carbon and the proper flux) be formed into these ball or masses ; or thie balls thus formed may be used in combination with ores in puddling, melting, or smelting.
He claims that by thus combining, with the ore.carbon and the proper kind and quantity of flux in the deoxidizing and
carbonizing of ores, he overcomes obstacles which have carbonizing of ores, he overcomes
hitherto been considered insuperable. hitherto been considered insuperable.
The balls are composed of serenty-five parts of iron ore: twenty parts carbon ; three parts slaked lime ; one part nitrate soda; and one part molasses. The ore, carbon, and lime are mixed intimately together, and the molasses and nitrate of soda dissolved in water enough to form the whole into a mass, which is then formed into balls and dried in the sun. This is with different ores. The object is to avcid the melting point with different ores. The object is to avcid the melting point in carbonizing, but to go as near it as possible. He thins
charges the ore as highly with carbon as possible, before it charges the ore as highly with carbon as possible, before it
reaches the melting point. For puddling, he uses say eighty parts burnt iron ore made very fine; sixteen parts carbon two parts slaked lime; one fourth part nitrate soda; and one and three fourths parts of molasses: mixes the ore, carbon, and lime minutely, dissolves the molasses and nitrate soda in water enough to mix, and then forms the mass into balls and dries them. For melting iron ore, he uses seventy part.; ground carbon; three fourths part lime; one fourth part nitrate of soda; twenty-eight parts finely ground ore; and
one part molasses. For smelting iron ore, sisty-cight parts ground and burnt iron ore; twenty-five parts carbon; five parts lime ; one part nitrate sola; and one part molasses.

Correstomdence.

The Eaitors ar
ressordents.

\section*{Psychic Force}
 To the Editor of the Scientific American

Under this head I will introduce to your notice an experiment, which is akin to or identical with the power possessed by Mr. Home, and which experiment can be tried by any person for himself in less than five minutes.
A slip of thin writing paper, one and a half inches in length and a quarter of an inch broad, is creased in its middle, lengthwise and crosswise. This makes a dipping of the two ends, by which it may be poised on a needle point. The needle is set perpendicularly in a piece of cork, this forming a stand or support.
Now bold the hand, curved to the form of the quarter arc of a circle, near to the outer circle to be described by the paper arrow, and this will movecircularly, not always immediately, for sometimes you may have to wait several minutes. For some persons, it will revolve over a hundred times per minute. In most instances it revolves towards the tips of the
fingers, but not always. By putting the other hand near, in such manner as to point the fingers in the same circular direc tion the motion is generally increased. Voila! Try it and study its mystery!
"Heat!" is the first exclamation of many ; but if it were caused by an upward current of air, the direction of revolution would be determined by the pitch of the ends of the arrow. Experiment has proved that pitching the ends propellerwise has no effect; and reversing the pitch does not change the direction of motion
Gentlemen of the other side, I charge that if I were to announce that very few persons could do the above, you would cry "deception,"" delusion." "weak minded," etc. But, the experiment being within the reach of all, there will be no In this experiment, the requirements pointed out by the EdiIn this experiment, the requirements pointed out by the Edi
tors of the Sciestific Americ.in are also met, and it may tors of the Scievtific Americin are also met, and it may
prove to be an anticipation of the delicate apparatus to be prove to be an anticipation of the delicate apparatus to be
devised by Professor Crookes, showing that all persons are more or less possessed of this power.

Philadelphia, Pa

J. A. Solliday.

[We tried this experiment, which our correspondent af firms will always succeed, but we had not enough psychic force to make the paper turn, except when we blew it. Per haps some of our readers are better endowed.-Eds.

Railroad Gages. Scientific A merican
 To the Editor of the Scientific American:

I have felt for some time that the thanks of the engineering profession are due to the: Scientific Americans, for the timely and efficient effort it has made to anticipate and pre vent the error into which capitalists are likely to be led on the subject of railway gages reduced below the ordinary 4
feet $3 \frac{1}{2}$ track. I am glad to see that an engineer of Colonel feet $8 \frac{1}{2}$ track. I am glad to see that an engineer of Colonel
Seymour's experience has spoken emphatically on this sub. ject.

The necessity of uniformity in such a country as ours ought to supersede any ordinary questions of detail; and it would States if our engineers would agree, with one consent, tohold to the gage which has come to us from the old country, and which practically meets the problem of railway operation as well as can be desired. In fact, it would be well if this gage question, like that of standard weights and measures, could be made a matter of Congressional law, so as to relieve us from the want of a common standard. The arguments ac!from the want of a common standard. The arguments ad.-
vanced in favor of a narrower gage are fallacious, as the vanced in favor of a narrower gage are fallacious, much experience and very great outlay; and while there are
times when engineers and scientific authorities need to adtimes when engineers and scientific authorities need to ad-
vance far beyond the current of popular sympathy, there are
other occasions when a conservative and guarded course is equally essential; and a popular paper deserves commend
tion and endorsement as mach in one case as in the other. tion and endorsement as mach in one case as in the other.
Samuel McElrox

Brooklyn, N. I:

samel meblros

ON SPECIFIC HEAT.

