energy of the fire under such boiler, will cause the water in said boiler to pass with great rapidity to the other boiler, as described by him. As to any regular intervals between
such changes, Ithink his remedy of opening the furnace and such changes, I think his remedy, of opening the furnace and connecting doors of the empty boiler to lessen the generation of steam and pressure therein, indicates the cause and cure, and is the direct result of uneven firing or generation of steam; and consequently regular intervals between the stean; and could not well occur.
The small steam space in his boilers, together with the too small, interrupted, and contracted steam outlets, would cause the pressure within either boiler to rise or fall several pounds to the square inch almost instantly, with even slight changes in the generation of steam.
As the pressure of a column of water one foot in hight is only half a pound to the square inch, it follows that an excess, of so little as half a pound in pressure to the square inch of steam in one boiler over the other, would be sufficient to force the water from it to the other until the water level would stand one foot lower in the hotter boiler than in the other; while an excess of one pound pressure would make a difference of two feet in the water level in the two boilers. Remedy.-All water feed pipes to boilers should have check valve as near the entrance to the boiler as possible.
When two or more boilers are to be fed from one source or pump and from the same pipe leading therefrom, each boiler shuruld have its branch from such pipe, and a stop cock, in addition to the check valve in such branch. This effectually controls the flow of the water to each separate boiler and prevents the return from it.
The stcam connections from the boilers should be of at least double the capacity for such sized boilers. When two or more such boilers are used together, their steam pipes should conduct the steam to a drum at least equivalent to three or four cubic feet capacity for each such boiler. The steam to be taken from the upper side of such drum to the engine, etc., by a pipe larger than or of a capacity equal to that of all the pipes leading to the said drum combined.
Safety valves as well as pressure gages should be attached directly to each separate boiler, and never to the steam drum nor to pipes conveying steam from the boilers.
With these precautions and directions adopted by your correspondent, all further trouble will be avoided in his own case as well with the other houses alluded to by him
Albany, N. Y.
Horace L. Emert.

Ants in Sugar.

To the Eaitor of the Scientific Amervcan
More than the usual quantity of sugar was recently purchased for my family; and the surplus, above what the wooden box used to keep it in would hold, was put into a paper one, and placed by its side on the same shelf. Black and brown ants had always troubled us, but none of them entered the paper box, which they could have done if so dis posed. I sought for but found no reason. Finally, I tried the experiment of keeping it all in paper boxes or bags, and for three years have had no trouble, as former'y, with ants in the sugar boxes, I do not claim to give or know any reason; but such are the facts.
Northampton, Mass.
M. L. Kidder.

REMARKABLE RELATION BETWEEN THE SPECIFIC HEAT
AND THE ATOMIC WEIGHT.

Dulong and Petit were the first who, in 1819, pointed out the curious fact that, when the numbers representing the specific heat of elementary substances were multiplied with those representing their atomic weights or chemical equivalents, products are obtained, which are equal to within a
small fraction. So taking the specific heat of the substances mmall fraction. So taking the specific heat of the substance obtain the following table:

Elementary substance.	spectile	$\underset{\text { weight. }}{\text { Atomic }}$	Product of number of the two former columns.
Mercury.	$0 \cdot 033$	100	$3 \cdot 3$
Aold	0.032	98	$3 \cdot 13$
Silver..	0.057	54	$3 \cdot 07$
Copper.	0.095	32	$3 \cdot 04$
Iron.....	$0 \cdot 11$	28	$3 \cdot 08$
Sulphur.	$0 \cdot 2$	16	3.2

If the value of atomic weights of many substances are doubled, as for good reasons is done at the presont day, the products are of course also double that given in this table and all approximately $=6$, in place of nearly $=3$, as is here found to be the case.
A similarrelation to that which Dulong and Petit discovered for the elementary substances was found by Neuman in 1831 for compounds; for instance, in case of sulphates and car bonates, he found for the following minerals:
Mineralogical

name. \quad\begin{tabular}{c}
Chemical

name.

\quad

Specific

heat.

