor of the Scientific American:
I obtained some kerosene which had been inspected by the Government inspector, and passed as standing the test of
$10^{\circ} \mathrm{Fah}$. before throwing off vapor, or the flashing point as 110° Fah. before throwing off vapor, or the flashing point, as commonly called; and I placed the same in a long test tube in which was placed a delicate thermometer. I then inverted the tube, full of oil, in a vessel coataining water, so that the vacuum in the tube was complete. I then applied heat to the water, and watched carefully the thermometer; and, at 86° Fah., the vapor began to ri e in bubbles and coliect in
the top. At 142° large bubbles rose rapidly, and at 190° about $33 \frac{1}{3}$ per cent of the oil was in vapor. I then allowed it to cool, when the bubble disappeared from the top by condensa heated, and passed ozonized air through it, then subjected it to the same test as the previous; and I found the thermome ter stood at $174^{\circ} \mathrm{Fah}$. when the first bubble of vapor rose to the surface, and at 190° Fah. only about 2 per sent of vapor was thrown off.
I think the apparatus for testing the flashing points of ke rosene and petroleum oils, as at present used, are very inef-
fective and inadequate for the purpose, and oils are passed, as
standing 110° fire test, which vaporize at much lower tempe atures.
I believe an apparatus made like that described by me ould be more simple and certain.
New York city.
C. F. Dunderdale.

Equilibrium of Water in a "Nest", of steam
To the Eiditor of the Scientific American:
In last week's issue of your journal, H. P. S. of Kansas city, Mo., tells us of a "Curious Freak of Twin Steam Boilers" and asks the "decision of older engineers." Probably an explanation of the "mysterious working" would be accepta ble from a young engineer.
A host of engineers have encountered and are still encountering the same difficulty. The cause in nine cases out of ten is malconstruction, which is the trouble in the case of H . P. S. The steam connections are entirely too small, and they must be enlarged to prevent the difficulty. When the production of steam in the boilers is equal, there will be no such trouble.
It is only when the production of steam in the different boilers is disproportionate that this difficulty developesitself The water is depressed in the boiler producing the most team. It is caused by the resistance the steam encounter in adjusting the pressure in the different boilers. A greater quantity of steam crowding through one stand pipe than the other, a greater resistance will be encountered and a depres sion of water in that boiler is the result.
There is a corresponding increase in the pressure of steam in the same boiler. This difference in pressure may be meas ured by the difference in the hight of water. If the difference in hight of water is two inches, the difference in pressure will be nearly one ounce; four inches, nearly two ounces, six inches nearly three ounces; or the difference in pressure will be the diff erence in weight of the column of water in each boiler The pressure of steam may be 90 or 100 lbs to the square nch, speak of the difference only
It is simply impossible to fire two or more boilers so even y that the amount of steam produced in the different boiler will be equal. Then what is the remedy? It is to make he steam connections and stand pipes on top of the boilers arge enough to allow the pressure of steam to adjust itsel in the different boilers without disturbing the equilibrium of he water. The smaller these connections are, the more rouble it will be to maintain the same water level in the dif ferent boilers.
The pressure of steam and water in a "nest" of boilers may be compared to a huge balance suspended with equal weights, the equilibrium of which can be disturbed by the slightest cause.
In the case of H. P. S., he should have larger connections between the boilers-say a four inch pipe connecting the two oilers either above or below the water line, so as to allow a reer passage between the boilers, and he will have no fur her trouble; or, what is still better, he should compel th builders to place (at their own expense) larger and prope steam connections on the boilers.
It shows gross ignorance in the management of steam on he part of builders to set up two steam boilers "sixteen fee ong and forty inches in diameter," with only "two inch" team connections; with such imperfect connections boilers re positively dangerous.
Zanesville, 0 .
W. A. C.

Making Flour without Millstones.

To the Editor of the Scientific American:
In regard to your article, page 353, current volume, on the manufacture of flour, I would like to answer a few question and ask a few others.
I am constantly using a machine, such as you speak of, that will grind wheat, or, in fact, almost anything, without the use of stones, and will run for years without repairs. But your article says there is no heat. That is not so; the heat produced in the winter is about 60 or 70 degrees, and in sum mer about 100 ; and, as you say, it is done by extreme veluci y and requires no skilled labor. But what I wish to ask is, will it make better flour, and what would be the difference in the price of labor now used, and the price of 1 , bor with one of these machines? I have had considerable experience with this machine, and have ground, in ten hours, 15,000 to $18,000 \mathrm{lbs}$. of a substance similar to flour.
Brooklyn, N. Y.
G. T. Granger.

The Existence of an Open Sea at the Po the Earth proved by Magnetism.

To the Editor of the Scientific American:
As a general rule, fresh water from wells and brooks freezes at 30° Fahr., sea water at $28 \frac{1}{2}^{\circ}$ Fahr., regulated, how ver, by the amount of salt and saline matter it contains.
Rain water freezes generally at $30 \frac{1}{2}^{\circ}$ Fahr., and distilled water at 31° Fahr. Fresh and sea water ice melts at 32° as sea water gives out its salt, etc., in the act of freezing, herefore the ice of both melts at the same degree of heat These facts being understood, the following experiments were performed on November 2S,29, 30, and December 1, 1871. During the four days of those experiments, the thermometer in the shade ranged from 17° Fahr., to 24° Fahr., between 7 A . M. and $4 \mathrm{P} . \mathrm{M}$. The wind blew hard from the north west.
Everything being ready, we commenced at $10 \mathrm{~A} . \mathrm{M}$, in the shade, and the experiments were continued until 12 noon nd the experiments on each day were made at the same time of day
The experiments in detail are as follow; We took two wooden bowls, highly coated with shellac varnish, being
and 18 inches in diameter respectively. The smaller one was intended to represent the open polar sea, and the larger one, to represent the belt of ice which surrounds that sea In the large bowl, we put 4 inchcs of water, and the same depth in the small one. The large vessel was placed upon ε pine table insulated by a plate of glass beneath it and the
table, and the small bowl was placed in the center of the large one, with another plate of glass under it.
The water, when first put into the two vessels, was of th same degree, that is, 34° Fahr. It was brought from thi kitchen for this purpose
Having the electromagnetic machine and the battery ready we made the circuit at 10 A. M.. At 11 A . M., there was thin scum of ice in the outer vessel but none in the inner ont The thermometer in the outside one at this time indicate 231° Fahr., the same as the one in the shade in the open ail but the one in the small vessel was 283° Fah., being $\frac{3}{4}$ of degree above the general freezing point of sea water. Fi teen minutes after the circuit was broken (12 noon), ther were signs of ice in the inside vessel, and, at $2 \frac{1}{2}$ P. M., the was a thin sheet of ice covering the whole surface. The the:-
mometers in both vessels and the one in the open air, nov mometers in both vessels and the one in the open air, nnv
stood at $23 \frac{2}{2}$ Fahr. The battery was supplied with crysts s of the sulphate of iron during the operation, so as to ke'? up a strong and uniform current.
During the experiments, the water in the inside vessel wis continually examined with a microscope, and we observeraa
vibration of the water and also a rotary motion around a ccmvibration of the water and also a rotary motion around a ccm mon center, until the circuit was broken.

Now, as a slight agitation of water retards its freezing, will not such have a similar effect at the poles, to preserve water from freezing
We have long entertained the idea that electric and mrgnetic currents pass and counterpass over the surface of the earth, and are concentrated at the poles, where the intensity is the greatest
For as heat, light, and electricity are nearly the same in principle, and as decomposition in nature, friction, conc1ssion, and chemical combinations in the earth, all tend to levelope them, we can readily concaive that, whenever tley are in an active state, that h at and motion must be there also.
Therefore, if such a theory be true, the convergence of he electric and magnetic currents to the poles of the earth, vill continually produce heat and motion, which will prevent he water from
New York city.
James Quarterman.

SUBTERRANEAN EXPLORATIONS

One of Nature's geological freaks during the ages past re sulted in the formation of a large cave near where the city of Hannibal, Missouri, now stands. It is not a new or r cent discovery, having been known for at least half a centur: .
Though not to be compared with the Mammoth ca'e or Niagara Falls, it is still deserving of more attention than it has heretofore received, from the travelling and scientific world west bank of the Mississippi siver, and about thirty feet above the bed of a small stream that joins the Mississippi at this point. The bluffs are limestone, and from 200 to 300 feet high. Passing within the portals of the entrance, thf; ex plorer finds there three passages diverging as the radii of a circle; following either of these he will soon find hinself entangled in a perfect labyrinth of avenues and passages, pass ing into, through, above and below one another, at every con ceivable angle. Instead of the one passage, with whica he he started, there may be twenty or more, running in all pos sible directions. This is the general arrangement ot the whole cave - a vast network of subterranean channcls, a " mighty maze" and quite " without a plan."
In some places the cave is four stories deep; that is, there are that many distinct systems of galleries, one above another at other places these may be all merged into one. The above will afford one some idea of the intricate and complicated structure of this wonderful underground city.
To get lost is one of the easiest things imaginable. The explorer needs to take every possible precaution, if he wou d prevent such a result. The truth of this statement has been proven on more than one occasion; but never, I believe, with
any fatal or serious results. Two boys were once lost in the cave for a week, and had to subsist on raw bats during tha time. On another occasion, a man, who had been lost for several days, came out at a point two or three miles from where he went in, and thus discovered a new entrance.
'The extent of the cave is not known, with any certainty One avenue, which has been named "Grand Hall," is quit straight for nearly a mile in length. Judging from its direction and length, it must pass under the Mississippi river, as also do many of the other passages. So that the cate is at once subterra
coin a word).
There is but little water in the portion of the cave visited by your correspondent, and the atmosphere is comparatively dry.

The temperature, of course, is always the same, and that is near 60° Fahrenheit. Summer heat and winter cold have never penetrated to these subterranean vaults. The absence of water, or some other cause, has prevented the formation of those beautiful stalactites and stalagmites which are usually found in limestone caverns.
The rock is the mountain limestone of the sub-carboniferous age; and it is a fact worth noting, that all the great caverns
of this country, if not of the whole world, are found in this formation.

The walls of the cave are studded with water worn crystals calc spar-carbonate of calcium; a light blow with the mmer reveals the beautiful interiors of these rusty look g nodules.
The origin of the cave is plainly and indelibly written on he walls of every passage and chamber; the characters are horizontal water marks and ledges, such as would be pro duced by a running stream of water. They are so plain and distinct as to preclude the possibility of its having been produced by any other cause than a subterranean river.
There is considerable niter-nitrate of potassium-in the clay or silt found in many parts of the cave. Tradition says that, during the war of 1812, a man and his sons manufac tured saltpeter here. At any rate, there are still to be seen remains of old leaches, which were used for the lixiviation of the nitrous earth.
Bats seem to be the sole representatives of the animal ingdom; these melancholy creatures are found here in large numbers. They love the dark and shun the light; does it
follow that their deeds are evil ? ollow that their deeds are evil?
There are, in this
There are, in this part of Missouri, a great many caves large and small, in some of which are found most beautiful stalactitic formations. But there are none as large or intri
cate as the one above described.
R. O. C. cate as the one above described.

