carbon and the proper flux) be formed into these ball or masses; or thie balls thus formed may be used in combination with ores in puddling, melting, or smelting.
He claims that by thus combining, with the ore. carbon and the proper kind and quantity of flux in the deoxidizing and
carbonizing of ores, he overcomes obstacles which have carbonizing of ores, he overcomes
hitherto been considered insuperable. hitherto been considered insuperable.
The balls are composed of serenty five parts of iron ore: twenty parts carbon ; three parts slaked lime; one part nitrate soda; and one part molasses. The ore, carbon, and lime are mixed intimately together, and the molasses and nitrate of soda dissolved in water enough to form the whole into a mass, which is then formed into balls and dried in the sun. This is with different ores. The object is to avcid the melting point with different ores. The object is to avcid the melting point in carbonizing, but to go as near it as possible. He thins
charges the ore as highly with carbon as possible, before it charges the ore as highly with carbon as possible, before
reach the melting point. For puddling, he uses say eighty parts burnt iron ore made very fine; sixteen parts carbon two parts slaked lime; one fourth part nitrate soda; and one and three fourths parts of molasses: mixes the ore, carbon, and lime minutely, dissolves the molasses and nitrate soda in water enough to mix, and then forms the mass into balls and dries them. For melting iron ore, he uses seventy part,: ground carbon; three fourths part lime; one fourth part nitrate of soda; twenty-eight parts finely ground ore; and
one part molasses. For smelting iron ore, sisty-cight parts ground and burnt iron ore; twenty-five parts carbon; five parts lime ; one part nitrate sola; and one part molasses.

Correstomdence.

The Evitors ar
rescondents.

\section*{Psychic Force}
 To the Editor of the Scientific American

Under this head I will introduce to your notice an experiment, which is akin to or identical with the power possessed by Mr. Home, and which experiment can be tried by any person for himself in less than five minutes.
A slip of thin writing paper, one and a half inches in length and a quarter of an inch broad, is creased in its middle, lengthwise and crosswise. This makes a dipping of the two ends, by which it may be poised on a needle point. The needle is set perpendicularly in a piece of cork, this forming a stand or support.
Now bold the hand, curved to the form of the quarter arc of a circle, near to the outer circle to be described by the paper arrow, and this will movecircularly, not always immediately, for sometimes you may have to wait several minutes. For some persons, it will revolve over a hundred times per minute. In most instances it revolves towards the tips of the
fingers, but not always. By putting the other hand near, in such manner as to point the fingers in the same circular direc tion the motion is generally increased. Voila! Try it and study its mystery!
"Heat!" is the first exclamation of many ; but if it were caused by an upward current of air, the direction of revolution would be determined by the pitch of the ends of the arrow. Experiment has proved that pitching the ends propellerwise has no effect; and reversing the pitch does not change the direction of motion
Gentlemen of the other side, I charge that if I were to announce that very few persons could do the above, you would cry "deception,"" delusion." "weak minded," etc. But, the experiment being within the reach of all, there will be no In this experiment, the requirements pointed out by the EdiIn this experiment, the requirements pointed out by the Edi
tors of the Sciestific Americ.in are also met, and it may tors of the Sciestific Americin are also met, and
prove to be an anticipation of the delicate apparatus to be devised by Professor Crookes, showing that all persons are more or less possessed of this power.

Philadelphia, Pa.

J. A. Solliday.

[We tried this experiment, which our correspondent af firms will always succeed, but we had not enough psychic force to make the paper turn, except when we blew it. Per haps some of our readers are better endowed.-Eds.

Railroad Gages. Scientific A merican
 To the Editor of the Scientific American:

I have felt for some time that the thanks of the engineering profession are due to the: Scientific Americans, for the timely and efficient effort it has made to anticipate and pre vent the error into which capitalists are likely to be led on the subject of railway gages reduced below the ordinary 4
feet $3 \frac{1}{2}$ track. I am glad to see that an engineer of Colonel feet $8 \frac{1}{2}$ track. I am glad to see that an engineer of Colonel
Seymour's experience has spoken emphatically on this sub. ject.