The adoption of a unit of heat (explained on page 3:06, of the last number of the Scientific Anfeicicis), has given oc casion to the correct investigation of different classes of phe nomena, formerly not well understood; one of these is the peculiar property, of different substances, of requiring dif perature. Ths of heat in order to be heated to the same temperature. These amounts differ whether we take the equal They are of course measured by the accepted standard; the unit and the numbers representing these amounts (accepting that of water as 1) are called the specific heat of the sub stance, even as the weight of equal volumes of different bodies (accepting water as 1) is calied the specific weight. Thus it was found that the amount of heat sufficient to raise the temperature of one pound of water a certain number of degrees was equal to the amount requireci to raise to the same temperature not less than thirty pounds of mercury, a mass of mercury more than twice the volume of a pound of water, found thercury is only 13% times heavier. It was furthe of iron, and 5 of sulphur, contained respectively as much heat as 1 lb , of water; or in other words, recuired the same amount of heat to raise their temperatures to the same degree. We must, then, necessarily conclude that, at tho same gree. We must, then, necessarily conclude that, at tho same
temperature, water contains 30 times as much heat as mercutemperature, water contains 30 times as much heat as mercu-
ry, 31 times as much as gold, 17 times as much as silver, 10 ij times as much as copper, 8.7% times as much as iron, and times as much as sulphur
Consequently it is easy to deduce from this, when dividing 1,000 by the above numbers, that when water contains 1,000 units, mercury will contain $1,000 \div 30=33$, gold $1,000 \div 31=$ 32 , silver $1,000 \div 17=57$, copper $1,000 \div 10 \pi=05$, iron 1,000 $\div 875=1 \cdot 14$, and sulphur $1,000-8=200$; or, by taking wa-
ter $=1$, their numbers become, respectively, for mercury $0 \cdot 0 ; 3 ; 3$ gold 0.032 silver 0.050 come, 0.095 , iron 0.11 , and sulphit $0 \cdot 2$. These numbers, then, are called the specific heat of the substances.

Different methods may be employed to determine this specific heat. One is the melting of ice by a certain amount of the substance (after having heated the latter to a certain de finite degree of heat), and to compare the amount of ice thus melted with that melted by an equal weight of water, heated to the same temperature as the substance in question. Of course peculiar precautions are necessary in order to prevent
the ice from being melted by exterior causes the ice from being melted by exterior causes other than the heat of the heated body under investigation. Another method
is that of mixture. It consists in raising the substance to a is that of mixture. It consists in raising the substance to a
certaindefinite temperature, and then throwing it into a vessel containing an equal weight of water at another definite low temperature. The amount of heat communicated to the wa ter will be proportional to the specific heat of the substance. Suppose, for instance, we mix one pound of water at temperature of $15 \sigma^{\circ}$, with another pound of water at a tem perature of $3 \mathcal{Z}^{\circ}$, we shall find that the temperature of the of mercury of 150° of temperature with one lb . of water at 32°, the temperature of the misture will only be 30° The water, therefore, will have gained only 4 units of heat, in compensation for the 120° lost by the mercury. It is evident from this that the amount of heat required to raise the temperature of one lb. of mercury four degrees, is equal wa one thirtieth of that required t o effict the same result on water; or, in other words, one thirtieth of the adopted unit of heat. This experiment becomes still more striking if we take equal quantities in bulk of both these substances. Sup pose we take a pint of water of 32^{\wedge}, and a pint of mercury of 156°, and mix them; the temperature of the mixture, in place of being the mean or 94°, as is the case when mixing equal volumes of water, will only be 69°. The water has gained only 37°, in compensation for 87° lost by the mercury It is clear from this, that the amount of heat required to raise the temperature of one pint of mercury 37°, is equal to about two and one third of that required to produce the same effect on a pint of water, notwithstamding that the pint of mercury is more than thirteen and one half times heavie as much pint of water; in fact, threr pints of water contai as much heat as seven pints of mercury, notwithstandin
latter surpasses the first some thirty times in weight.
The heavier motals have almost all very nearly the sam specific heat as mercury. Thus, 'ead $=0.031$; iridium, $0 \cdot 0 ; 32$ osmium, 0.031 ; platinum and gold, 0.032 ; thallium, 0.034 bismuth, 0.031 ; tungsten, 0.033 . However, in another class the specific heats are nearly double the above numbers; thes palladium $=0.059$; rhodium, 0.053 ; silver, 0.027 ; tin, 0.056 ; cadmium, 0.0 .57 . While, again, in another class, they are zinc, 0.096 . colalt, 0.1 . nickel, 0.11 ; iron, 0.114 . The light metals have the largest specific heat, but always far inferior to that of water, and most of them nearly equal to that of sulphur. Thus aluminum $=0.21$; magnesium, 025 ; sodium, 020 ; potassium, $0 \cdot 16$. The two latter are so light that they hoat on water, while the lightest of all metals, lithium, has the greatest specific heat, namely $0 \cdot 94$, almost that of substance, perhaps a few solutions excepted than any other substance, perhaps a few solutions excepted. For instance,
a solution of cane sugar has a specific heat of nearly 11 .