IFor the Scientitic Amerıan. 1 LATENT HEAT OF LIQUIDS.

by P. H. vander weyde

The adoption of the unit of heat has not only given rise to discoveries of a purely speculative scientific nature (of which an example was given on page 389 of the last numbe of this journal), but it has also led to important practical re sults, of which the application of the knowledge of specific ever, was the knowledge obtained concerning that class of ever, was the knowledge obtained concerning that class of
phenomena where heat actually disappears and reappears this kind of heat has been called "latent heat," it is the heat of form; that' means, this apparently disappearing heat is the rause of the fluid and gaseous conditions of matter; solids have no latent heat, fluids a certain amount, and gases a very large amount. Latent heat, therefore, must no be confounded with specific heat, as it gives rise to an entirely different class of phenomena.
Before the acceptance of the unit of heat, the phenomena supposed that when water was cooled below 32° Fah., it all
sured suddenly congealed by the abstraction of a single degree of heat; and, inversely, that ice of 32° had only to be heated a single degree above that point to convert it all into water. If single degree above that point to convert it allinto water. If
this in reality were the case, the freezing of rivers in winter would be most inconveniently rapid, and the melting of ice, on the fields and mountain slopes, most disastrously sudden o that it would produce the most fearful inundations every day that the temperature rose above 32°.
Fortnnately this is not the case. When we attempt to raise the temperature of a very cold mass of ice, say of $10^{\circ} \mathrm{Fah}$ by supplying it with heat from any source whatever, we find hat its temperature will increase gradually till we reach 32° when this point is attained the increase in temperature will suddenly be arrested, notwithstanding that we continue our supply of heat; and it appears that this further supply is all consumed in the operation of changing this solid condition of the substance gradually into the liquid. We see, further, hat a very considerable amount of heat is, as it were, absorbed nto the resulting water, and that this water will remain a he same temperature of 32° till all the ice is melted. If we ry to find how much heat is absorbed in this way, we shall obtain as result 142 units, that means, that to convert one
pound of ice of 32° into water of 32° will require as much pound of ice of 32° into water of 32° will require as much
heat as would suffice to heat a pound of water from 32° to 174°. This is 142°, which, if applied to one pound of water is, of course, 142 units. It is evident that, in this case, th hermometer can be no guide, since the ice, just before and ust after the melting, remains at 32°, notwithstanding the bsorption or consumption of 142 units.
The heat thus disappearing is also called "heat of fusion," and any solid substance, when melted or converted into the iquid condition, will absorb heat in exactly the same way The amount of heat thus rendered latent varies for different substances, of which the following table contains a few

Name of substance.	Melting points.		Latent heal.	
Ice.	32°	Fah.	142 u	nits.
Spermaceti..	130°	"	144	
Beeswax.	149°	"	171	"
Sulphur	230°	"	142	"
Tin	430°	"	490	"
Bismuth	500°	"	550	"
Lead.	617°	"	160	"
Zinc.	700°	"	480	"

It will be noticed that the units of heat, absorbed by melt ing, have no relation to the melting point; so the latent heat of ice and sulphur do not differ, while their melting points differ considerably. The melting points of lead and bismuth differ not a great deal, while the latent heat of the latter is hree times as great as that of the former. No doubt that he crystalline tendency of the solidifying bismuth, which i bsent in the lead, has something to do with the peculiarity hat the body with she higher melting point has the less la ent heat.
It may be well to explain some of the methods of deter mining the amount of heat absorbed by fusion, as this will, at the same time, give a clearer conception of the doctrine of latent heat. One method is to expose the solid substance,
during melting, to a constant source of heat; for instance, a Bunsen burner, of which it has previously been determined how many units of heat it will prodace per minute, or how
many degrees it will raise a pound of water in that time Suppose such a burner were arranged so as to raise the tem perature of one pound of water two degrees per minute every half minute would then be equivalent to a unit of heat; and, with such a flame, it would then be found that one pound of ice of 32° would require 71 minutes to be converted into water of 32°; or that one pound of solid beeswax of 149 would require 85 minutes to be entirely changed into the liquid condition. This method, however, is not adapted for correct estimates, especially in experimenting with the met als at high temperatures, by reason of the great loss of heat by radiation in such cases.
A more correct method is that of mixing, similarly to the method described on page 189, for finding the specific heat One pound of boiling water of 212°, poured in one pound of One pound of boiling water of 212°, poured in one pound of
water of 32° will produce two pounds of water of the mean temperature of 183°; but when the pound of boiling water is poured upon one pound of ice, it will commence with losing 142°, which will be consumed to melt the ice and change it 142°, which will be consumed to melt the ice and change it
into water of 32°; we shall then have one pound of water of into water of 32°; we shall then have one pound of water of
$212^{\circ}-144^{\circ}$, or 68°, and one pound of water (the melted ice) of 32°; the mean of 68° and 32° is 50°, and this will be the temperature of the mixture. Or suppose we put, in to the pound of water of 212°, one pound of spermaceti, previously heated to 129° or 130°, near its melting point. We shall then find that the water will soon be cooled down to 140°, and will have melted half the spermaceti, 72 units having been ab stracted by the melting of half a pound of this substance. A pound requires $\dot{3} \times 72$ or 144 units of heat, or, in other words, the temperature of the boiling water exceeding that of the melting spermaceti, $212^{\circ}-130^{\circ}$ or 82°, and the latent heat of the spermaceti being 144 units, it would require $144 \div 82$, or nearly $7 \div 4$ lbs. boiling water, to melt the whole of the sper maceti.
A third and most reliable method is the measuring of the mount of ice melted by the solidification of the substance under investigation, which previously has been melted and cooled to near its point of congelation or solidification. Know-
ing that every pound of ice melted represents 142 units o ing that every pound of ice melted represents 142 units of ice rebstracted, in that every 142 d part of a pound of melted ained from the inside of a block of ice, into which the melt ed substance has been introduced, and which has been melted by the cooling and solidification of that substance. Take, for an illustration, a pound of melted tin, showing a temper ature of 430° Fah., its melting point, and introduce it, in a proper vessel, in the inside of a previously hollowed large block of ice; the opening in the top is covered with anothe block of ice, and all is placed in a properly constructed box f non-conducting material so as to bave no unnecessar melting on the outside. If we wait till the tin has solidified ut still has a temperature of $4: 30^{\circ}$, we shall find that three and a half pounds of ice have been melted, as we may pou so much water out of the hole from which we remove the in, and as every pound of ice melted represents 142 units of heat, we have $3 \frac{1}{2} \times 142=497$ units of heat for the latent heat given off by the melted tin during its solidification, without change of temperature. Or, if we wait till the tin has cooled to 32°, the temperature of the ice, we shall find that, in all, 64 pounds of ice have been melted ; of this $2 \frac{3}{4}$ is 400 units, the descent of solid tin of 430° to 32°; the balance represents the latent heat.

Electricity--Lecture by Professor Doremus.
Professor Doremus, in the last of his course of scientific lectures before the Young Men's Christian Association, New York, discoursed on electricity and its applications. In open ing, he said that Oersted, of Copenhagen, was the first to make known the fact that electric currents have a marked influence
upon the magnetic needle. This discovery led to a multiupon the magnetic needle. This discovery led to a multi
tude of other discoveries, chief among which is the telegraph The Professor here explained the minute details of operating the telegraph, and, in speaking of the rapidity with which the electric current moves, stated that recently a message was sent from Cambridge, Mass., to San Francisco and back in less than three quarters of a minute, excepting the time necessary to repeat it at the various stations. A prince vis its us, and almost the very moment he lands on our soil, his family are acquainted with the fact by electricity. Another prince lies on his deathbed, and day by day, hour by hour, he whole civilized world is informed of his condition, and made to sympathize as one common family. It has been claimed recently that electricity will one day supersede the steam engine, but he could not think so, as it seems thus far to be utterly impossible to move anything but comparatively delicate instruments or machinery by its method. Professor Doremus next explained the various applications of electricity to heat for purposes of exploding torpedoes, blasts and mines, and even for assisting in surgical operations by heating the platinum knife, which, when used, of course cauterizes the wound; also the application of the galvanic battery to the human system in cases of paralysis and poison. The Professor had seen a person, whose arm was rendered utterly useless by the disease just mentioned, perfectly cured in from five to six weeks by the use of the battery. In conclusion, the speaker remarked that the greatest, most glorious field for this agency-its application to the human system to estore life or in other words, as a resuscitator-was as yet wholly unexplored; but he trusted that we should, before many years, find a solution of this problem.
A Connecticut paper says that a lawyer hung out his shingle in the town of Bethel, in that State, but left after a year, having had only one case, and that was of inflammatory rheumatism. Hard on the lawyer, but creditable to the Bethelists.

Automatically Acting or Rocking Gate. Only when the points of support in a swinging door or gate are in the same perpendicular line, will it remain in any position in the arc of its oscillation on its hinges. If the top hinge be placea to one side of the perpendicular line which passes through the lower hinge, the gate will swing toward that side of the perpendicular. If the top hinge be made movable from side to side of the perpendicular line described, it is obvious that the gate may be made to swing, by its own gravity, either one way or the other, as the hinge is thrust to one side or the other. ing is thus constructing is thus construct
ed, and is also made ed, and is also made
to latch and unlatch itself automatically on the approach o vehicles, opening in the direction of the advancing carriage, and closing automat ically after the ve hicle has passed. This is accom plished by very simple means. The car riage, as it approach riage, as it approaches the gate, passes bridge, A. From a perpendicular rock bar, attached to A, passes a cord, rod, or chain, B,to a lever (not shown) behind a tilting bar, C, pivoted to the hinge post of the gate, which tilting bar which support the gate and on which gate and ons.
The top part of the tilting bar, C, slides back and forth
in a metal guide, D, as it is tilted from

yards those birds that are inclined to set, and which conse
quently take every opportunity of warming the egs in the quently take every opportunity of warming the esgs in the
nests. If any one will attempt to presorve eggs that have been subjected to the hatching process for one or two days he will discover the force of this statement. Kohler, o Germany, who owns an extensive poultry raising establish ment, and who every winter preserves thousands of eggs without ever losing one, has recently published an accoun of his method of proceeding, and has given the following rules for securing favorable results

1. The nest must be placed in a cool position.
. The fowls that show a tendency to set must
the combined merits of simplicity, durability, effectiveness and cheapness, as will be seen from the following description and an inspection of the engraving in which a section of the stop is shown
A represents the pedestal to be attached to the washboard by the screw, B. This pedestal can be made from wood, brass iron, or porcelain, in plain or ornamental forms, the gimlet pointed wood screw, B, being permanently attached. The rub ber cushion, C , is to be attached to the door by a screw, D. It will be seen that the contraction of this rubber cushion when entering the cup-shaped cavity in the end of the pedestal, and entering the cup-shaped cavity in the end of the pedestal, and
its natural expansion, after entering, constitutes the catching device. It requires but littledirect push ing to fasten the door, and but littl is held firm agains wind or draft.
The striking of the face of the pedestal against the base of the rubber cushion lessens the concus sion. The simplici ty, cheapness, and usefulness of this in vention recommend it to builders, car enters, and families penters, cost above the ordinary pedestals now in common us being merely nom nal. It requires no skill or special tools for application. In word, it is one of that class of little things by which the public is benefitted cheap ly, and from which the manufacture generally reaps substantial pecunia y reward.
Patented June 27
side to side by the side to side by
In swinging togeth
In swinging together, the gate latches itself. It is unlatched by the wheel of the carriage which, in passing over the bridge, depresses a weighted crank lever, E, which acts to raise the latch through the rod, cord, or chain, F , the bell crank lever, G, and rods which operate the latch.
The gate, as it swings open, strikes against wind guards, I. These are pivoted to the tops of the short posts which support them, and are attached by short chains to the connecting rods, B , as shown; by which means they act to give the gate a start in closing, this being necessary when the action of strong winds opposes the movement of the gate.
It is evident that when, in passing over either bridge, the tilting bar is inclined to swing the gate open, the rocking of the bridge on the other side of the gate will tilt the bar in the other direction, so that the gate will close. It is also evident that no animal can open the gate, nor can it be left open by accident, so long as the working parts are in order. A rider on horseback opens the gate by lifting with his hand the lever, H , which is connected with the latch. When droves of stock are passing through, the gate is held open by a hook on the wind guards.
The gate is easily made, by ordinary workmen, from materials generally at hand; and any ordinary swinging gate is easily altered into one of these rocking gates.
The invention was patented July 12, 1870, and February 7 1871. For further particulars and descriptive catalogues, ad dress J. Madison Cutts, attorney and counsellor at law, cor ner of 7 th and E street, Washington, D. C.

Preserving Eggs.