\quad

Atomic

weight.
\end{tabular}\quad Product

name	nam		neat	weigh
Anhydrite	Sulphate of	Lime	$0 \cdot 185$	68
Ceelestin		Strontia	$0 \cdot 135$	92
Heavy spar	"	Baryta	$0 \cdot 108$	116
Lead vitriol	"	Lead	0.085	151
Iceland Spar	Carbonate of	Lime	$0 \cdot 204$	50
Iron spar		Iron	$0 \cdot 182$	58
Zinc spar	\%	Zinc	$0 \cdot 171$	
Witherite	\because	Baryta	$0 \cdot 107$	98
White lead ore		Lead	0.081	13

White lead o
Strontianite
Strontia 0.144
Two questions suggest themselves from the above detail in every philosophically inclined mind. First: Are these
coincidences merely accidental? Secondly: If not accidental, what do they mean? Is there some natural law at the bottom of these remarkable relations?
In regard to the first question, it must be remarked tha
the law appears quite general, and the exceptions very few, linterferes with the fitting of the jacket. The steam chest therefore accident is out of the question; besides, the small cylinder and the steam cylinder may be formed in one.cast differences in the products are easily accounted for by the ing, proper stays being formed to connect them together befact that the specific heats differ at different temperatures, tween the parts where the valves work; or they may be cast and for different physical conditions of the substances under i separately and connected by the heads, if preferred.
investigation; while it is very significant that, in proportion as the experiments were made more carefully, the numbers calculated became more and more equal, as Regnault has pointel out.
In regard to the second question, as to the cause of this peculiarity, we have only to recall the numbers given on page 372 , which show that 301 lb . mercury, 17 silver, 10.5 copper, $8 \cdot 75$ iron and 5 sulphur possess at the same temperature the same amounts of heat; and to remark that these numbers are very nearly in proportion to one another as the respective atomic weights of the substances, $100,54,32.28$, and 16 . As now hese numbers express the combining equivalents, so that, for instance, 100 lb . of mercury will combine with 16 of sulphur
and form vermillion, and as we have reason to suppose that, in and form vermillion, and as we have reason to suppose that, in an atom of sulphur, it is more than prokable that 100 lb . of mercury contains as many atomsas 16 lb . of sulphur. If the number of atoms in these two quantities of mercury and sulphur is the same, and the amounts of specific heat the same, t is clear that all atoms must possess the same specific heat. This, now, is the law which lies at the foundation of the renarkable property explained.
When applying the modern theory, that heat is only a mode of motion, to the fact that all single atoms possess the same specific heat, it follows that it takes the same motion producng force, to increase the atomic oscillation (that means, raise the temperature) of every atom, be it mercury, sulphur, iron or any other substance of this series of elementary substances; and that it takes a greater force (more heat) to increase the
oscillation of the compound atom of a carbonate, and still oscillation of the comp
more of a sulphate, etc.

When these bodies lose their heat," means, in the modern language of the conservation of force, nothing but that they communicate their atomic motion (oscillating or otherwise) same atoms of the surrounding bodies, and put them in the amount of their own motion. Or conditions may be so arranged that this atomic motion (heat) is clanged into motion of masses, commonly called force; of this arrangement, the steam masses, commonly called force ; of this arrangement, the steam
engine is the great type and example for further development.

Compound Engines in the Navy.

Mr. J. W. King, Chief of the Bureau of Steam Engineering United States Navy, recommends in his report that "all naval engines now in store be sold, and that all our naval vessels be supplied with compound engines." Almost every engineer has his preferences in favor of some particular en gine. Isherwood had his, and so had Dickerson and Ericsson Of course, the hobby each one happens to be riding is considered the best horse, and so a series of costly experiments and changes and repairs are undertaken, for which the country pay and the service is but little, if any better off. Our navy wants the best engines and also the most economical, since frigates cannot tow a coal yard around with them. But changes should only be made after a series of successful experiments demonstrates the fallacy of the rule that "the old way is the
safest." Commenting on Mr. King's remarks, the National Gavette says: "Until somerhing more definite and satisfactory is known in relation to this type of engine, we think it would be a false economy to introduce them by wholesale
into our naval vessels. We see no objection to having one or two experimental sets of compound engines built for the navy, but to make such a sweeping change as recommende by Mr. King is impolitic and unwise. The truth is that comers would have us believe An engineer who is running one of them at the present time, in a large transatlantic steame informs us that he would like to have the difference of the price of coal said to be consumed each voyage and what is actually paid for and consumed. Compound engines were given a fair test on our lakes and rivers a quarter of a century ago, and did not prove a success."