The necessity of uniformity in such a country as ours ought to supersede any ordinary questions of detail; and it would States if our engineers would agree, with one consent, to hold to the gage which has come to us from the old country, and which practically meets the problem of railway operation as well as can be desired. In fact, it would be well if this gage question, like that of standard weights and measures, could be made a matter of Congressional law, so as to relieve us from the want of a common standard. The arguments ac!from the want of a common standard. The arguments act.
vanced in favor of a narrower gage are fallacious, as the arguments in favor of an increase have proved to be by much experience and very great outlay; and while there are
times when engineers and scientific authorities need to adtimes when engineers and scientific authorities need to ad-
vance far beyond the current of popular sympathy, there are
other occasions when a conservative and guarded course is equally essential; and a popular paper deserves commend
tion and endorsement as mach in one case as in the other. tion and endorsement as mach in one case as in the other.
Samuel McElroy

Brooklyn, N. I.

samel meblros

ON SPECIFIC HEAT.

The adoption of a unit of heat (explained on page 3:06, of the last number of the Scientific Aymiicis), has given oc casion to the correct investigation of different classes of phe nomena, formerly not well understood; one of these is the peculiar property, of different substances, of requiring dif perature. These perature. These amounts differ whether we take the equal They are of course measured by the accepted standard; the unit and the numbers representing these amounts (accepting that of water as 1) are called the specific heat of the sub stance, even as the weight of equal volumes of different bodies (accepting water as 1) is calied the specific weight. Thus it was found that the amount of heat sufficient to raise the temperature of one pound of water a certain number of degrees was equal to the amount requireci to raise to the same temperature not less than thirty pounds of mercury, a mass of mercury more than twice the volume of a pound of water, found mercury is only 18% times heavier. It was fur of iron, and 5 of sulphur, contained respectively as much heat as 1 lb , of water: or, in other words, reçuired the same amount of heat to raise their temperatures to the same degree. We must, then, necessarily conclude that, at tho same gree. We must, then, necessarily conclude that, at tho same
temperature, water contains 30 times as much heat as mercury, 31 times as much as gold, 17 times as much as silver, 10 ij times as much as copper, 8.75 times as much as iron, and : times as much as sulphur
Consequently it is easy to deduce from this, when dividing 1,000 by the above numbers, that when water contains 1,000 units, mercury will contain $1,000 \div 30=33$, gold $1,000 \div 31=$ 32 , silver $1,000 \div 17=57$, copper $1,000 \div 10 \pi=05$, iron 1,000 $\div 875=1 \cdot 14$, and sulphur $1,000-5=200$; or, by taking wa-
ter $=1$, their numbers become, respectively, for mercury $0 \cdot 0 ; 3 ; 3$ gold 0.032 silver 0.050 eromer 0.095 , iron 0.11 , and sulphit $0 \cdot 2$. These numbers, then, are called the specific heat of the substances.

