The following are Lite in Japan. Japan," from the pen of Bard Travels in by Scribner \& Co., 654 Broadway, N. Y.

rice flantivg in japan.

"As we advanced through the country, both men and women were busily employed in planting out theirrice. This was the first time I had seen any but isolated cases of women being engaged in field labor in Japan ; for the Japanese appear to me to be honorablydistinguished among nations of a higher civilization, in that they leave their women to the lighter work of the house, and perform themselves the harder out door labor. Indeed, I was at first in some doubt here, for it was by no means easy to distinguish the women from the men at a little distance. To guard the legs, probably from leeches, as they paddled in the mud, they all wore gaiters up to the knees and short cotton trowsers. When the neck was covered, there was no very distinguishing difference between the sexes, as the men never have any hair about the face. The wheat in Japan never appears to be sown broadcast. All that I have seen has been drilled and planted in rows,
much as the rice is, a few stalks tozether. Labor is cheap, much as the rice is, a few stalks together. Labor is cheap,
and it is to be presumed they find this the more profitable and it
way."

japanese jugglers.

"The jugglers and mountebanks are alse distinguished by the variety and originality of their feats. For instance, they perform a series of tricks by means of an enormously long false nose. One will lie down on his back, with a boy balanced on the end of the nose, the boy supporting an open umbrella on the end of his own nose. Another will hold up his foot, upon the sole of which a boy plants his nose, and balances himself in the air. Some of these feats seem impossible, without the aid of some concealed machinery.
"I was witness to some astonishing specimens of illusion. After a variety of tricks with tops, cups of water, and paper butterfies, the juggler exhibited to the spectator a large open fan which he held in his right hand, then threw into air caught by the handle in his left hand, squatted down, fanned himself, and then turning his head in profile, gave a long sigh, during which the image of a galloping horse issued from his mouth. Still fanning himself, he shook from his right sleeve an army of little men, who presently, bowing and dancing, vanished from sight. Then he bowed, closed the fan, and held it in his two hands, during which time his own head disappeared, then became visible, but of colossal size, and finally reappeared in its natural dimensions, but multiplied four or five times. They set a jar before him, and in a short time he issued from the neck, rose slowly into the air, and vanished in clouds along the ceiling.
"At the fair of Asaksa, in addition to the performances of jugglers of all kinds, there are collections of animals which have been taught to perform tricks-bears of Yeso, spaniels which are valuable in proportion to their ugliness, educated monkeys and goats. Birds and fish are also displayed in great quantities. But the most astonishing patience is manfested by an old Corean boatman, who has trained a dozen tortoises, large and small, employing no other means to direct them than his songs and a small metal drum. They march in line, execute various evolutions, and conclude by climbing upon a low table, the larger ones forming, of their own accord, a bridge for the smaller, to whom the feat would otherwise be impossible. When they have all mounted, they dispose themselves in three or four piles like so many plates.

Japanese gymnasts.

M. Humbert gives the following description of the performances of this class, both in the streets and booths. "In the public squares, the shouts and the sound of tamborines of two troops of gymnastic mountebanks, installed at opposite cornere, are heard above the voices, songs, and clatter of imple ments of labor in the surrounding workshops. One of these troons performs in the open air, its heroes being the swallower of swords, and the prodigious jumper. The latter leaps
with impunity through two hoops crossed at right angles, fixed on the top of a pole, which also supports a jar carefuly balanced on the intersecting hoops. But his most remark able feat consists in leaping, or rather flying, from end to end through a cylinder of bamboo lattice work six feet long and placed on trestles. When he wishes to excite the amazement of the spectators to the highest pitch, the performerlights canterior, of the cylinder; after which he passes through like a flash without extinguishing or deranging them.

His gentle spouse, seated on a box beside the cylinder, accompanies the different stages of the performance with airs on her guitar. To the shrill sounds of the instrument she adds, from time to time, the tones of a voice which is either hoarse and hollow, or piercingly elevated, according as she judges it better to encourage sternly or to celebrate
triumphantly the prowess of the astonishing man whose fortriumphantly the prowess of the
tunes she is permitted to share."

Electromagnetic Eurglar Proof Curtain

This invention consists in the arrangement of a burglar proof curtain to be suspended in front of safes, vaults, behind windows, or in other suitable places, and connected with an electric alarm apparatus in such a manner that it will, when moved or pierced, cause the alarm to be sounded
By the use of such curtain a very cheap and, it is claimed most effective guard is obtained, which can, over night, be suspended in front of the things or openings to be protected, while during day time it can be rolle up out of the way or otherwise do the service of ordinary curtains.
Any attempt to enter by cutting through the curtain will
cause an alarm to be sounded by the establishment of a complete circuit, while, on the other hand, any attempt to roll up the curtain or lift the roller from the brackets will, by entirely breaking the circuit, also cause an alarm to be sounded. Messrs. Edwin Holmes, of Brooklyn, N. Y., and H. C. Roome, of Jersey City, N. J., are the inventors.

calles' hydro-aero-dynamic wheel.