Heath's Improved Steam Engines.

This invention relates to an improved arrangement of team chests, ports, and valves, having for its object to bal ance the valve as evenly as possible, shorten the steam pas
sages, enlarge the area of the ports without correspondingly enlarging the waste of steam in the ports, and to provide fo jacketing the cylinder more readily than can now be done The steam chest surrounds the cylinder, and annular valves work, between the cylinder and the steam chest, on ports a each end of the cylinder, admitting the steam from the space between the rings or valves, and exhausting into the jacket behind the rings or between the rings and the end of the jacket.
The outer surface of the steam cylinderand the inner surface of the steam chest are turned up truly for the pistons to fit between them stermtight, and the pistons are fitted with metal packing rings. The pistons are composed of a solid ly, so that steam cannot pass from one face to another, both he outer and the inner faces being recessed to provir, both the outer and the inner faces being recessed to provide space
for the packing rings. As the steam might force the packing rings in the inner face of the piston backward to the bottom of the recess when passing over the ports, at which time there is a direct pressure on the rings, holes are made in the This arrangement of the engine admits of the application of a jacket more easily and better than when a square steam

But little steam is lost by the amount contained in the ports so as not be effective, for the steam cylinder ports are very short, being only equal to the thickness of the cylinder, which need not be thick, as it is constantly exposed to steam pressure at the outside.
Arden A. Heath, of Mercer, Pa., is the inventor of this improvement.

Ice Houses.
This being the season for storing ice, we would call attention to what is known as the "Stevens plan" for erecting a cheap house and storing ice, from Hall's Journal of Health for December:

For one family, make a house twelve feet each way, by setting twelve posts in the ground, three on a side; board it up, eight feet high, on the inside, so that the weight of the ice shall not press the boards outward; dig out the dirt in side, six inches deep, and lay down twelve inches of saw dust; pack the ice in a pile nine feet each way, filling the space of eighteen inches between the ice and the boards with sawdust or tan bark, with the same thickness on top; make an old fashioned board roof, leaving the space above the ice open for ventilation. Have a small entrance on the north side of the roof.
"If the ice house can be located on the north side of a hill, and a small stream of water introduced slowly through the roof, on a very cold day, so as to make its way between the pieces of ice, the whole mass will freeze, solid; or a pile of snow could thus be made into solid ice, and would last from one winter to another."

The Effect of a Grain of Strychnine.

A man in Harrisburgh recently attempted to commit suiide by taking a grain of strychnine. The skill of his physi cian having saved his life, he narrates his experience for the benefit of science. He says
"In the course of five minutes I began to feel slight cramps in the calves of my legs. The cramps increased in intensity and extended to the feet and thighs, causing the most intense pain. I attempted to rise from the chair, but fell to the floor with convulsions in the lower extremities Unsuccessful attempts were made to bathe my feet in hot water, each effort to raise me bringing on violent paroxysms, in the last one of which I thought my jaws had become un hinged. I was now perfectly paralyzed from the hips down and suffering the most excruciating pains, which began to extend upwards; the muscles of the shoulders and neck were soon considerably convulsed, the forearms still being free from pain.
"I now prepared for the final struggle, which I knew must be near at hand, as I had become rigid from the neck down save the forearms. The convulsions of the muscles wer becoming fearful, and the torture awful to endure. My hands were drawn in to my sides, with tine fingers drawn apart, and slightly bowed, and the jaws became rigid. I felt myself raised as if by some mighty power, and fixed immov ably, with only my feet and head touching anything. I became unconscious of everything except my own agony which was now beyond all description. I could feel my heart fluttering, and my brain beating and throbbing with an irregular motion, as though at every beat it would burst from its confinement. Every joint was locked, and every drop of blood seemed stagnated. I remember thinking it could not long be thus, when I must have lost consciousness. "I remember nothing more until I felt a sensation of relief, as though the grarments of death, which had been drawn ver me, were being drawn back. Those terrible cramps seemed to be descanding towards my lower limbs. A feeling of relief stole over me, and'I began to be again conscious.