Different methods may be employed to determine this specific heat. One is the melting of ice by a certain amount of the substance (after having heated the latter to a certain de finite degree of heat), and to compare the amount of ice thus melted with that melted by an equal weight of water, heated to the same temperature as the substance in question. Of course peculiar precautions are necessary in order to prevent
the ice from being melted by exterior causes the ice from being melted by exterior causes other than the heat of the heated body under investigation. Another method
is that of mixture. It consists in raising the substance to a is that of mixture. It consists in raising the substance to a
certaindefinite temperature, and then throwing it into a vessel containing an equal weight of water at another definite low temperature. The amount of heat communicated to the wa ter will be proportional to the specific heat of the substance. Suppose, for instance, we mix one pound of water at a temperature of 150°, with another pound of water at a temperature of $3 \mathcal{Z}^{\circ}$, we shall find that the temperature of the of mercury of 150° of temperature with one 1 l . of water at 32°, the temperature of the misture will only be 30° The water, therefore, will have gained only 4 units of heat, in compensation for the 120° lost by the mercury. It is evident from this that the amount of heat required to raise the temperature of one lb. of mercury four degrees, is equal wa one thirtieth of that required t o effict the same result on water; or, in other words, one thirtieth of the adopted unit of heat. This experiment becomes still more striking if we take equal quantities in bulk of both these substances. Sup pose we take a pint of water of 32^{\wedge}, and a pint of mercury of 156°, and mix them; the temperature of the mixture, in place of being the mean or 94°, as is the case when mixing equal volumes of water, will only be 69°. The water has gained only 37°, in compensation for 87° lost by the mercury It is clear from this, that the amount of heat required to raise the temperature of one pint of mercury 37°, is equal to about two and one third of that required to produce the same effect on a pint of water, notwithstanding that the pint of mercury is more than thirteen and one half times heavie than the pint of water; in fact, three pints of water contain
as much heat as seven pints of mercury, notwithstanding the latter surpasses the first some thirty times in weight.
The heavier metals have almost all very nearly the same
specific heat as mercury. Thus, 'ead $=0.031$; iridium, 0.032 ; specific heat as mercury. Thus, 'ead $=0.031$; iridium, 0.032 ;
osmium, 0.031 ; platinum and gold, 0.032 ; thallium, 0.034 ; ismuth, 0.031 ; tungsten, 0.033 . However, in another clas the specific heats are nearly double the above numbers; thes palladium $=0.059$; rhodium, 0.053 ; silver, 0.025 ; tin, 0.056 ; cadmium, 0.0 .57 . While, again, in another class, they are zinc, 0.096 ; cobalt, 0.1 ; nickel, 0.11 ; iron, $0 \cdot 114$. The light metals have the largest specific heat, but always far inferior to that of water, and most of them nearly equal to that of sulphur. Thus aluminum $=0.21$; magnesium, 02 ; ; sodium, 020 ; potassium, $0 \cdot 16$. The two latter are so light that they hoat on water, while the lightest of all metals, lithium, has the greatest specific heat, namely 0.94 , almost that of water. In fact water has a greater specificheat than any other
substance, perhaps a few solutions excepted. For instauce substance, perhaps a few solutions excepted. For instance,
a solution of cane sugar has a specific heat of nearly 11 .

This shows what an immense store of heat may be con tained in the waters of our planet, especially the ocean, which covers about three fourths of its surface. If, then, we take into account that, for equal weights, the specific heat of air and gases is about one fourth that of water, and that our at mosphere has only the weight of a layer of water, at most, o 34 fect, it is clear that its heat is only equivalent to that of a layer of water of $34 \div 4$, or $8 \frac{1}{2}$ feet high. This depth of water, therefore, is capable of storing up as much heat as the whole atmosphere; and, in giving off its heat, is able to communicate half its excess of temperature to the air, retaining the other half. Suppose, for instance, a certain portion of the Atlantic ogean to have a temperature of 80°, while the atmosphere over it is 20°; eight and one half feet depth of water will then be capable of heating the air 30°, bringing it to $: 50^{\circ}$, while the water itself descends 30°, also reaching 50°. No wonder, thereforc, that the Gulf Stream, which continually is pouring the warm water from the tropics against the north western coast of Europe and its islands, modifies the climate of this part of the world to such a degree as to make it much warmer than the regions in the same latitude on the contiwarmer than the regions in the same latitude on the conti-
nent of eastern Europe, Asia, or America. When we fully consider that water is about 800 times heavier than air at the ordinary pressure, it is clear that one cubic foot of water contains as much heat as 800×4, or 3,200 culic feet of air or one cubic inch of water nearly as mach as two cubic feet of air.
In applying these facts to the heating of buildings. we must not, however, forget that the cold walls and objects in build ings require much more heat than the air (they have a great er specific heat), and therelore we cannot succeed in heating a room before we have brought all the objects in contact with the air to the same temperature. Applying this on a largo scalc again to the Gulf Stream, it is clear that west winds blowing over the same are heated to a moderate temperature and will very soon lose this heat when passing, in winter, ove the cold or perhaps frozen ground of the British Islands, France, Belgium, Holland, and the western parts of Germany In giving them a portion of their heat they will have lost most of it before reaching Russia; wherefore the influence of the Gulf Stream docs not extend beyond the lands of west ern Europe, which enjoy the sole benefit of the same.
New York.