The subject of the preservation of eggs, says the Boston Journal of Chemistry, has recently attracted a great deal of attention, and many methods of effecting it have been pub lished; though none are altogether perfect, for the simple reason that the true cause of the spoiling of the eggs is either unknown by those who have attempted to furnish us with directions, or has been lost sight of by them. There are two efficient causes for the spoiling of eggs, and unless one or both of these are avoided, we cannot hope for success. The first is exposure to a high temperature, and the other is access of air. It may be safely affirmed that at temperatures below 32° Fahr. nearly all change ceases in organic bodies while very few organic substances will bear continual exposure to a temperature above 90°. The freezing point is rather too low for the preservation of eggs in good condition, as freezing affects the flavor unfavorably; but, if we desire to preserve eggs in the best manner, we must keep them coolsay at a temperature below 50 , if possible, a temperature which is frequently maintained in good cellars. But it will be of no use to place the eggs in a cool cellar if they have been previously exposed for hours to a temperature of ove 90°.
The collection of the eggs must, therefore, in the first place, engage our attention. Those who raise poultry, and especially those who keep fowls for the sake of their eggs,
commit a great error when they fail to remove from their
lefthed in separate inclosures until this propen sity has left them
3. If many hens be confined in the same inclosure, or use解 4. The eggs ought several times a day.
preserved in boxes with be assorted according to age, and These boxes must be kept in a cool airy partially open place.
5. At the commencement of winter, the store of eggs is placed in some room that is not heated by fire, but that is, at the same time, thoroughly protected from frost
6. The packages should be so arranged that the oldest may e used first.
Eggs treated according to these rules do not acquire the peculiar taste which is generally the result of the recipes in ogue for preserving eggs.

WENDELL'S COMBINED DOOR BUFFER AND DOOR FASTENER.
The object of this simple device is to act as a buffer i reventing door knobs from striking the wall when doors ar

hrown open, and at the same time to keep the doors in the open position when so desired. The objection to devices now in use, for overcoming the concussion in throwing the door against the washboard pedestal, is the rebound they gire the door, throwing it away from the position designed for it. To obviate this, several devices have been brought out, consist ing of springs, ratchets, catches, etc., most of which hav been proved too intricate and expensive for the purpose. The door buffer and fastener in the annexed illustration ha
formation addre
Phladelphia, Pa .

Recent Progress in Chemistry

I wonder what Sir Humphry Davy would have said to n. one who talked about stellar chemistry. That great man, in idiculing the idea of lighting London with gas, triumph antly asked the fanatics who proposed such a wild scheme whether the dome of St. Paul's was to be the gasometer Yer we cannot imagine Regent street illuminated, or rather da:kened, with dips again, and to us stellar chemistry has a eal meaning. Who will venture to bound a science which reaches far a way through space, and with unerring accuracy tel.s us the composition of distant worlds and distant suns? What can be more humiliating to our small intelligences than the reflection that a distant star will photograph its spectrum on $\%$ sensitive surface with the ray of light that left it when the oldest man in this room was a boy? What would the grent father of British chemistry have said, had he stood in thel lecture room of the Royal Institution, where his great discoveries were made, and seen the burning hydrogen ex tracted by our great countryman Graham, from a meteorite, the heat and light of another world: or could he look with Lockyer on the burning flames of hydrogen, which dart up from the sun to a hight of 50,000 miles, or could he read the flashing telegrams which run so rapidly round our world, that all our notions of time are completely upset, and we actually receive intelligence today which was sent tomorrow? (Excuse the apparent absurdity; it only shows how powerless language is to keep up with human progress.) Had he lived with us, he would have seen a large city dependent entirely for its communication with the outer world by a marvellous kind of photography, so minute that it enabled a pigeon to carry a proof sheet of the Times under its wing.-E.C. ©. Stanford.
The increasing use of bromide of potassium, another of chemistry's contributions, would have been impossible, were it not for the extraordinary discovery of an apparently evaporated sea water bed in Germany. The amoun $\grave{0}$ of bromide consumed in medicine is now enormous, and most of it is derived from this source. The same mines have also completely changed our sources of potash; they produce far more than all the other sources of England and France put together, and have so reduced the price that carbonate of potash is now largely made in this country at a price which competes most favorably with American pearlash, and will ultimately drive it out of the market. Bromide of potassium is an instance of a substance long used in medicine before its valuable properties were discovered.-E.C.C. Stanford.

Ir is stated that a little girl in Philadelphia died a few days ago from hydrophobia taken by biting off a thread after mending a rent in her dress which her dog had torn with his teeth in play. She had the disease in its most frightful and distressing form. This is probably a case of idiopathic tetanus or lock jaw, the symptoms of which of ten simulate to some extent those of hydrophobia,

Srimutifir Gmarican.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PARK ROW (PARK BUILDING) NEW YORK. o. D. munn.

O. D. Munt
 "The American News Co.,", Agents. 1121 Nassau street. Ne "The New York News Co.,"" 8 Spruce street, New York. A. Asher \& Co., 20 Unter den Linden, Berlin, Prussia, are Agents the German States.

VOL. XXV., NO. 26 .. [New Series.] . . Tioenty-sixth Year.
NEW YORK, SATURDAY, DECEMBER 23, 1871.

CLOSE OF THE TWENTY-SIXTH YEAR OF THE THE TWENTY-SIXTH YE
SCIENTIFIC AMERICAN.

Our readers will pardon us if we display in this article the natural gratification we feel in the continual and increasing prosperity of the Scientific American. This number closes its twenty-sixth year of existence. So long a connec closes its twenty-sixth year of existence. So long a connec-
tion with of a single paper as we have had almost identifies it with our daily existence. The pride we feel in it redounds to the good of our readers, for our ambition will never consent to see our journal deteriorate either in quantity or in quality of matter.
Our editorial labors during the past six months have been arduous. These months have not been prolific in discoveries or inventions of such a nature as to furnish fertile subjects for discussion or numerous items of interest. Yet, we have, we think, succeeded in rendering our paper even more interesting and profitable than in preceding volumes. We have full evidence of this in the steady healthy growth of our subscription list, in the encouragement constantly received from correspondents, and in the increasing patronage in every department of our business.
The conviction we feel that our paper exerts one of the most important educating influences in the world, and tha its record may be scrutinized in vain to find in it anything that has not been salutary to mental and moral progress,
gives us courage to urge upon all to help us in widening its gives us courage to urge upon all to help us in widening its circle of readers. We are not content to have the largest
circulation of any paper of the kind now published. We wish to reach others who have not as yet learned, by long perusal, the real value of such a publication.
You, Old Friend, whose long acquaintance with its merits has deepened your respect and regard for the Scientific American, and who feel and write that you have been our patron for more than a quarter of a century and would not be without the paper if obliged to dispense with one meal a day, say those kind words not to us only, but tell the same thing to your neighbor and shop mate. Tell him to send for a copy if he wants one to see how he likes it, and induce him to try it for six months or a year. When the Sci entific American visits a house for six months, it generally finds a permanent home there.
As will be seen by our prospectus, we offer special induce ments to those who aid us in getting new subscribers.
We have no solicitude about the old patrons renewing we simply ask that they will do so promptly that we may not miscalculate the quantity of paper to print at the commencing of the volume.

THE GREAT EXHIBITION AT VIENNA, 1873

We published, on October 28th of the present year, the announcement of the appointment, by the Emperor of Aus tria, of a commission to arrange for holding an international
exhibition at Vienna, in 1873 ; and on November 18th our readers were given some further information on the subject and some suggestions, for organizing a proper representation of American genius and industry, based on our experience gathered in Paris, London, and elsewhere. The Austrian scheme is gradually getting into shape, the form and dimen sions of the building having been decided upon. A building 3,000 feet in length and 660 in width is to be erected; this structure will be crowned with a cupola, about 330 feet in diameter. This will lee finished by October 1, 1872. A separate building will be provided for exhibiting machinery in motion, and another for the works of art. The novel features in the arrangements have been submitted by us to public approval, and it now remains for the manufacturers, inven tors, and scientists of the United States to decide upon their course of action.

Constructors and patentees who have introduced their in entions in European countries have suffered grievous illtreatment at the hands of the Austrian authorities, whose regulations on the subject of patents are, to say the least, regulations on the subject of patents are, to say the least, and ingenuity. One most vexatious rule is that which invaland ingenuity. One most vexatious rule is that which inval-
idates a patent unless the article be manufactured in the idates a patent unless the article be manufactured in the
realm, within twelve months from the date of issue. Now as patents are, in a measure, characterized by the locality in which they take rise, and are generally most economically worked in the country in which they originate, it is almost equivalent to prohibition to enact that the locomotive engines of Great Britain, the telegraph instruments of the United States,and the printed muslins of France shall be manufactured on Austrian soil within a year from securing the patent, and is a prepostercus requirement, which ill comports with our liberal system of granting patents to their subjects. But worse remains to be told. An American gentleman, having a manufactory at Vienna, was enabled to comply with this obnoxious rule; but he recently had a taste of Auswith this obnoxious rule; but he recently had a taste of Aus-
trian legal administration. He had obtained a patent and trian legal administration. He had obtained a patent and commenced the manufacture of the article almost simulta-
neously; and two trustworthy and credible witnesses were produced to prove this fact, but the officials deemed their affidavits insufficient, and the manufacturer has been sum moned before a court of justice to prove the introduction. Such hindrance of the rights of foreigners gives rise to an uncomfortable suspicion that the value of Austrian patents, issued to Americans and other foreigners, can be easily escheated to the benefit of the Austrian public. The inventor in question even goes farther, and intimates that his production, being used by the Imperial government, was specially and purposely hindered from its proper protection, that the authorities might more readily convey it to their own use authorities might more readily
without reward to the patentee.
Under such laws, it would be well for the Austrians to consider whether their invitation to the nations is not likely to meet with a contumelious refusal. Here, as elsewhere, experience is valuable, and we remember that when we sent to Europe in 1851, 1855, 1862 and 1867, we took our inven tions and processes to an open market. Neither in London nor in Paris was there any room for suspicion that our specimen machines and productions were there for Europeans to avail themselves of, the American being allowed a courteous protection of his invention while the exhibition lasted; bu The result of this most erroneous and destructive policy will easily be foreseen.

LYCEUM OF NATURAL HISTORY---DISCUSSION ON MILK and DISINFECTANTS.

At the meeting of the chemical section of the Lyceum of Natural History, on Monday evening, December 11, two im portant papers were read, one on " Milk," by Dr. Schweitzer Assistant Professor in the School of Mines of Columbia Col lege, and the other on "Disinfectants," by Dr. Endemann Assistant Chemist to the Board of Health.
Dr. Schweitzer has had occasion to analyse a very large number of specimens of milk, gathered by the sanitary inspectors of the Board of Health, and it was a satisfaction to hear him say that he had never found any other adultera tion than water. The popular impression, that chalk, calves brains, and simiiar unappetizing impurities are added by milk dealers, appears to be erroneous. The chief results obtained by Dr. Schweitzer were as follows: Normal milk has the specific gravity of $1 \cdot 029$, and contains from $12 \frac{1}{2}$ to 13 per cent
afforded:

The best specimens of condensed milk gave wor 0.79 butter, $13 \cdot 12$; casein, $14 \cdot 44$; sugar, $16 \cdot 30$; ash, $2 \cdot 60$. In the preparation of the condensed milk, 430 quarts were con densed to 100 , and the solid constituents increased from $12 \cdot 55$ to 46.46 per cent. These results appeared to warrant th uspicion that 378 quarts had been reduced to 100 ; but by making the correction, called for by the fact that the quar made by weight, the company were found to have actually tarted with 430 quarts to make 100 of the condensed articl The ashes of milk are rich in phosphates and alkalies.
Dr. Schweitzer has added largely to our knowledge of the composition of milk, and it is to be hoped that his valuable paper will be published in full, in some technical journal Dr. Endemann, at the request of numerous members of the Lyceum, gave a sketch of experiments tried with various di infectants, under the direction of the Board of Health, taking them up in the following order:

1. Metropolitan disinfecting fluid. This famous disinfec tant is composed of 90 per cent of a saturated solution of sesquichloride of iron, and 10 per cent of carbolic acid. If it be entirely neutral, its operation is quite effective; but the hief difficulty encountered with it was in its acid character which destroyed articles brought in contact with it, and often 2. Girondind gases.
2. Girondin disinfecting fluid is composed of zinc and cop per salts, and can only be obtained on a large scale in coun tries where these salts are the incidental products in exten sive chemical manufactures.
3. Chloralum had been subjected to a thorough trial, and found wanting. It is essentially composed of the hydrated to liberate sulphuretted hydrogen instead of fixing it.
4. Bromo-chloralum is the preceding with a little bromine added to it; but as this bromine is in combination with alkaline bases, it is of no effect, and the disinfectant wa found to be 'no better than it should be. The fact was brought out that forty years ago, M. Gannal, in France, proposed chloride of aluminum for the embalming of bodies, but did not seem to find acceptance, and was forgotten until Mr. Gamgee recently revived it for the preservation of meat. It appears to have disappointed the expectation that were raised in reference to it; and also as a disinfectant and antiseptic its value has been overrated.
5. Egyptian powder was declared to be only a little less disgusting than the bad odor it was intended to disinfect The remedy was worse than the disease. It appears to be essentially clay, mixed with a few per cent of the carbolic acid contained in refuse tarry liquids, and was said to have decidedly disagreeable smell
6. Dry earth and peat. Dr. Endemann gave us the result of his experience, that for the disinfecting of night soil, there was nothing so valuable as dry earth and peat. Other disin fectants poisoned the rich soil and destroyed vegetation, but the simple earth prevented the growth of germs, and thus stopped the spread of disease and added to the growth of plants. We cannot dispense with disinfectants and antiseptics on all occasions, but there are many instances where dry earth could be more effective, while it is cheaper and mor asily handled.
Professor Joy confirmed the observations of Dr. Endemann, and stated that he had tried the earth closet system for two ears, and was convinced that it was destined to supersed all other methods of getting rid of the fecal matters, both in he city and in the country. He believed that it was bette to stop the cause of disease at the outset, rather than to scat ter it broadcast through our water closets and open privies, and then to try to prevent its further spread by the use of costly chemicals. The open country privy and the city wate closet were declared to be the very hot bed for the germina tion of the worst forms of disease; and the sooner both are abolished the better for the welfare of the community. The sbes of hard coal, which the scavengers carry in enormous quantities from every house in the city, can be used as a sub titute for dry earth. It is only necessary to run this thyough a tolerably fine seive, and to use it in the commode, and afte use, to pass it into the garbage barrel, to be carried away in he carts.
All that any family requires is a hopper shaped reservoir for holding the sifted ashes, a galvanized iron hod, and a pull up similar to that which is provided in water closets. It is easy enough to try the experiment, as commodes of differen patterns are now kept on sale. Such a use of fine coal cin ders would be very valuable; and the material thus obtained from private houses would be highly prized by farmers. If he Board of Health would go to work energetically in this matter, they could do good work in introducing a much need d reform. We cannot expect to go on forever contaminatin the rivers and bays with the contents of our sewers. A stop must be put to it some time, and the sooner the better. Who will put the earth closet system into such a practical shape as to drive water closets out of our city houses and banish he unsightly temples from country houses? We trust that the time is not far distant when this result will be accom plished.

THE MYSTERIES OF FLIGHT.

Perhaps in the whole range of animated nature there is no greater mechanical mystery than the flight of birds. We publish in this issue a well authenticated account of a most remarkable flight of some carrier pigeons, one flying at a rate of 196 miles per hour through a distance of 1,004 miles and another, 202 miles an hour for a distance of 1,596 miles The article referred to gives accounts of other remarkable flights which, as we do not deem them well attested, we shall not further refer to at this time.
The power necessary to propel a pigeon 200 miles per hour proves, upon computation, to be something astonishing. The shape of one of these birds is almost perfectly adapted o reduce cross-section resistance to a minimum; but we hink we shall be considered as entirely within bounds when we assume that such resistance would be as great as that xerted upon one half a square inch of flat surface. The pressure upon this surface moving through air of ordinary density at the rate of one mile per hour is, according to Smeaton, 0.000017 of one pound. Though the air, at the hight at which pigeons fly, has less than the ordinary density close to the earth's surface, its rarity tells as much against the action of wings as it lessens resistance to advance, and
may, therefore, be neglected in the computation. At a velocity of 200 miles per hour the resistance of air upon one half a square inch of flat surface would be 40,000 times that at a speed of one mile per hour, or 0.68 of a pound. The bird to fly three and a third miles per minute would, therefore, be be obliged to overcome 11,968 foot pounds per minute, or to exert a force of over one third of a horse power.
It is impossible to believe this can have been the case with the pigeons in question. We are rather inclined to believe that they availed themselves of the aid afforded by air currents flowing in the direction of their flight. Though the wind might appear blowing against them when released, it is well known that at different altitudes currents of air may be rapidly flowing in opposite directions, and thus we have good ground for our supposition.
We last week commenced the publication of an article, which is concluded in our present number, entitled "Notes on Flyi ".g and Flying Machines," which contains much inter esting information. Mention is made therein of many kinds of bird and insects; but we believe that the flight of sea
gulls affords a more useful study than can be obtained from the movements of any other bird of equal strength of wing, on account of the fearlesness with which they approach the observer. We think no one can watch the evolutions of these birds without conceding that we are far from having solved the mystery of flight. Taking into account their weight, it is impossible to conceive their power, to float in air and to sail against a strong current of wind, as due to the slow and easy movements of their wings. We have watched these birds daily for months together, and we are wholly at a loss to account for their ability to sustain themselves with so small an effort as they appear to exert. The most rapid movement of their wings appears to be made when they poise themselves in air without advance or re treat. When sailing either with or against the wind, they seem to need but little power to propel them. This pecularity may be noticed in all the biräs which can sail slowly through the air, like the eagle, hawk, etc. The swallow, which skims like an arrow, moves its wings, which are large in proportion to its size, with great rapidity. The stroke of the pigeon is also swift and strong. The wings of the wild goose scarcely move more than one hundred and twenty times per minute, yet they are small in proportion to the weight of the bird, which is often from ten to thirteen pounds.
Standing with a glass on some high peak, one may see, in certain localities and seasons, flock after flock of wild geese traversing the sky from horizon to loorizon with steady and uniform stroke, and probably passing thirty or forty miles from the time they are first discovered till they disappear in the distance. Now let the curious reader calculate the power necessary to sustain a body weighing ten pounds, by one hundred and twenty successive and uniform impulses per minute, without taking into account cross section resistance to advance, and he will begin to appreciate the mystery of flight.
It is because this mystery exists that the problem of human flight through the aid of machinery is still unsolved. As soon as we know the mechanical principles of flight, we shall have some ground for judging its possibility or impos sibility to " birds without feathers."

SCIENCE RECORD FOR 1872.

We have in press, to be issued January 1st, a new and valuable book of 350 pages octavo, entitled as above, which, we think, will be read everywhere with interest. It will be compendium of scientific progress of the present year, and is to be profusely illustrated with steel plate and wood engravings.
The following is a partial outline of the general contents of the Science Record:
Notices and descriptions of the leading discoveries and improvements invented or introduced during the present year, pertaining to Engineering, Mechanics, Chemistry, Philosophy, Natural History, Agriculture, Architecture, Domestic Economy, and the various Arts and Sciences, with many engravings. Biographical notices of prominent men of science, with portraits.
Descriptions of the most important public works, began or completed during the year, with illustrations.
Notes of the progress and extension of railways, telegraphs, and other means of communication.
Descriptions of the new applications of steam, electricity, and other motive powers, with engravings.
Almanac for the year, and a chronological table of notable cientiflc events and phenomena
Reports of Patent Office proceedings. Classification of inventions at the Patent Office, with the names of all exam iners, officials and employees.
Portrait and biographical sketch of the Hon. M. D. Leg. gett, Commissioner of Patents.
Description of that great engineering work, the Mount Cenis Tunnel through the Alps, with engravings of the tunneling machinery, portraits of the chief engineers of the work, and other illustrations.
Description of the great Government works at Hell Gaté, New York, with many illustrations, showing the wonderful galleries now being cut in the rocks under the bed of the East River, preparatory to removal of these obstructions by explosion, the drilling machinery, the electric apparatus, and ther interesting objects.
Description of the great Suspension Bridge between New York and Brooklyn, now in process of erection, with inter esting engravings.
Steel plate engravings of the celebrated Gatling Gun or Mitrailleur, showing its construction and use in various forms, upon wheels, horseback, camels, boats, etc.
Illustrations of recent improvements in cannon, fire arms, etc.
Recent applications of science to the construction of steam and sailing vessels, with illustrations.
Reports of the important law trials, and decisions pertaining to inventions and scientific matters.
Proceedings of scientific bodies, with notes of interesting

papers.

Illustrations of late improvements in all the leading bepartments of mechanics and science
Useful tables and practical recipes pertaining to the principal branches of industry
The whole forming a convenient and popular Science ReCORD of the present year, of permanent value and importance necessary for reference and interesting to everybody. It should have a place in every library
350 pages octavo. Handsomely bound. Price $\$ 1.50$. Extra binding, half calf, $\$ 2$. Sent post free on receipt of the
price. Published by Munn \& Co., 37 Park Row, N. Y. Of e of the Scientific Americin.
One copy of the Scientific American for one year and a copy of the Science Record, $\$ 4$

TO CITY SUBSCRIBERS

The Scientific American will hereafter be served to our ity subscribers, either at their residences or places of busi ness, at $\$ 3 \cdot 50$ a year, through the post office by mail carriers The newsdealers throughout this city, Brooklyn, Jersey City, and Hoboken keep the Scientific American on sale, and supply subscribers regularly. Many prefer to receive their papers of dealers in their neighborhood. We recommend persons io patronize the local dealers if they wish the Scien tific American or any other paper or magazine.

TIMELY SUGGESTIONS.

Agents who receive their weekly supply of the Scienfic American through news companies are urged to can vass their localities. By a little effort among intelligent mechanics and manufacturers, they cap add largely to their lists. We will send specimen numbers, when desired, for hat purpose.
What more valuable present can be made to young me anics than a year's subscription to the Scientific Ameri an? Employers will be doing their employés a great ser ice by acting on this hint, and we feel sure that at the en f the year they will consider the investment a good one.

Subscribers who wish to have their volumes bound can send them to this office. The charge for binding is $\$ 1.50$ pe volume. The amount should be remitted with the numbers and the volumes will be sent as soon as they are bound.

Every Employer should present his workmen and appren tices with a subscription to the Scientific American for the coming year.

Every Mechanic and Artisan whose employer does not take the Scientific American should solicit him to subscribe for 1872.
Now is the Time for old subscribers, whose subscription xpire with the year, to renew.
Now is the Time for new subscribers to send $\$ 3$ and com mence with the new year.
Now is the Time for forming clubs for the new year.
It will pay any one to invest $\$ 3$ for himself, his sons, or his workmen, for one year's subscription to the Scientific American.
It is easy for any one to get ten subscribers at $\$ 2.50$ each and for his trouble obtain the splendid large steel plate en graving, worth $\$ 10$.
It is easy for any old subscriber to get a new one to join in taking the paper. Those who do will receive a bound vol ume of the "Science Record" for 1872. See description of this work on page 353, Scientific American, issue o December 2d.

It is no more trouble to remit $\$ 6$ for two subscribers than $\$ 3$ for one.
If any mechanic whom you ask to subscribe says he can not afford it, tell him he cannot afford not to.
If any one wishes specimens of the paper to examine be fore subscribing, tell him to write to the publishers and they will cheerfully mail them.
If any one wishes an illuminated Calendar for 1872 , to hang in his office or shop, he can have it sent free on sending request to this office.

If handsome illustrated posters and prospectuses are wanted to assist in obtaining subscribers, send to the pub lishers of this paper

It is the intention of the publishers of the Scientific American to make the paper next year better and handsome than any previous year during the last quarter century it has been published
It is the intention of the publishers to illustrate, by su perb engravings, all rew and practical inventions and discov es that may be developed during the year.

For Prospectus and terms to Clubs see last page.

PATENTS

American and European.
MUNN \& CO. continue to give opinions in regard to the Novelty of In ventions, free of charge; make special Examinations at the Patent office prepare specincallons, Drawings, Caveats, and Assignments; and prosecut tries. They give special attention to the prosecution of Rejected Claim Appeals, Extensions, and Interferences.
Pamphlet of the New Patent Law for 1870 furnished free. Address
MUNN \& CO..
37 Park Row, N. Y.