From that time I resumed consciousness, when I was entirely free from cramps, with the exception of a little in the feet. I had but one attack of cramps afterwards, which was immediately relieved by a dose administered by my wife-the doctor having left for a short time-and when lie returned, I felt that the poison was completely neutralized.

Snakes and Tigers in India.

We need not wonder at the eagerness, says the Chemist and Druggist, with which physicians and authorities in India examine every new remedy put forth as an antidote to the poison of a snake bite, when we learn that in British India, including. British Burmal, the deaths from snake bite during the past hree years amount to 25,664 . This statement appears in an official report published in the Gazette of India. From that report, we also learn that during the same period the deaths resulting from the attacks of all kinds of wild beasts in the same area numbered 12.554 . The snakes killed more than twice as many as were slain by the tigers and all the other fierce forest rangers put together. Truly the serpent is still " more subtle than the beasts of the field."

What sunshine is to flowers, smiles are to humanity. They are but trifles, to be sure, but, scattered along life's pathway, the good they do is inconceivable. A smile, accompanied hy a kind word, has been known to reclaim a poor outcast, and change the whole current of a human life. Of all life's blessings none are cheaper, or more easily dispensed, than smiles. Then let us not be too chary of them, but scatter them freely as we go; for life is too short to be frowned away.

Improved Steam Heating Apparatus.
The accompanying engraving represents the steam heating apparatus, patented July 18, 1871, by F. H. Pulsifer and W m. C. Wheeler, of Baltimore, Md.

A B C D represents the outer sheil, made in four sections and bolted together. The lower section, A, rests upon the brick ash pit, E, and is provided with a grate, F, separated by the hollow partition, G, inclined as shown. Through this partition is cast a number of tubes, H, for the passage of air to the fires, thereby producing a more perfect combustion of the fuel. By means of this partition two separate fires may be made, and, if preferred, only one grate or side may be used, thereby saving one half the amount of fuel. In this section is arranged the furnace door, I, which is of the ordinary construction. The sections, B and C, are provided with eight pipes or tubes, J (through which the water circulates), inclining and joining in the center, and bolted together through the center by the bolt, K. A water space is thus left all around the tubes.
In the engraving two of thesections, with flues or tubes, are shown; but for a larger boiler, as many sections as desired can be used. The pipes, J , in each section, may be setaround or advanced, as shown in the engraving, thereby obtaining a greater heating surface.
In the top section, D, forming the dome or steam drum, are arranged four flues or pipes, L, running at right angles to each other, thereby obviating the necessity of elbows as heretofore used. M is the steam pipe connection. The sections are all connected between the inner and outer shell, forming the water space, N , by the openings, 0 . The front of the ash pit is of cast iron, and is fitted with ash pit doors, P. The advantages claimed for this apparatus over others heretofore used are, that a better circulation of the tofore used are, that a better circulation of the water is obtained, as well as a greater amount of heating surface; the water, being in the hollow partition in close proximity with the fire, is sooner heated, and, if desired, only one of the fires may be lighted, thereby saving one half of the fuel. A more perfect combustion of the fuel is also claimed; the outlets or escape flues having no elbows, the smoke is sooner got rid of ; by bolting the pipes together in the center, greater strength is given the boiler. And it is claimed that, by including the tubes, they are not so liable to be cracked or broken in contraction or expansion, nor to hold the sediment contained in the water. And by arranging the tubes or pipes, as shown in the engraving, all the heat passing from the furnace or fire must come in contact from the furnace or fire must come in contact
with some portion of the heating surface, before with some portion of the h
passing out to the chimney.
passing out to the chimney.
The boiler is designed not only for heating but for other purposes.
For further information or for purchase of State rights, address Frank H. Pulsifer, Milwaukee, Wis
Wm. C. Wheeler, 679 Lexington street, Baltimore, Md.

WILCOX'S FOLDING HENCOOP.