This shows what an immense store of heat may be con tained in the waters of our planet, especially the ocean, which covers about three fourths of its surface. If, then, we take into account that, for equal weights, the specific heat of air and gases is about one fourth that of water, and that our at mosphere has only the weight of a layer of water, at most, o 34 feet, it is clear that its heat is only equivalent to that of a layer of water of $34 \div 4$, or $8 \frac{1}{2}$ feet high. This depth of water, therefore, is capable of storing up as much heat as the whole atmosphere; and, in giving off its heat, is able to communicate half its excess of temperature to the air, retaining the other half. Suppose, for instance, a certain portion of the Atlantic ogean to have a temperature of 80°, while the atmosphere over it is 20°; eight and one half feet depth of water will then be capable of heating the air 30°, bringing it to $: 50^{\circ}$ while the water itself descends 30°, also reaching 50°. No wonder, thereforc, that the Gulf Stream, which continually is pouring the warm water from the tropics against the north western coast of Europe and its islands, modifies the climate of this part of the world to such a degree as to make it much warmer than the regions in the same latitude on the contiwarmer than the regions in the same latitude on the conti-
nent of eastern Europe, Asia, or America. When we fully consider that water is about 800 times heavier than air at the ordinary pressure, it is clear that one cubic foot of water contains as much heat as 800×4, or 3,200 culic feet of air or one cubic inch of water nearly as mach as two cubic feet of air.
In applying these facts to the heating of buildings. we must not, however, forget that the cold walls and objects in build ings require much more heat than the air (they have a great er specific heat), and therelore we cannot succeed in heating a room before we have brought all the objects in contact with the air to the same temperature. Applying this on a large scalc again to the Gulf Stream, it is clear that west winds blowing over the same are heated to a moderate temperature and will very soon lose this heat when passing, in winter, ove the cold or perhaps frozen ground of the British Islards, France, Belgium, Holland, and the western parts of Germany In giving them a portion of their heat they will have los most of it before reaching Russia; wherefore the influence of the Gulf Stream docs not extend beyond the lands of west ern Europe, which enjoy the sole benefit of the same. New York.

SYRACUSE---ITS IMECHANICAL INDUS'TRIES.

A correspondent, in the New York Daily Times, gives a lengthy account of the mercantile and manufacturing indus. tries of Syracuse, N. Y., from which we make the following extra
In this Syracuse brewery, looking, as it does, lik's some reat orphan asylum or other State institution, the manufac ture of beer is carried on, on so large a scale and with such me chanical precision as in itself to create more than a gastro nomical interest. The first point is the wing of the building used for malting purposes. No less than twelve floors, each ninety-one by sixty-five feet, are used for the laying out of the malt for sprouting, after it has remained for forty-eight hours in the thirty-one steeping tubs, which hold 225 bushels apiuce. The malt is in every stage of progress-some just taken from the water, some again almost ready for the drying kilns, where it is taken seven days after it leaves the tubs. There are two kilns to each floor. The kilns are beated by enormous furnaces, with tiventy-four flues, in the basement. The flooring of the kiln is of iron, and the tempera ture, even on the top floor, is kept up to 90° Fahrenheit.
Malt is only made during eight montlis of the year, but in that time Mr. Greenway generally makes from 225,000 to 20,000 bushels. When the malt is properly dried it is trans erred on a "carrier" to the storing bins below which hold bout 4 n, 000 bushels. These "carriers" are very ingenious contrivances. They run the whole length of the malt house and granaries, 335 feet, and communicate with the elevators and hoppers.
A "carrier" is a narrow endless sheet of cloth, about two feet in width and bagging slightly on the middle, which runs backward and forward on rollers moving on a staging four feet from the ground, and either discharges the malt into the hoppers, or carries the raw barley from the elevators to the malting rooms. It will carry 1,000 bushels an hour. The granaries consist of three floors, 102 feet long and foj feet wide; two of them being 14 feet, and the third 11 feet high. They have a storare capacity of 175,000 bushels of barley. The hop room is 65 by 40 feet. Its contents vary in yuantity, according to requirements and market values; but 350,000 pounds is aloout the average annual consumption.
" The two huge vats, in which the malt, hops and water are converted into beer, hold 300 barrels each. The fluid in them is boiled by a steam worm which covers the bottom and is fed from the boilers in the basement. All the beer is boiled by steam. One engine of forty-five horse powar suffices for boiling the beer and heating the building in winter time. It consumes $\boldsymbol{\gamma} 00$ tuns of bituminous coal in the course of the year. The coal bunkers of the establishment hold 300 tuns.

An admirable contrivance, the patent of a Frenchman named Baudelot, is used for cooling the beer before it is run into the fermenting vats. The boiling beer is forced up to the floor above into a horizontal pipe seven feet from the ground. From this pipe it issues with great force from in numerable little jets, and dashes down on a succession of highly polished wooden bars aboutan inch in thickness and four inches across, placed like the laths of sun shutters when they are turned so as to admit the light. These bars are