APPLICATIONS FOR EXTENSION OF PATENTS. Fon, D. C., has petitioned for an extension of the above patent. Day of caring, February 28,1872
Raising dough.-James Perry, Brooklyn, N.Y., and Joseph C. Fuller Orange, N. J., executor of Elisha Fitzgerald, deceased, have petitione
an extension of the above patent. Day of hearing, February $21,1872$.

Examples for the Ladies.

Mrs. Governor Branch, Enfield, N. C., has used a Wheeler \& Wilso achine siuce 1857 without the slightest repair, and it is now as good as whe new; during the war it stitched country homespun for over 100 negroes.
"Burnett's Cologne Water is preferred to the German by the fash
on."-Home Journal.
Flace, New York.

Wusiness and foxnmal

The Charge for Insertion under this head is One Loildar a Line. If the Notice he paper that meets the eye of manufacturers throughou the United States-Boston Bulletin. 8400 a year. Advertisements 17c. a line hard \& Howe's machinery oils, the best-try them-134 Maiden Lane, New York.
Rubber Valves-Finest quality, cut at once for delivery ; or moulded to order.
Place, New York.
Smith's Patent Time Keeper and Compass, will be sent any where, by directing 75c. to D.L. Smith, Waterbury, Conn. Agents wanted Engineering and Scientific Books. Catalogues mailed free E F H Spon, 446 Broome St, New Yo Patents wanted (send for circular). Also, reliable, energetic State Agents. Call, or address, Inventors Co-operative Manufacturin
Self-acting Patent Horse Holder (For Sale, State Rights, or make on royalty); very simple. Can be attached to all kinds of vehicles,
Sleighs, \&c. Send for circular. Abm. Quinn, 280 Marcy Avenue, BrookSleighs, \&c. Send for circular. Abm. Quinn, 280 Marcy A venue, Brook yn, l. I
Francis Schleicher,Consulting,Analytical and Man'fg Chemist Laboratory,Newark St., bet.Jackson and Harrison. Box 172. Hoboken,N... Wanted, a Second Hand Boring Mill-6 ft. to 7 ft . TableBement or Sellers make preferred. Address P. O. Box 2459, Phila., Pa. For Hydraulic Jacks and Presses, New or Second Hand, send for circular to E. Lyon, 470 Grand Street, New York.
Williamson's Road Steamerand Steam Plow, with Thomson's Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A 6 foot cross cut and buck saw,
For Hand Fire Engines , address Rumsey \&Co.,Seneca Falls,N.Y Over 800 different style Pumps for Tanners, Paper Makers Fire Purposes, etc. Send for Catalogue. Rumsey \& Co.,Seneca, Falls, N. Y Scale in Steam Boilers-To remove or prevent scale, use Al len's Patent Anti Lamina. In use over Five Years. J. J. Allen, 4 Sout len's Patent Anti Lamina. In use
Delaware Avenue, Philadelphia, Pa.
Presents-A Doty Washing Machine and Universal Clothe Wringer-warranted satisfactory. R. C. Browning, 32 Cortlandt St., N.Y mproved Mode of Graining Wood, pat. July 5, '70, by J. J. Cal low, of Cleveland, 0 ., enabling inexperienced grainers ("without the lon requircaswa Graing with and facility, Send stamp for circular. Hydrau ic Presses for sale on reasonable terms. Apply to Whitneyville Armory Con
Metallic Molding Letters, for Pattern Makers to put on pat terns of Castings, all sizes, etc. H. W. Knight, Seneca Falls, N.
Portable Farm Engines, new and beautiful design, mounted on Springs. Compact, light, and efficient. Send for descriptive circula on Springs. Compact, light,
Mansfield Machine Works, Mansfeld, Ohio
StencilTools \& Steel Letters. J.C.Hilton, 66W.Lake st.Chicago Taft's Portable Hot Air Vapor and Shower Bathing Apparatus Adress Portable Bath Co. Sar Harbor, N.Y. Send for Circular
Shoe Peg Machinery. Address A. Gauntt, Chagrin Fall, Ohio Builder's Scaffold—Patent for Sale-For further particulars, address Redick \& Kunkle, Butler. 0
For Steam Fire Engines, address P. J. Gould, Newark, N. J Turkey Boxwood pieces for Sale, suitable for engravers and tancy turners' use. Address Stepheus \& Co., Riverton, Conn
all kinds of Presses and Dies. Bliss \& Williams, successor to Mays \& Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogue. The best lubricating oil in the world is Winter pressed Spermt. Sold in bottles, cans, and barrels, by Wm. F. Nye, New Bedford, Mass. Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss. 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y.
Over 1,000 Tanners, Paper-makers, Contractors, $\mathscr{L c}$., use the Pumps of Heald, Sisco \& Co. See advertisement.
or Solid Wrought-iron Beams, etc., see advertisement. Ad ress Unon Iron Mills, Pittsburgh. Pa., for lithograph, etc.
Mining, Wrecking, Pumping, Drainage, or Irrigating Machin , Foot lanes, Many a reader of proved Foot Lathe this paper has one of them. Selling in ald parts or the cound
Europe, etc. Catalogue free. N. H. Baldwin. Laconia, N. H. afety Store Elevators. Provision against Rope, Bolt, and Engine breaking. One third the cost of others claiming to be safe. An Engine breaking. One third the cost or
drews Bro., 414 Water Street, New York.
Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct. Vertical Engines-Simple, Durable, Compact. Excel in economy of fuel and repair. All sizes made by the Gr Killstone Dressing Diamond Machine
, du rable. For description of the above see Scientific American, Nov. 27 th To Ascertain where there will be a demand for new Machin ery, mechanics, or manufacturers'supplies, see Manofacturing News of ery, mechanics, or manufacturers' supples, see
United States in Boston Commercial Bulletin. Terms $\$ 4.00$ a year

Auswers to correspondents.

PECIAL NOTE. 7 This column is designed or the general interest and in. struction of our readers, not for gratuitous repliss to questions of a purely
business or personal nature. We will publish such inquires, however when paid for as advertisements at $1 \cdot 00$ a line, under the head of \cdots Business and Personal "
T. B., of Pa.-We have not the address of manufacturers or

Carbon Plates for Battery.-Gas carbon is rather a hard material to work. There are various ways of making plates for batteries of it. For an amateur, it has been recommended to cut it with a tenon
saw. It will cost some elbow grease, but perseverance will give you suc-

Expansion of Belt.-I think, in the dispute between A and B, A is decidedly wrong in his opiaion about belts being tighter in
wet weather than in dry; and I can convince him that it is not so. At the late South Carolina State Fair, the belts that drove the cotton gins were run from two engines on the outside of the building, and I noticed that the other days that were clear. This, I think, is proof enough.-E. o. McC., of S. C.

Canker in Mouth.-I notice that, in reply to F. S. C., a cor respondent recommends the nse of muriated tincture of iron as a mouth for a few months, he will ruin his teeth, and willinjure them if he uses it for any time. He will find a solution of chlorate of potash-two drams to two ounces of
Twin Boilers.-To H. P. S.: The trouble with your boilers is in the connections on top. From what you say you have no steam dome on either boiler, which is undoubtedly the cause of all your trouble. Pu
on a dome of fifteen or ei ,hteen inches diameter, running to the center of each boiler; connect it by not less than a four inch pipe to each boiler. Then take your steam from the center of the dome, where you will connect your safety valve, and your trouble is over, if the mud drum is clear.-W. J. w.
Grape Juice.-In answer to query 4, No. 23, I would say that if the grape juice be from cultivated varieties of grape, the way to kind, and to draw it off clear in the spring, when it will be a pure and rapes, and, as is usual in that case, very astringent and deficient in sugar let M. T. M. add to it equal parts of water, and to each gallon of the mixture two or three pounds of white sugar. Both formulas make good wine taste.-D. L.
Curious Freak of Twin Boilers.-Let me say that the trouble can all be got rid of by making the steam pipe, connecting the at the water line with a 4 inch pipe. This allows the water to maintain its level regardless of unequal firing. The trouble is caused by the smal connecting pipe; as two pounds pressure will raise water four feet high
by firing heavily under one boiler you can fill the other full to the safety valve. There is no trouble of this kind where large connections are used even with fourboilersconnected together, B , of
Suction Pump.-In answer to M. W. Q., of Mo.: He is very much mistaken when he says "ten feet horizontal is equal to one foot per pendicular." I can show him a pump on the Chicago and Alton Railroad
at Shipman (now working and has been for seven years) that draws water 30 feet horizontally and 16 feet perpendicularly, and works well.-J. M.
 ISSUED BY TEE 0. S. EATENT OFFICE. For the week ending December $12,1871$.

Remorted Offcially for OF HATENT FEES:

On each Cave On each Trad
 On each Caveat

On appeal to commissioner
On application for Reisue.
On application for
On artension
On mantinin the Extension

121,701.-Sash Supporter.-W. H. Brown, Bangor, Me
121,709.-Toy Engine.-A. Buckman, Brooklyn, N. Y.
121,703.-Door Plate.-W. A. Caron, Springfield, Mass, 121,703.-Door Plate.- W. . A. Caron, Springfield, Mass, 121,704.-Halter.-J. Carpenter, Wilmington. O.
121,705-Mower-D. D. H.Chamberlain, W est Roxbury, Mass 121,707.-A AGER.-W. A. Clark, Woodbridge, Conn. 121,708.-Flour BolT. - J. C. Ceokson, Lancaster, Pa.
121,709.-GuARD.-W. Darrah, J. Cutshall, Coshocton, o 121,709.-GUARD.-W. Darrah, J. Cutshall, Coshocton, O.
121,710.-Safe.-J. Farrel, New York city. 121,710.-SAFE.-J. Farrel, New York city
121,711.-Bolt.-J. Farrel, J. Weimar, Ne 121,712.-Canal Boat.-H. Fowler, Washington, D. C 121,713.-Canal Boat.-H. Fowler, Washington, D. C 121,714.-Canal Boat.-H. Fowler, Washington, D. C $121,7116 .-$ Hydrant.-P. A. Griffin, Albany, N. Y.
$121,71 \%$ FIRE Alarm.-E. A. Hill, Chicago, Ill. 121,718.-Bottle Wrapper.- W.A.Hinman, New York city 121,719--Mixing Gases.-T. C. Hopper, Philadelphia, Pa. 121,720-—Pressing Cloth.-P. Howe, Boston, Mass 121, 121,722.-Dryer.-G. A. Keene, Lynn, Mass.
121,724.-Locking Nuts.-J. Maitland, Newburg, 0
121,725.-LINk.-J. H. McIntire, Crestline, O
121,726.-FASTENING.-W. H. McPherson, Nashville, Tenn 121,727.-Pressing Skins. N.D.Morey,Saratoga Springs,N.Y 121,728.-Bed Bоттом.-E. P. Read, Chicago, Ill.
121,730.--STRREING MECHANISM.-C. W. Roberts,Chicago,IIl 121,731.-CATTLE PUMP-G. B. Roe, Ogie Co., Ill 121,732.-RAIL--R. S. Sanborn, Rockford, IIl.'
121,733.-Grate.-W. Sanford, Brooklyn, N. Y 121,733.-Grate.-W. Sanford, Brooklyn, N. Y 121,735.-Hinge Joint.-N. Thompson, Brooklyn, N. Y. 121,736.-Mold-N. Thompson, Brookly n, N. Y
121,737.-DITCHER.-J. Valentine, Buff 1), N. Y.
121,7738.-VITCHER.-J. Valentine, Buffe 1), N. Y
121,739.-Thrasher.-R. S. Williams, Norristown, Pa. 121,740.-Horse Power.-A. Wissler, Brunersville, J. Gam 121,741.-Stove.-H. Zahn, Philadelphia, Pa.
121,742.-Bird Cage Perch.-E. Aldom, New York city. 121,744--Oiler.-J. F. Allen, Mott Haven, N. Y.
121,745.-Motive Power.-H. S. Barnes, Augusta, Wis.
 121,748.-STEAEM King Hest Troy

 121,754.-DASAFT Cock.-W.P. Clark, Med ord, Mass.