A mode of transmitting power to great distances, proposed by an exhibitor at the Paris Exposition, from Belgium, Mr. A. Calles, makes use of air under a certain degree of compres sion as the vehicle of the force to be transmitted, not by ac cumulating theair thus employed in reservoirs, but by driving it, by the operation of the original motor, directly into a tube extending to the point of final application, where it is to be discharged beneath a wheel submerged in water, which it is to turn by its ascensional force. The mode of application is illustrated in the accompanying engraving, and is de scribed as follows in Dr. A. P. Barnard's report on machinery and processes:

The idea of employing compressed air as a means of transmitting power is not new; but the mode here suggested of using the power so transmitted is sufficiently original. The exhibitor claims originality in another point of view. His application of the power is not only original in form but in principle also. At Mont Cenis, where air is employed as a vehicle of force, it is the elasticity of the compressed air which furnishes the motive power. Consequently, it is there important that the compression should be carried very far It is carried, in fact, up to six atmospleres. The present ap paratus proposes to derive its mechanical advantage not from elasticity, but from volume. It is, therefore, here equally important that there should be as little compression as is compatible with the attainment of the object.
The air being employed to turn a submerged wheel, it wil be easily understood that the wheel must have the form of an ordinary overshot water wheel reversed. In the overshot wheel, it is the weight of water, which is in the buckets of the descending side while those of the ascending side are empty, which causes the wheel to turn. The motive power is the difference between the counteracting weights of the
two sides. In the submerged wheel driven by air, on the contrary, it is the weight of water which is displaced from the buckets of the ascending side, while those of the descending side are full, which is the measure of the driving power. In the present case, as in the former, this driving power is the difference between the weights of the two sides It is assumed by the inventor that air immerged in water In point of fact, the rapidity of ascent of air in water will depend very much upon the volume ascending, and will be, on an average, materially greater than is here stated. But assuming the statement to be correct, it would furnish a limit to the velocity which can be given to the circumference of the wheel ; and a given wheel will perform its maximum of work when the supply of air is sufficient to keep its ascending buckets full at half this velocity. Considering, however, that the motive power in the case is gravity, the most advan tageous velocity must be necessarily not greatly differen from that which experience has shown to be best with the
ordinary overshot wheel working in the air-that is to say, ordinary overshot wheel working in the air-that is to say,
must not exceed one meter per second at the circumference. The compression of the air must evidently be sufficient to overcome the pressure of the water at the point of efflux beneath the wheel. This point may be taken at three or four meters of depth, and the corresponding pressure will amount to three or four tenths of an atmosphere. As the air ascends,
it resumes by degrees the bulk which belonged to it before compression. Inorderto take advantage of this circumstance, the velocity of discharge must be so adjusted to that of the wheel that the buckets may not be entirely filled at the bot buckets, and to that extent a loss of motive power.
The inventor takes no account of the resistance of tubes to the flow of air through them. He supposes that at low pressures and low velocities this resistance will be insensible, so thatthe power received from the source may be almost wholly re-established by the wheel. He has erected a wheel in the park of the Exposition, which is designed to demonstrate the
truth of this proposition, and to illustrate his system generally. It is driven by air compressed by an engine in the ally. It is driven by air compressed by an engine in the
palace, and transmitted through a tube nine and a half centi-
meters ($3 \frac{3}{4}$ inches) in diameter, and one hundred and fifty seven meters (more than 500 feet) in length. This tube makes in its course fourteen right angles in order to avoid the constructions which it encounters on its way. It is computed that a force of nine and a half horse power is expended in compressing the air, and that the velocity of efflux is thirty two meters (more than 100 feet) per seeond. On the other hand, the power of the wheel turned by the escaping air is stated at nine horse power. From these figures it would result that the loss in the present instance is but about five per cent. That there is a fallacy in the calculation is evident from the consideration that the loss of a submerged wheel, driven in this way by air, cannot be less than that of an ordinary overshot water wheel of the same dimensions; and that this loss is at least one fifth, and is often more than one third. And it results from the experiments of the Italian engineers at Coscia, on the resistance of tubes to columns of air driven through them, that to maintain such a velocity as is stated to be given to the air in this experiment, and to the distance named of one hundred and fifty-seven meters, there would be required an expenditure of force without return, sufficient to produce a compression of nearly an atmosphere and a half.