SYRACUSE---ITS IMECHANICAL INDUS'TRIES.

A correspondent, in the New York Daily Times, gives a lengthyy account of the mercantile and manufacturing indus tries of Syracuse, N. Y., from which we make the following extrac
In this Syracuse brewery, looking, as it does, lik" some reat orphan asylum or other State institution, the manufac ture of beer is carried on, ou so large a scale and with such me chanical precision as in itself to create more than a gastro nomical interest. The first point is the wing of the building used for malting purposes. No less than twelve floors, each ninety-one by sixty-five feet, are used for the laying out of the malt for sprouting, after it has remained for forty-eight hours in the thirty-one steeping tubs, which hold 225 bushels apiuce. The malt is in every stage of progress-some just taken from the water, some again almost ready for the drying kilns, where it is taken seven days after it leaves the tubs. There are two kilns to each floor. The kilns are beated by enormous furnaces, with tiventy-four flues, in the basement. The flooring of the kiln is of iron, and the tempera ture, even on the top floor, is kept up to 90° Fahrenheit.
Malt is only made during eight montlis of the year, but in that time Mr. Greenway generally makes from 225,000 to 2 0,000 bushels. When the malt is properly dried it is trans ferred on a "carrier" to the storing bins below which hold bout $4 \pi, 000$ bushels. These "carriers" are very ingenious contrivances. They run the whole length of the malt house and granaries, 335 fect, and communicate with the clevators and hoppers.
A "carrier" is a narrow endless sheet of cloth, about two feet in width and bagging slightly on the middle, which runs backward and forward on rollers moving on a staging four feet from the ground, and either discharges the malt into the hoppers, or carries the raw barley from the elevators to the malting rooms. It will carry 1,000 bushels an hour. The granaries consist of three floors, 162 feet long and 65 feet wide; two of them being 14 feet, and the third 11 feet high. They have a storage capacity of 175,000 bushels of barley. The hop room is 65 by 40 feet. Its contents vary in yuantity, according to requirements and market values; but 350,000 pounds is aloout the average annual consumption.

The two huge vats, in which the malt, hops and water are converted into beer, hold 300 barrels each. The fluid in them is boiled by a steam worm which covers the bottom and is fed from the boilers in the basement. All the beer is boiled by steam. One engine of forty-five horse powar suffices for boiling the beer and heating the building in winter time. It consumes $\boldsymbol{\gamma} 00$ tuns of bituminous coal in the course of the year. The coal bunkers of the establishment hold 300 tuns.

An admirable contrivance, the patent of a Frenchman named Baudelot, is used for cooling the beer before it is run into the fermenting vats. The boiling beer is forced up to the floor above into a horizontal pipe seven feet from the ground. From this pipe it issues with great force from in numerable little jets, and dashes down on a succession of highly polished wooden bars aboutan inch in thickness and our inches across, placed like the laths of sun shutters when they are turned so as to admit the light. These bars are