121,756.-Bale Tie.-M. N. Coe, Madison, La.
121,757.-Shoe Fastening.-F. Coeller, New Haven, Conn 121,757.-Shoe Fastening.-F. Coeller, New Ha
121,760.-REsT.-M. Craven Dedham Mass
121,761.-WEIIP Cover.-V. W. Crowson, Westfield, Mass. 121,762.-Furnace--H. Davies, Newport, Ky.
121,763.-TONGG.-S. T. Dickinson, Jr., Belvide
121,763.-Tongs.-S. T. Dickinson, Jr., Belvidere, N. J 121,764.-SICreen.-E. Duffee, Haverhill, Mass.
121,766.-TTool Holder.-E.F.Edgecomb,Mechanic's Falls,Me 121,767.-BAGATELLE, Etc.-W.-W.Evers, San Francisco, Cal. $121,7688-$ Key Boando-C. Fogelberg, Boston, Mass.
121,769.-LATCH, ETc.-V. Frazee, San Francisco, Cal 121,769.-- I atch, etc.-V. Frazee, San Francisco, Ca
121,770.-Boiler.-B. French, Rochester, N. Y. 121,770.-Boller.-B. French, Rochester, N. Y.
121,771.-Hydrant.-J. Fricker, Cincinnati, Ohio. 121,771.-Hydrant.- Brake.-J. A. Gerhart, Easton, Pa.
11,773.-Stone Saw.-H. S. Gillette, New Preston, Conn. $121,775 .-C O R D E R .-H$. C. Goodrich, Chicago, Ill. 121,776.-Rope Way.-A. S. Hallidie, San Francisco, Cal. 121,777.--HAY LOADER.-H. W. Hamilton, Brandon, Vt. 121,778.-Keyboard Instrument.E.Hamlin,Winchester, M 121,779.-Lubricator.-J. Harper, New Haven, Conn. 121,781.-Belt Fastener.-J. W. Hicks, Laurel, Md. 121,782.-Time Lock.-S. W. Hollen, Cincinnati, Ohio 121,783.-MINER's SQUIB.-J. Holmes, St. Clair, Pa.
121,784.-HARVESTER.-H. L. Hopkins, Eaton, N. Y.
121,785.-SASH Holder.-T.R.\& W.L.Hubbard, Brooklyn, N. Y 121,786.-Lid Support.-G. H. Johnson, F. Botiner, Bridg 121,787.-SoAP.--W. Johnson, New York city. 121,788.- Match Box.-A. D. Judd, New Haven, Conn 121,789.-Pitman.-A. Ketchum, Estherville, Iowa. 121,790.-Chime, etc.-C. Lehnert, Boston, Mass. 121,791.-CORNUCOPIA.-W. Lohse, New York city.
121,792.-ShIPPER SADDLE.-L. D. Lothrop, Dover, N. H 121,793.-P PUMP.-T. J. Lovegrove, Philadelphia Pa 121,794.-CUuTivator.-J. Mallon, H. Von Phul, Jr., Holl 121,795.-FruIT DRYER.-C. H. Martin, Chapinville, N. Y. 21,796.-Fire Escape.-G. D. McCullen, New Orleans, L 21,797.-Fence.-R. B. Meeker, Sandford's Corners, N. Y. 111,799.-Treating Sulphates.-A. A. Monnier, Phila., Pa 121,800.-CALENDER.-S. Moore, Sudbury, Mass. 121,801-Painter's Trestle.-D. Moritz, New York city.
121,802 .-Teeth Plate.-G. Morrison Palmyra Wis. 121,802.-Teeth Plate.-G. Morrison, Palmyra, Wis.
121,803.-Die.-F. B. Morse, Plantsville, Conn. 21,804--Bearing.-E. D. Murfey, New York cit
121,804.-Bearing.-E. D. Murfey, New York city.
121,806.-PAcking, ETC.-E. D. Murfey, New York city
21,806.-PACKING, ETC.-E. D. Murfey, New York cit
21E.-E. Norton, Chicago, Ill.
121,808.-Cartridge.-A. Payne, Bridgeport, Conn.
121,809.-Seeder.-T. L. \& G. Pierce, New Providenc
121,809.-SeEder.--T. L. \& G. Pierce, New Providence, Iowa 121,810.-Reading Desk.-G. F. Perkins, San Francisco, Ca
121,811 .-Brushr.-G. \& F. Pirrung, Chicago, Ill. 121,812.-W WSH BoILER.-J. W. Plouff; Gloucester, 121,813.-OIL CAN.-FER. W. Read, Marquette, Mich.
121,814.-W ASHER.-O. J. Rider, J. C. Bryant,Wellington,M $121,814 .-$ Washer.-O. J. Rider, J. C. Bryant, Wellington,Mo
121,815.-Cot'on Planter.-H. A. Ridley, Jacksonport,Ark 121,816.-CLamp.-p. Scholl, Cashtown, Pa.
121,817.-SLulky.-T. S. Seabury, St. James, N. Y.
121,818.-SADDLE.-F. M. Simpson, Pittsville, Mo
121,818.-SADDLE.-F. M. Simpson, Pittsville, Mo.
121,819.-Grinding Mill.-J. B. Smith, Bowensburg, Ill. 121,820.-STone Puller.-G. Sprinkel,North Leverett, Mass 121,822.-Elevator.-H. S. Stewart, Yreka, Cal. 121,823.-CAR Coupling.-J. B. Tracy, Lincoln, Del. 121,824.-Railway Switch.- E. A. Trapp, San Francisco,Cal.
121,825.-Brick Machine.-J. Treadway, Haverstraw, N. Y. 121,825.-BRICK MACHINE.-J. Treadway, Haverstraw, N. 121,826 .-Fire Escape.-J. J. Treanor, New York city , 121,829.-Hat Sweat.-W. M. Waterbury, New York city.
121,830 .-Shuttle.C.H.Waters,Groton, W.Orr,Jr.,Clinton,Ms. 121,831.-Wire Net Machine.-F.C.C.W eber,Brooklyn,N. $121,832 .-G L O v E .-W$. W. Whitaker, Gloverssille, N. Y
121,833 .-GLove.-W. W. Whitaker, Gloversville, N. Y 121,834.-Bung AtTACHMENT. A.Wieners,Will'msburgh,N. 121,835.-SWIVEL Loop.-O. F. Winchester, New Haven, Ct 121,835.-SWIVEL LOOP.-O. F. Winchester, New Haven, C $121,836 .-R A I L W A Y$ Crossing.-J. Wood, Red Bank, N.
$111,837 .-$ BEE Hive.-E. S. Armstrong, Jerseyville, Ill. 121,838.-SHUTTLE Box.-J. Ashworth, North Andover, Mass
121,839.-BAKING OvEN.-A.A.\& J.A.Aull, Bellefontaine,Ohio 121,839.-Baking Oven.-A.A.\& J.A.Aull,Bellefontaine,
$121,840 .-$ Bee Hive.-H. A. Bathurst, Clearfield, Pa. 121,840.-Bee Hive.-H. A. Bathurst, Clearfield, Pa.
121,841.-Fastening Wheels.-B. Berndt, F. Barsch, Will-121,842.-LOOM LAMRNORt, Pa
121,843.-PUMP.-H. E. Braunfeld, Phila., Pa.
121,844--Washer.-R. M. Bruce, Camp Point, Ill. 121,845.-OrNAMENT.- E. T. Bussell, Indianapolis, Ind 121,847.-Dryer, etc.-L. S. \& C. F.Chichester,Brookly 121,848.-DRIDGEE-T. C. Clarke, A. Bonzano, Phila., Pa. 121,849.-Chain Machine.-A. J. Clemmons, Aberdeen, Miss, 121,850.-Divider.-A. A. Cook, Milford, Mass.
121,851.-Clamp.-T. O. Cornish, Woonsocket, R.
121,852.-SAsh Holder.-J. Court, Memphis, Tenn
121,853.-W indmill.-J. Cushman, Thomson, Ill.
121,854.-Transmitting Power, etc.-T. Damon, Thompgonville, Conn.
121,855.-FENCE.-B. G. Devoe, Fredericktown, Ohio.
121,856 -SCROLL S. Si--W. H. Dobson, W. H. Doan 121,856.-Scroll SaW.-W. H. Dobson, W. H. Doane, Cin 121,857.-HUB.-W. Cinati, Ohio. Dole, Peabody, Mass.
121,858.-Dental Forces.- N. A. Durham, Duquoin, Ill. 121,859 .-Horse Collare.-G. and H. Duxon, Brooklyn, N. Y. 121,860.-Putting UP Needles.-D. Evans, Studley, Eng. 121,861.-Belt Shifter.-A. Fox, Edinburg, Ind.
121,861 - Belt Shicher.-A. Fox, Edinburg, Ind.
121,862 -Burglar Alarm. W. F. Gardiner, Bethany, Can.
121,863 -Harness Pad.-J. H. Garrett, Greencastle, Ind $121,863-$ Harness Pad.-J. H. Garrett, Greencastle, Ind. 1 121,864.-STEam Engine.-G.Gärtner,C.Diebold,Lebanon,Pa 121,865.-Barrel Fastening.-E.T.Gilmore,New York city
121,866.-Rock Drill.-Henry B. Gingrich, Bradford, Ohio. 121,866.-Rock Drill.-Henry B. Gingrich, Bradford, Ohio
121,867.-Grain Carrier.-O. M. Gould, Montreal Can 121,867.-Grain Carrier.-O. M. Gould, Montreal, Can
121,868.-Supporter.-H. Greentree, Baltimore, Md. 121,869.-Tin CAN.-S. E. Gunn, Chicago, Ill.
121,870 .-Signal House.-T. S. Hall, West Meriden, Conn.