To raisers of poultry and farmers in general, the invention we herewith illustrate will possess interest. It is a folding chicken coop, which may be closed together in small space for storage or transportation, and is constructed as follows:

The inclined bars, A, are held parallel to each other by crossbars, B, which, with the inclined bars, support the roof. To the upper ends of the bars, A, are pivoted the uprights, C. The latter are rabbeted on the outside, so that when the coop is folded they partly overlap the bars, A, as shown in detail at the bottom of the engraving. 'l'o the outer sides of the upper ends of the bars, C , is attached a board, D, theends of which project and rest against the ends of the bars, A, as shown.
The edge of the board, E, and the ends of the bars, C, as also the edges of the shoulders of the bars, C, are beveled off so that the coop may stand firmly when set up.
To the bare, C, and at a proper distance from each other,
are attached crossbars, E. The side bars, F, are slid in through keepers, G, and are held in place by spring catches, I, which engage the keepers, as shown. The inner ends of the bars, G, enter mortices in A, as shown in dotted outline.
When taken down and folded, the parts assume the posi tion shown in detail at the bottom of the engraving The invention was patented through the Scientific Ameri can Patent Agency, Nov. 14, 1871, by Edward J. Wilcox, of Ivy Mills, Pa., who may be addressed for further informa tion.

Ants as Engineers.-It appears that the ants in Panama are not merely mining engineers-they build tubular bridges.
square or hexagonal, to fit freely a bush fixed at the cente of the hollow axle, so that it may slide therein. Thus, when the spindle
The radial movement of the hollow axles is effected by links fixed to the framing. The spindles are carried in bear ngsin the framing, and are held in a parallel plane with the other axles of the engine by horizontal rocking shafts. The engine may have eight, ten, or even twelve wheels coupled and propelled by one pair of cylinders, either outside or in. side.
One purpose effected in the design is to make the load moderate on all the wheels-say not to exceed nine tuns pe pair-and to include all the weight for adhesion In the eight wheeled engine, the four wheels in the centre form a fised or parallel wheel base from seven to ten feet centers.
The leading and trailing axles radiate freely to pass curves of three chains radius. In the ten wheeled engine the six wheels in the centre form a fixed or parallel wheel base, the middle pair be ing without the flange. In the twelve wheeled engine the six wheels, situated immediately behind the leading axle, form a fixed or parallel wheel base from nine to twelve feet centres, and the leading and two trailing axles are fitted with the adial arrangement.
The load carried by the radial asle is entirely borne by a transverse spring or aprings from a pin in the center buckle, supporting slings from a bracket fixed to the framing or boiler. Either wheel of the leading and trailing axles is free to rise or fall about an inch and a half, to suit the "cant" or inequalities of the rail, without imparting any cross twist to the framing, thereby securing the advantages of the American bogie as applied to engines. The said supporting slings have a double fulcrum pin, where they are joined to the supporting brackets, to secure a certain amount of righting to make the engine run smooth and steady on a straightroad.
The details of Mr. Clark'sinvention cannot well be explained without drawings, but the general description given will enable engineers to comprehend in some measure the nature of the improvement.

SELF-CLOSING TELEGRAPH KEY.

This telegraph key, which was patented through the Scientific American Patent Agency, Nov. 7, 1871, by Jeremiah F. O'Sullivan and Philip W. O'Sullivan, of Jackson, Miss., is so constructed as to hold the circuit constantly closed, in order that it may not be accidentally left open by careless and inexperienced operators.
To this end there is applied to the ordinary key bar, A (see engraving) a secondary button, C, in ad-
a con
dition to the ordinary one, B, in connection with the lever,
D , and spring, H , the latter holding the lever in constant conD , and spring, H , the latter holding the lever in constant con-
tact with the conductor, unless it is lifted off by pressure on the secondary button.
The second button, C, is fitted upon a pin or shank, which passes through the button, B. The lever, D, is pivoted to the under side of the bar, A, at G. The spiral spring, H, holds the pin or hammer, E, in contact with the anvil, F, thereby closing the circuit.

The instrument can be worked perfectly, without grasping the button with thumb and fingers, by operators who do not use the thumb in writing. The improvement can be adapted to all keys at very little expense, and new keys can be made as cheap as the old.
The key is very convenient to inexperienced operators. Accidents that would open a common key will have no effect on this. The spring, so sensitive to the touch which closes the circuit, would require a nicely balanced weight to keep it open without bearing down the key bar and connecting the platina points on the hammer and anvil.
For further particulars, address O'Sullivan \& Brother, Jack. son, Miss.