The bars being polished and their edges rounded off，the beer always runs underneath and drops on the middle of the next one．Consequently，though very hot when it leaves the jets，it is quite cool when it reaches the trough at the bottom from which it is conducted through copper pipes to the fer－ menting vats．This apparatus will cool 120 barrels in an hour．By the way，there are nearly twenty miles of copper piping in the building．
＂The foam caused by the fermentation of the beer，after the yeast bas been mixed with it，assumes fantastic and even very beautiful shapes．Sometimes it resembles undulating slopes of smooth freshisnow ；sometimes it worksinto masses like drifts of snow，and，again，it will assume the rugged， riven，appearance of a Swiss glacier．And，to add to the simile，there are constant avalauches of the foam in conse－ quence of the continual escape of small quantities of the car bonic acid gas which sustains it．
＂Six or eight inches above the suface of the foarn，the gas is so powerful as to produce asphyxia in a very few seconds． Brewers have often lost their lives by carelessly inhaling it． Over the tun room，as it is called，there is an immense ice house，one of Brainerd＇s patent refrigerators， 150 feet by 11 feet，and 14 feet high．By a simple arrangement the cold strikes down，and in the hottest summer weather the beer is kept perfectly cool．The store rooms，three in number，hold together 8,000 barrels of beer．Last year the brewery sent out 50,000 barrels of beer and 12,000 barrels of lager beer． It is a common occurrence for the firm to pay $\$ 300$ or $\$ 400$ in one day to the Government for stamps．The ale from this brewery is shipped to all parts of the State，more especially the central and western divisions．
＂Λ djoining Mr．Green way＇s great brewery are the Syracuse Flour Mills，owned by J．W．Barker \＆Co．The mill，which is built of red brick，is 140 feet by 80 feet，and has five stories and a basement．It is run almost entirely by water power， though it is provided with an auxiliary engine of 100 horse power．Under an old lease，granted twenty－five or thirty years ago，the proprietors are empowered to use the surplus water of the Erie Canal for driving their machinery．A stone wall，built into the bank of the canal，at the light es tablished by law，prevents the use of the water when the canal is low．The engine has been in use for one month this fall，in consequence of the extensive dryness of the season， but previously it had only been used in the aggregate six weeks during the five years which have passed since its erection．The water，af ter driving the wheel passes throunh the mill and runs away into the Onondaga Creek．The gran－ aries of the mill have a storage capacity of 80,000 bushels of wheat，and the nine run of stones grind about 1,400 bushels a day．

The wheat is passed from the granaries to the grine stones on a＂carrier＂similar to that in use in Mr．Green－ cles below from which it is carried by elevators to the clean ing and winnowing floors．There it is passed through fou revolving cylinders，one within the other，made of very fine hair sieve cloth．These cylinders are erected at a slight in cline，so that the flour and impurities are constantly passing out of them；the flour to the stores over the packing room the impurities to the waste room．
The flour is barreled by a very simple contrivance，called the＂packer．＂From the stores above，a large pipe runs down to within about four feet of the ground，the bottom of which will just fit the top of a barrel．The barrel after be－ ing weighed，is placed on an iron stool and raised by machin ery to the pipe．The filling machinery is then set in motion． A small governor，which can be regulated to any weight，de taches the barrel，by letting the stool fall till the bottom of the barrel is level with the floor，as soon as the required weight of flour is in it．At the same time it clos： s the mouth of the supply pipe．The barrels of flour are at once shipped， as the firm have always as many orders on hand as they can fill．They generally ship about four hundred barrels a day， and averaging ten months running throughout the year，sel
from forty thousand to forty five thousand barrels a year．＂

REPORT OF EXPERIMENTS FOR TESTING THE RELATIVE

 VALUE OF LUBRICATING OILS．An experimental shaft with journals seveninches long，six inches diameter，was carefully fitted to brass bearings，sup ported by cast iron frames secured to a suitable foundation． A spur wheel attached to the center of the experimental shaft was geared to a pinion wheel，on the center of a driving shaft，with its bearings also attached to the cast iron frames． A set of scale beams，arranged to apply any required pres sure（within their capacity）to the lower half of the brass bearings，were also accurately fitte to the cast iron frames and foundation．The experimental shaft was driven by a five horse power oscillating engine，at a given number of rev－ olutions per minute，on each experiment．
The velocity was determined by a counter attached to the end of the shaft．The brass bearings of the experimental shaft were kept at an average of 96° Fahr．，which was deter． mined by thermometers，inserted through them to within hree eighths inch of the journals．An oil cup was placed over each bearing，graduated to fractional parts of a gill．A thermometer，to determine the temperature of the oil when applied，was placed in each cup．The experiments proved that the consumption of oil varied with its temperature when applied．The quantity of oil applied per minute was varied at intervals，as was required to keep the bearings as near 100° Fahr．as possible，as abrasion of the metals took place when it rose above that point．The total consumption of oil，
was necessary to preserve the uniform temperature of 96° Fahr．，at the required revolutions of the shaft per minute on each experiment．
Hence，the number of square feet of the journal＇s surface ravelled per minute，the pounds pressure upon them，and the quantity of oil applied，determined the lubricating value
of the oil．The method of applying the pressure by the of，the oil．The method of applying the pressure by the scale beams accurately indicated the power consumed by the engine to keep the shaft in motion during the experiments with each kind of oil．
A second series of experiments was made．（See Table No．2．）
A shaft，with journals 6 inches long and 23 inches diame ter，was fitted in place of the 6 inches diameter and driven at a corresponding number of revolutions per minute，for the purpose of testing the value of car box oils．
The experiments on each shaft were conducted with the same care，with corresponding results．