121,871.-Brick Machine.-D. Hess, Des Moines, Iowa 121,871.-Brick Machine.-D. Hess, Des Moines,
121,872.-Iron, ETc.-T. C. Hinde, Fownhope, Eng.
121,873 - Handivg Boxes.-C. Hoffman, New Yor 121,873.-Handling Boxes-C. Hoffman, New York city.
121,874.-Horse Power.-H. B. Hossler, New Berlin, Ohio 121,875.-Railway Frog--S. M. Hudson, St. Louis, Mo. 121,876-Cooking Stove.-W. J. Keep, Troy, N. Y.
121,877 --Stove Pipe Damper.-W. J. Keep, Troy, N. Y. 121,878.-LATHE.-B. Lawrence, Lowell, Mass. 121,879.-WINDING GUIDE.-J. N. Leonard, Rockville, Conn 121,880--Horse Stocking.-W. Lewis, Astoria, N.
121,881.-Harvester-_J. P. Manny, Rockford, Ill. 121,881 .-HARvESTER-J. P. Manny, Rockford, Ill.
121,882.-Horse Power.-M. H. Marmaduke, B. F. Stewart
121,883.-W Santa Fe, Mo. H. Miller, Belvidere, N. J
121,884.-LIGHTNing Rod.-S. H.' Miner, Winona, Minn.
121,885.-(そlossing Iron, Etc.-C. W. Monroe, Chicago, Ill. 121,885.-Glossing Iron, ETC.-C. W. Monroe, Chicago, Ill.
121,886.-DESK, ETC.-L. H. Morrill, Falmouth, Me. 121,886.-DEsse, etc.-L. H. Morrill, Falmouth, Me.
121,887.-Skiving Machine.-J. H. Mudgett, Lynn, Mass. 121,888.-Ice Machine.-A. Mühl, Waco, Tex
121,889.-STEEL-C. M. Nes, York, Pa.
121,891.-Steam Engine.-E. Nicholson Cleveland, Ohio. 121,892.-Gate.-A. D. Northway, Kenosha, Wis. 121,893.-Movement.-T. H. Percival, Harper's Ferry, Va. 121,894.-BRIDGE.-CC. Pfeifer, St. Louis, Mo 121,895.-V ISE.-R. Porter, Bristol, Conn.
121,896 .-SEwING MACHINE.-G. Rehfuss, Phila., Pa 121,897.-Stuffing Box.-P. W. Richards, Boston, Mass. 121,898.-Nitro-glycerin.-E. A. L. Roberts, Titusville,Pa 121,899.-Refrigerator.-J. Rohrer, Lancaster, Pa
121,900.-ADDressing Machine.--J. K. Rukenbrod,Salem, O 121,901.--Signal.-D. L. Schönberg, New York city 121,902.- Preserving Hors. J.Seeger,J.Boyd,Baltimore,Md. 121,903.-Seeparating Fats.-T. Sim, Baltimore, Md. ns, Waldo, Fla. 121,905.-ValVE.-C. B. Smith, Newark, N. J. 121,906.-Potato Digger--M. Stewart, Southfield, Mich.
121,907.-Shuttle Box.-J. M. Stone, North Andover, Mass. 121,908.-Ironing Machine.-G. F. Taylor, New York city 121,909.-Ammonia Engine.-C. Tellier, Paris, France. 121,910.-Hoist.-T. Terrell, Yonkers, N. Y
121,911.-Fireplace.-R. P. Thomas, Sciotoville, Ohio 121,913.-DISINFECTANT.-H. A. Tilden, New Lebanon, N.Y.
121,914.-WATER GAGE,ETC.-T. W. Todd, Schenectady, N. 121,915.-Dryer.-J. Turner, Chicago, Ill.
121,916.-Truck Frame, etc.-B.W. Tuthill, New York city. 121,917.-Broiler.-C. Walsh. Newark, N. J. 21,918.-Pump.-Z. Waters. S. Bradley, Bloomington, Ill 121,919.-Rattan.-G. A. Watkins, Gardner, Mass.
121,920 - Fare Box.-J. F. Winchell, Springfield, Oh 121,921.-Shampooing.-M. L. Winn, New York city. $121,921 .-$ Shampooing.-M. L. Winn, New York city.
$121,922 .-C a r r i a g e ~ D o o r .-A . ~ W r i g h t, ~ W i l m i n g t o n, ~ D e l . ~$ 121,923.-Advertising Lanvern.-T. L. Wright, N. Y. city.
121,924 - Knitting Machine, etc.-N.Clark, Malden, Mass. REISSUES.
4,664.-Cot ron Gin.-D. Pratt, Prattville, Ala.-Patent No. 4,665.-CULTIVATOR.-F. J. Underwood, Rock Island, Ill.Patent No. 85,412, dated December 29, 1868.
4,666.-LUBRCATING BoLSTER.-M. P.Wilmarth. North Prov-
idence, R. I. - Patent No. 39, 190 , dated July 7 , 1863. idence, R. I.-Patent No. 39,190, dated July $7,1863$.
4,667.-AnIMAL PoKE. H. FChapin, Rochester, N. Y.-
Patent No. 112.546, dateal March 14, 1871. . 4,668.-Expanssive BIT,-W. A. Clark, Wellsville, Conn.-
 4,670.-CAR Spring.-A. Hebbard,Cambridge, Mass.-Patent No. 53.222, dated March 13, 1866; reissue No. 4,?35, dated April
11, 1871. 4,671.-Pherparing Grass, ETC.-G. E. Hopkins,W.B. Shedd, 4,672.-Division A.-HARVESTER.-Ketchum Harvesting Ma-

4,673.-Division B.-Harvester.-Ketchum Harvesting Ma-
 4,674.-Lock.-L. F. Munger, Rochester, N. Y.-Patent No.

 DESIGNS.
5,408.-Geometrical Forms.-C. Baillairge,Quebec, Canada.
5,409 \& 5,410 - Carpets.-J. Wade. Palmer, Mass. 5,411.-Three Bottie Caster.-G. D. Dudley, Lowell,Mass. 5,412.-Sirawl.-H. Erbs and J. Barth, Philadelphia, Pa. 5,413.-Show Card.-T. Hall, Jersey City, N. J. 5,414 . - Harness Bracket.-J. L. Jackson, New York city. 5,417 to 5,422.-CARPETS.-A. McCallum, Halife Eorl 5,423.-RACK For Robes.-M. Nuhn, New York city TRADE MARKS
573.-CAst Steel, etc.-W. Wutcher \& Co., Lewiston, Pa.
574.-Medicine.-E. Chiles, Philadelphia, Pa. . Medicine. E. Ciles, Philadelphia, Pa 575.-ALCOHOL.-C. H. Graves, Boston, Mass.
576 to 579.-Clocks.-E. Ingraham \& Co., Bristol, Conn. 580.-Bitters.-W. H. Knoepfel, New York city.
581.-Cigars.-P. Pohalski \& Co., New York city 582.- Rubber Paint.-Rubber Paint Company, Cleveland, o. 583 \& 584.-Boots and Shoes.-The Ventilating Waterproof Shie Company, Boston, Mass.

EXTENSIONS.

Cotton and Hay Press.-W. Penniston, of North Vernon, Long Trunks For Clent No. 18,766, dated December 1, 1857 . Mowing MachiNE.-E. Ball, of Canton, Ohio.-Letters Pat-

 Mowing MACHINE,-E Ball, of Canton, Ohio-Letters PatSeptember 27, 18599, reissue No. 1,009, dated July N1, 1880.
Mowing MACHINE.-E. Ball, of Canton, Ohio.-Letters Pat-
 Mowing Machine.-E. Ball, of Canton, Ohio.-Letters Pat-

er mex

ILLUSTRATIONS.

Alarm, high pressure and low waAmmona, engine for street cars, Anchor beam support for brick walls, Goodrichs; Auger, nollow, Smit, Axle for rallway cars and locomo tives, Cremin's. B

 Brcke mach ine", seif actili.g, Piii.

 Cutter tor wood work, Dorin's....: ${ }_{19}^{310}$

 Elevaior, Tumper
Elevynter
Engine, portable

Faucet. self maasuring. Wrights
Filter, water. Parrot and MccauFire extinguishinainaparatus, iaii

 H
 Heater ap apheelers s............:

 $\underset{\text { King bolt for carrrages, Clark's.. }}{\text { K }}$ 38

Lamp, Amer ican safety student's, Lean wick Fairieis.

 o

 Oller, pocietet, Goodenoughis..... 306

":"Deiaware"; "il"

 Sleigh mhane, Althon Alt

MISCELLANY.

*

of pranite enormous...					
					\mathbf{Q}
Feed appara		ny at			
ce pos					
Fermented milk	-				
$\xrightarrow{\text { ter. }}$					g
,				Masono	
			states,		
			Millitote		
Fire	Gu		Min	Patents, secretary or the Interior's report on.............................. 135 Patents, State interference with..	
		Labeling machine, Tyrrells......... 104			
cendiled for			Molding machine... Molds, coating iron		
Fireroor white					
chrotection					
re sates, tes					
$\begin{aligned} & 8, k i n i v i n \end{aligned}$					
					Rinumat
	Hand bater		Museam Lond		
	Handle for carriage door........... 229 Hande strap.............. 266	scraps and cuttings....... .e. 105	Masical	pos	
	н				(Ringrig togs, instium
			Narl cuting		
r			Na		
					相
	Hat boies.m				
		,			
	Heath? who wants		Ne		
		Lit			
orn	Hell Gate, New				
+10				ron	
		Loc			
	1ow ang	Loco			
	Hop ref				
	d				
	rise colar rim				sart
${ }_{F}$ Frictio					
${ }_{\text {Fraut }}{ }_{\text {Frutit }}$	rse st				
Fruit in F					
...					
		Machite for			
	Hydraunic bufier for che cking the ${ }^{\text {a }}$	$\xrightarrow{\text { Mact }}$	Oceanic Oceani		
		$\begin{array}{\|l\|l\|} \substack{\mathrm{Mad} \\ \mathrm{Mad}} \end{array}$			
anic actuon ${ }^{\text {and }}$				Pou	Ssh
anic					
Galvant fuidionitiei					
			Onile		
	Itee	Machine eror		${ }_{\text {cr }}^{\text {er }}$	
	İee piky		Ore ersunt		
dy ofior	Import ortiine				
	Improved gate				
	Improved ree	Mammotiticave: Mammoth cave,		Prindileypa	
仡	Improve woded		pro for inhalation, pure.......... Oxygen for pharmaceutical pur-		
		s,		Prive seatates	
Ga					
	In				
Wheeds	Ind	ed			
		d			
		\qquad pprentice.			

		Street crossing...................... Strength of cast iron beams, expeliments on the Studs or buttons. Sub-Atlantic telegraph, the. Sube tute tor Subet tute for brass........... Subterranean explorations. Success in life, Yeter Cooper's. Suction pump... Sugar refinery ä̀it. Louis. Suxgestions, tim ely Sulky cultivato Sulky har ow.. Sulphocranide of potassium. Sulphuric acid, manutacture of.... Sulphuric acid, reactions of anhy: Sulphurous acid on phosphate... Sun at midnight in Nor way, the.. Sun, explosion on the Sun, explosion on the. Sunken ironclad, raisin Sunken ironclad, raising a. Superheated steam, ignition by... Support for mirrors, etc. Surrace blow for steam boilers.... Surf, the... $1 i \neq 1 . . .$. Suspending window sashes. tries T Table cutlery...... \qquad 218, 267 Talking machine, a.................... Tamping apparatus for biasting. Tamping in vacuo. Tanning leather. Tanning leather Tartar, crude. Tea and milk Technology, thedy for buins, etc chnology, the sciences forming the basis of.................. Technology, Wagner's report on.. Teeth, Telegraphic instrument for learn- Telegraph insulator. Telegraph message biann, English wanted Telegraph nates for public busiTelegraph ribibon paper. Telegraphs in China............... Tellurian. Tempering miii picks. Temperations spiral springs. Tenoning machine Test for arsenic, antimony, and Test for kerosene oils, new. Test for steel and iron Thill coupling...................... 66 Throttle valve le ver patents, the 56 , Tilt hanmur Timber, durability of Timely suggestions 376 Time, the art of employing Titles, the author's rage for. To City subscribers......... obacco question, another side to the.

Subscribers-Who wish to have their vol
umes bound, can send them to this office. The charge umes bound, can send them to this offce. The char
tor binding is $\$ 1.50$ per volume. The amount should as soon as they are bound.

City Subscribers.-The Scientific Amert $\$ 3.50$ a year. Single copies for sale at the News-stand burgh, and by most of the News Dealers in the United

Adyextixument.

The value of the SCIENTIFIC American as an advertising
redium cannot be over-estimated. Its circulation is ten timeses greater than that ot any similar journal now puiे.
tished. It read in all the princ pal libraries and reading-rooms make their business known to the annexeded rates. Abusiness man wants something more than to see his adver.
tisement in a printed newspaper. He wants circulat ${ }^{15}$ it is worth 25 cents per line to advertise in a paper advertise in one of tlirty thousand.
RATES OF ADVERTISING

Back Paree ---- $\mathbf{\$ 1 \cdot 0 0}$ a line, Inside Page for each insertion

 Engravings may head advertisements at the same rate porline, by measurement, as the letter--yress,

G REY IRON CASTINGS-all kinds made
EORGE H. BALL, Manufacturers' Agent

FOR SALE-Horizontal Engine, 18 in. cyl
$\mathrm{H}^{\text {AND Saw MLL.-Do work of } 3 \text { men }}$

COMBINED SWINGING AND LIFTING

Warren's Elementary Constructive $G^{\text {EOMETRY }}$ AND INDDSTRILL

 Woov||orana, Whernuery MOLDING, MORTISING TENONING \& SHAPING

baxD saws

detrout sams Planife \& Matcining RALLROAD, Car, and Agrt.
CULTURLSEOPs, \&c., \&c. J. A. FAY \& CO.
 COMBINATION STENCIL ALPHABET, usef
the
chan
ness
en ene

T

	Wood bending m Wood boring bee
	Wood, elasticit
	wood pav
	Wood pl ning machin
	Wood, pulp factory in Philadelphia 198
	Wood pulp machine 91
362	Wood sawing club, the.............. 240
	Wood wasp or hymenopter ${ }^{267}$
	appliances for 241
	Worss hon, a cler
	Wrens
	Wringer rollers...
363	Wrirging machine for
	ar
	Wyoming canal, sinking of the
	X
	Xylatechnigraphy................ 54
	Y
	Your best friend, etc 305
	z
	nc , mechanical equ
	Zinc paint, a new...................... 344
	N
$\because{ }_{256}^{35}$	
	July. 4, ${ }^{\text {r1........ } 43}$
	" Aug. 1 , ${ }^{\text {, } 71107}$
	، Sept. 12, , \%1....... 203
	19, 71219
	${ }_{3}^{26,71 \ldots . . .235}$
	10, 712678
	" " ${ }^{\text {a }}$ 28, $713 .379$
	Reissues, list of. 12, 27, 44, 75, 76, 92, $108,124,140,156,12,188,204,20$,$255,252,288,284,300,316,382,388$, 364t, 380, 396, 409.
	$92,108,12,140,156,172,188$
	Extensions, list of, $12,2 \pi, 44,76,108$, $124,156.235,252.300,316,348,380,409$.