esults．

The accompanying Table（No．1．）exlibits the results of several tests，from which it will be seen that winter sperm oil，from three houses，sustained the heaviest pressure，and the best of them was taken as the initial of comparison for all others，and their per cent of lubricating value determine by it．The tests of mineral oils and mixtures of animal and fish oils with them would not sustain an equal pressure with the sperm，when equal quantities of the oil were ap－ plied，without rapidly increasing the temperature of the journals，and producing an alnansion of their surfaces．
The experiments，as shown by Table（No．2．），on car box oils，with a shaft having bearings 23 inches diameter，by 0 inches long，also proved that when the pressure on the bear－ mgs was made equal with winter sperm，it required from 100
to 400 per cent increase of oil，to keep the temperature of the to 400 per cent increase of oil，to keep the temperature of the journals below 100° Fahr．In no instance could the pressure on the car shaft be raised to 8,000 pounds（with mineral oils） it being the average pressure on an axle of a loaded coal car tive power，and the cost of repairs on all loaded trains，must be in ratio with the quality of lubricating material applied． Experiments were made at varied velocities，（see Table No 3．）with the same oils．The results proved that as the veloc ity was reduced the pressure could be increased，and the rela ity was reduced the pressure could be increased，and the rela－
tive consumption of oil，applied at equal temperatures，was decreased in almost equal ratio
The experiments were continued during a period of four teen months，on the oils purchased for the Camden \＆Amboy Railroad Company＇s use；the following results are deemed sufficient for illnstration ：

TABLE No． 1.
With Locomotive Axle Bearings， 6 in．diameter， 7 in．long．

KIND OF OLL．PUR． Chased of vamots mbalers．									
N－	\％	\％	in	Sis					\％
－	，	Hint	迷	－	\％				\％
	，	\％		，	8	Sis			\％
प\％	号	\％	\％	d	\％				\because
	12	50．0．	？		保			．．	\cdots
	，	\％	\％	\％	8				
	：	\％		\because					
¢ in 01	1	8	？	\because	\cdots				\cdots
Hice		\％		2	1				
	\％	\％		d	\％				
¢，mav	7．	\％							

TABLE No． 2.
With Car Aale Bearings， 2 量 in．diameter， 6 in．long．

TABLCE No．
With Locomotive Axle，at differnid velocities．

Rogers，Fire Kindlers－a Curious Invention．
Mr．Noah Rogers，of Thomasville，Georgia，has invented an automatic fire kindler，which is a curiosity in patented in－ ventions．It is a machine so constructed as to enable the fire o be kindled by any one in another part of the house，and without getting out of bed

A correspondent of the English Mechanic suggests two new uses for india rubber．One is for springs for locks，es pecially on gates and in other places exposed to the weather plication for this purpose will be obvious to our readers．
cientific Lectures to the New York Young Men＇s
The second of the above named series was delivered on Tuesday，November 28th，by Professor Doremus，the sub－ ject under consideration being＂Fire and its Treatment．＂ In the course of the lecture，Professor Doremus said
Fire is the most awful exhibition given to man of the po－ tency of the Creator，its power，either for good or evil，being ncalculable．Various have been the theoriesheld at different times as to the nature of heat．Lord Bacon maintained it was a mode of motion；the same view was held by Sir Isaac New－ ton，and in our own time the theory has been revived by a number of eminent chemists，chief among them Mr．John Tyndall who has written a book in defence of its truth．Fire had been considered by the ancients to be one of the ele－ ments；but this is not maintained at the present day，and we are in a certain sensc at sea as to its proper place in creation．
We frequently read of instances where the leaves of trees， rustled by the blast，ignite and produce terrible conflagra－ tions，such as have lately occurred in Wisconsin and Michi－ gan，where whole forests were destroyed from this simple cause．On the same principle a body，traveling with great velocity，coming in contact with an opposing force，produces fire－as，for instance，a projectile striking against the side of ship will send forth sparks of flame．The popular theories， which will be intelligible to all，relative to the production of this element are easily explained．It is by chemical means that we are daily mastering all the difficulties of science，and among them this principle of fire．If carbon or charcoal be exposed to the air it can easily ignite，and in the same way soft．In one year the Metropolitan（aas Company lost $\$ 12 \pi$ ， 000 by the burning of their soft coal when exposed to the air and in the same time twenty－eight of the coal ships which left Liverpool were supposed from the same cause to hav been lost．Another great cause of fire is electricity，which has been fearfully illustrated by the destruction of Chicago． The air is surcharged with the electric force，and in such weather as we have at present this can be easily proved．If ： person who walks a distance a day like this comes into a warm oom，and rubs his feet for a length of time on a carpet or rug，in a short time the electricity will penetrate to the very tips of his fingers，and a match applied to them will ignite flame．
This theory explains such phenomena as we read about i the papers in connection with the destruction of Chicago People who lived long distances from where the fire was raging，who had no idea of moving to a place of refuge，sud denly discover their houses on fire in a manner that seem inexplicable to them．The truth of the theory is easily explained．Great fires，such as that one，create a strong cur rent of electric air，which travels over great distances，fre quently firing a city in places widely apart．The knowledge of this principle should create a counter element to prevent such disasters，and it is believed chemistry is able，with its comparatively limited knowledge，to suggest one．Apart from this，some valuable hints are being thrown out by men of science relative to the building of our cities．The lons narrow streets are，it is said，very dangerous in the presence of a fire，short，broad streets on the European plan being much safer and less exposed to the action of the flames much safer and less exposed to the action of the flames
Some improvements might be made in our Fire Departments． Some improvements might be made in our Fire Departments．
It has been suggested that，instead of water being solely de－ it has been suggested that，instead of water being solely de－ ided in all our larger cities，filled with either carbonic sulphurous acid，which would be much more efficacious than water if pipes were connected with the reservoirs，leading to our large establislıments．In case of a fire breaking out at any time，the mere action of turning on a valve and filling the burning apartment with the gas would extinguish the flames．The same method could be employed on ship at sea，and the disasters that are now so frequent could be easily prevented and controlled．

To Filter Alcohol．

The following method of filtering alcohol or its solutions is said，by the Druggist＇s Cincular，to be very satisfactory and to be used extensively in North Germany，where it con （Swedish filtering secrets of the trade．Clan，mined paper and stirred into the liquid to be clarifed．The whele then to le strained through a fomnel lag，when the re t． hen tiond limpidity．Λ filter may also be made by spreading thin paper puip eventy upon stretched flamel on woolin cloth When dry，the cloth so coated will be found to give betto results than the felts，etc．，commonly employed as filters．

Profanity never did any man the least grood．No man is richer，or happier，or wiser for it．It commends no one to any society．It is disgusting to the refined，abominable to the good，insulting to those with whom we associate，degrad ing to the mind，unprofitable，needlesis and injurious to society．

Puelic Library at Montreal．－We learn with much pleasure that the Messrs．de St．Sulpice intend to open，at Montreal，a library where students can consult，gratuitously works of art and science which are difficult to procure．Stu－ dents in medicine and law especially，who are consilerably hindered in their studies for want of books，will appreciate this liberality．－Journal de Wi Thstriction Publique．

Greatness lies not in being strong，but in the right use of strength．