STEEL CASTINGS

A
P
 BRCHASING AGENCY FOR ENGINES,

P BOTECTION FROM FIRE.-Timber, R.R.
 rate which is undeniab ble. Brick and stone structures,
erected with the silicater mortar as a coment will make
hem imperishable. Manufactured and sold by the ald

Trade-Mark Patents.

MUNN \& CO. desire to call the atention of manufac-

 urers and business men generally, to the importance ofthe law of patents, as applied to trade-marks for business purposes. Any person, firm, or corporation, domiciled in the
United States. or in any foreign country affording similar privileges to citizens of the United States, can obtain the right to the exclusive use, for thirty years, of any
TRADE-MARE. consisting of any new figure, or design, or any new word, or new combination of words, letters, or This protection extends to trade-marks already in use or any length of time, or about to be adopted.
Full information on this important subject can ve ob. Full information
tained by addressing

MunN de Cor.
3 3 yark kow. New

for procecding before the Patent office, etc., including Census or 1870 , complete. Itshows the population by tion of cities of over 10,000 inhahitants. Important to every patentee who has riyhts to sell. It enahles hin
to calculate the value of territory, by the population. Price, bound, 25 cents. Mailed on receipt of price.
didress

December 23, 8 87r.]

SCIENTIFIC AMERICAN

9RIUn)

For 1872.
Journal in the world, devoted to Invention, Mechanics, Manufactures, Art Science, and Geieral Industry, and has attained a wider
circulat:on than all others of its class. irculat:on than all others of its class.
With the New Year the Publishers intend to increase ts value far beysnd what it has been in the past. The
Editors will be assisted by many of the Allest Writers,
and, having access to all the leading Scientific and Mcchanical Journals of Europe, the columns of the SCIEN-
TIFIC AMERICAN will be constant y enriched with the choicest information which they afford. It will be the onstant study of the. Editors to present all subject
relatiug to the Arts and Sciences in PLaIN, practical stand.
A year's numbers contains over 800 pages and makes two volumes, worth as a book of

ENGRAVINGS

by our own artists, will not only be given, of all the best
Inventions of the day, but especial attention will also
be directed to the description and illustration of
LEADING MANUFACTURING ESTABLISHMENTS, MACHINES, TOOLS AND PROCESSES.

Inventors and Patentees

THE NEW VOLUME OF

SCIENTHCLICAN

 commences JANUARY FIRST; therefore, now is thetime to organize Clubs and to forward subscriptions.
Clubs may be made up from different post ofllces. TERMS FOR 1872. One copy, one year
One copy, six months Club rates $\left\{\begin{array}{l}\text { Ten copies, one year, each } 82.50 \\ \text { Over ten copies, same rate, each }\end{array}\right.$ one copy of engraving, "Men of Progress," ${ }^{2} 10.00$ One cony of Scientific American for one year,
and one copy of "Science Record," Ten copies of "Science Record," and ten copies of
the Scientific American for one year, CLUE PREMIUMS.
copies, at the foregoing club rates, will be entitled to one copy, gratis
Progress.
"
Themit by postal order, draft or express. The postage on the Scientific American is five cents per
quarter, payable at the office where received. Canada to pay postage.

MUNT \& CO,

37 Park Row, NEW YORK.

Portable \& Stationary

 Steam Engines${ }_{\text {Senan }} \mathbf{A}_{10}^{\mathrm{N}}$

ND HISTING ENGINES A good ar

 H. B. BIGEL

HOOT LATHES,

STEEL CAStings, nder hainsworth's patent.

 SHAFTING with PATENT HANGERS

Also, recently published:
The Manufacture of Russian Sheet Iron. By
John Percy, M.D. Thirteen illustrations. 8vo...50c. John Percy, M.D. Thirteen illustrations. 8vo....50c.
Questions of the Day, Economic and Social.
By Dr. William Elder. 8vo..........................

 henry carey baird 406 walluvt strekt, philadelph

Reynolds'

$T \mathrm{HE}$ HYDRAULIC ROTARY GOVERNOR

The Weekly fle who can read
 will be double ets. present size, and will contain eigh
 try. At the same time its price will not be ircreased.
It will be furnished to subscribers at the uniform rate of one dollar a yearfor each copy. To this rate no excep.
tion will be made, and no reduction will be possible cither to clubs or agents. Every subscriber who sends

 paper. Its independence of opinion and its unqualifled hostility to Tweedism and Grantism, and every form of
public robbery, bribery, and corruption will be main tained, while in point of political news its readers may
rely upon always receiving the most accurate as well as the freshest intelligence that can possibly be obtained. The enlargement will enable us also to devote additiona hitherto. For miscellaneous reading, presenting the
quaint and humorous aspects oflife, and for useful information respecting not only what takes place in this me ropolis and this country, but in all other parts of th In its new form THe Weekly Sun will
such of our readers as approve its ideas and objects, and
find it interesting and valuable, not only to renew their
and
The coming year is destined to be a memorable one in
the history of the country. We are on the eve of a most
significant Presidential election, and political movements As a journal, free from the trammels of party, THE As a journal, free from the trammels of party, The
WEEKLY SuN will continue to uphold the principles of
true republican government. Its readers are invited t sustain it in that work. The truth, irrespective of part
prejudice or official influence, will always be told in it columns. Terms of the Weekly sun-
A journal contaning eight targe pages, published every
Wednestay norning-To lal main mis scribers, whethcr
single or in clubs, one dollar a yeareach, always in ad vance or in clubs, one collar a year each, always
DALY SUN, by mail, 50 cents a month, or $\$ 6$ a year.
SEMI-WEELLY SUN. by mail $\$ 2$ a y year

A DEAD STROKE

Power hainer of iniw d jusion

PATENTEES,

W

PATENT bANDSAW MACHINES

Higures will not he? FOCTS FOR THE PEOPLE. ne SEE the prices at which four of the ear. ing Sewing Machines are sold in the UNITET
STATES, and ENLAND.

 The above prices are for exactly the same There is scarcely any difference in the cost of
material and labor in any or the above named machines.

The Wirsoov Sewing Mactryws are for Sale in most every county in the United s ates, and
No. 707 BROADWAY, NEW YORK.

Washington Iron Works,

VARIETY MOTEIMPROVED MING MACHINERY Cor Machines and infornation, address

$\mathbf{M}_{\text {and other machinery, Mode }}^{\text {ODEPS for the Patent Offic }}$

Niagara Steame Pumpr CHAS. B. HARDICK,
S Improved Lawd Batent Pat MACHINERYY--

$\mathbf{B}^{\text {UERK'S }}$ TECTOR. -Important for anl large Corporation

OTIS' Mach inimery

1832. SCHENCK'S PATENT. 1871. WOODWORTH PLANERS

Cold-rolled Shafting.

Sturtevant Blowers. $T_{\text {mose }}^{\mathrm{HEE} \text { are }}$ ane in every particular the the best and

N. Y. Machinery Depot.
 Andrew's Patents.

 Huld innt,

P.BLAISDELL \& Co.,

$\Gamma^{\text {HE Union Irron Mills Pittsburgh Pa. Th }}$

woodburys patent
Planing and Matching

Machinist's Tools.

$\$ 150$ A MONTH: EMPLOYMENT

MACHINISTS.

cilling Masinos

To Electro-Platers.

Send tor Illustated Catalogu of the
UNIVERSAL
WOOD

DANIEL'S PLANER,

B URDON IRON WORKS.- Manufacturers

R ICHARDSON, MERIAM \& CO.

PUMPS. - For Description, Price

Balertipmonts.
$\overline{\text { Advert isements will be aduitted on this paye at the rate of }}$ $\mathbf{\$ 1 \cdot 6 0}$ per line for each insertion. Engravings may head auvertisements at the same rate per line, by meas. urement, as the letter-vress.

HAPRRRS PBRIODCCLLS

FOR 1872.

 The readers of HARPRERSMAGAZINE, WERKLY and
BAZAR Are to be congratuated on the rich and tempt

 of wholesome instruction, recreation, and amusemen
which will be sought elsewhere in vain They repre
sent, theretore, forevery
hic Literature of the World.

Terms for $18 \% 2$. $\begin{array}{ll}\text { Harper's Magazine, One Year.......... } \$ 400 \\ \text { Harper's Werkly, } \\ \text { One Yar........ } 400 \\ \text { Harper's Bazar, } & \text { One Year........ } 400\end{array}$ Harper's Magazine, harper's Wrekly, and Harper
Bazar, for one year, $\$ 1000$; or any two for $\$ 7$ ot.

Vucankinderer

Public Health Promoted! Agriculture Benefited!!
G0UX'S
Patent Absonhentil Closet and Urinal.

 \$21 for \$5.25. The Illustrated Phren-

$100,000 \begin{gathered}\text { or more Boys, who are to be } \\ \text { the Mechanics }\end{gathered}$

CLOTHING W AREHOUSES. C Coats, and clothing of every description.

$\mathrm{O}^{\text {vERCOATS, } \$ 30 .}$
$\mathrm{O}^{\text {VERCOATS }}$
$\mathrm{O}_{\mathrm{ERCOAtS}, \$ 15 .}^{\text {VERCOATS }}$
$\mathrm{O}_{\mathrm{R}}^{\mathrm{VERCOATS}} \mathrm{CO}$,
${ }^{0}{ }^{15}$
 $\mathbf{R}^{\text {ULES }}$ FOR SELF-MEASURE, Samples of Goods, Price List, and Fashion Sheet, SEN
A. S. CAMERON \& CO., ENGINEERS,

Steadl Pumpl
NOTICE

PREVOST'S ELECTRO

Magnetic Motor Co.

A MERICAN JOURNAL OF SCIENCE

Worlsing Models

R
ToDD \&E RAFFERTY, Manufacturers o

PATENT SHAFTING.

TRON PLANERS, ENGINE LATHES

Misher E. WOODWARD,

U AITED STATES AND FOREIGN SAL

Swain Turbine.

"OnrIow.Water Wheel fron this on"
 W ILL DO TEN PER CENT MORE WORK

 $$
\begin{aligned} & \text { Power adaress } \\ & \text { THE SWAIN TURBINE CO., } \end{aligned}
$$

Leffele's Improved Tanbine.

NEAFIE \& LEYY,
PENN WORKS.

 From 4 to 500 horse power,
including Corriss Engines, slide
Valve Stationary En
 cular Saws, etc.
Send for Price List. WOOD \& MANN, $\underset{\text { works-UTICA, N. } Z \text {. }}{\text { eam }}$
 Ewewaw

Spoke Works.
 $S_{\text {All goods }}^{\text {POKRranted }}$ seasoned and HANDLES.

Vertical \& Horizontal CORN MILLS.

Fifteen Boiler Explosions $\mathrm{O}_{\mathrm{W}}^{\mathrm{CNHTRED} \text { STATESS, GIIling and maiming a large }}$ Harrison Safett Boiler
 THE HARRISON SAFETY
 THE HARRISON BOILER WORKS,

CABBOHCS

McNab \& Marlin Man't'g.Co,

WIREROPE.

I. I. SMITTH \& CO., Nickel Platers,

 6 HOWARED ST., New York,

(D)Union Stone Co.,

Diamond Piointed Stwan drims

$T \mathrm{TE}$ adoption of new and 1 mproved applica-

WIRE ROPE.

 JOHN A. ROEBLING'S SONB,

\bar{L}.W.Pond--New Tiools.
EXTRA HEAVY AND IMPROVED PATTERNS. EXTRA HEAVY AND IMPRVED PATTERNS,

American Saw Co., Manufacturers of

THE BEST SAW GUMMMER OUT, ONLY