Locomotive and Traction Engine

Thomas Aveling, of Rochester, England, well known in connection with the celebrate Aveling \& Porter's steam road rollers and traction engines, has just patented, through the Scientific American Patent Agency, an improvement the object of which is to construct agricultural, road, traction, and portable steam engines, and tramway locomotives, in a simpler and more economical manner than heretofore, and at the same time to render them stronger and more durable.
At each side of the fire box end of the boiler is fixed a strong wrought iron horn plate. These horn plates are rivet strong wrought iron horn plate. These horn plates are rivet-
ed to the boiler and firebox. They project beyond the end ed to the boiler and firebox. They project beyond the end
of the fire box, and above the top of the boiler. The projectof the fire box, and above the top of the boiler. The project
ing portions of the horn plates are connected to the crown ing portions of the horn plates are connected to the crown
of the boiler by curved or bent plates, between which and of the boiler by curved or bent plates, between which and
the horn plates are secured the bearings for the crank $\mathbf{s h a f t}$. The axle of the traveling wheels works in bushes secure in screw bolts to the rearends of the horn plates. Above this axle is a shaft, also working in bushes and carried by the horn plates. To this shaft is keyed the gearing for transmit ting the rotary motion of the crank shaft to the axle of the traveling wheels. The crank shaft receives rotary motion in the usual manner from the cross head and connecting rod of the engine, and is fitted at one end with a spur pinion which drives intermediate gearing; and, through the spur wheel gives rotary motion to the axle of the traveling wheels. A fly wheel, on the opposite end of the shaft, is employed to carry the crank shaft over its dead points. The engine is fitted, as usual, with a tank, and it is provided with any approve steering apparatus for guiding the front wheels.
From the above description, it will be understood that as the wrought iron horn plates will take all the thrust from the piston acting on the crank shaft the boiler and fire box will not be so liable as heretofore to be damaged or strained by the working of the machinery.

Resistance of Nickel to the Action of Water.
A small square bar of steel coated with nickel has been re peatedly immersed in water for hours together without show ing any signs of rusting, and Mr. John Spiller states, in the Photographic Neros, that he finds it possible to bury it in flowers of sulphur for several days without tarnishing the lustre of the nickel surface. Neither has this latter severe test any effect upon the copper and brass bars upon which the nickel coating has been applied, and these metals may even be immersed in aqueous solution of nitrate of silve without effecting the reduction of that metal. In one of the angles only, where the coating seemed to be imperfect, was there any indication of silver reduction in the case of th brass tube, the steel bar being perfectly protected over the whole surfaceagainst the action of silver and copper solu
tions.
Here, then, is a most valuable property in electro-deposited nickel. A metal of the zinc and iron group is proof agains the action of nitrate of silver; the experiment proves it to be so, and we must regard pure nickel as belonging (from this point of view) to the class of noble metals, resisting, like gold and platinum, the attacks of sulphur and of highly corrosive metallic solutions. The nickel facing, when burnished, has a whiter color than polished steel, although not equal to silver itself, its aspect being rather that of rolled platinum. It withstands the action of heat also remarkably well, for the fusion point is very high, and oxidation occurs only atelevated temperatures. For fine balance beams and weights, lens mountings, reflectors, laboratory microscopes, Sykes' hydrometers, still worms, egg beaters, camera fittings and a variety of apparatus used by the chemist and photog rapher, the nickel coating will, probably, find extensive ap plication.

The steamer New London, recently burnt in Long Island Sound, is reported to have been scandalously ill furnished with appliances for subduing fire and for saving life. "The life preservers and the boats were inaccessible, and the people could, throwing planks and state room doors into the water, and then leaping after them in hopes of reaching shore by and then leaping after them in hopes of reaching shore by
their friendly aid. The fire extinguishingapparatus, too, could not be promptly and effectually used." The Commercial Ad vertiser thus accounts for a calamity in which at least twenty vertiser thus accounts
persons lost ther lives.

Improved safety Water Gage,

It is needless for us to say anything in regard to the value of a reliable water gage as an adjunct to steam boilers. The gage shown in our engraving, however, has certain peculiarities of construction not to be found on ordinary water gages, which improvements render it perhaps better adapted to general use than any hitherto brought before the public
It is called the "Safety Water Gage" from the fact that if, as frequently occurs, the glass tube should be broken, the escape of water and steam is prevented by the action of valves which automatically close the communication between the boiler and the tube.
The method by which this is accomplished is indicated in the engraving, where A represents the lowervalve, B the knob on the stem of the upper valve, C a pet cock for keeping the gage free from sediment, and D hand knobs on the stems of valves which control the passage of steam and water from the boiler, but do not act automatically.
As will be seen, the lower valve, A, receives the pressure of water upon its under side, so that if the pressure uponits upper surface be removed by breaking the tube, the valve is immediately forced up to its seat, thus preventing the outflow.
The upper valve attached to the stem, B, is of the same form, and prevents the efflux of steam in the same manner, the passage of the steam being out, through the upper cock which connects boiler and gage, into a chamber, thence up through the valve attached to B , and down through an annular passage to B , and down through an annular passage to the glass tube. It is evident that the moment
the pressure in the glass ceases, these valves the pressure in the gla
will immediately close. A very great advantage is obtained by this
construction, namely, that the cocks connectconstruction, namely, that the cocks connect-
ing the gage and boiler may be made so large as to obviate all danger of clogging, without the danger of any one getting scalded or burnt, should the glass tube break. The gage is therefore not only safe in its action, but much more reliable in its indications than the old form of gage.
When it becomes necessary to put in a new tube, all that is required to set the gage in operation after its attachment is to press down the knob, B. This first lets steam into the tube; the pressure then being equalized on the top and bottom of the valve, A, the latter drops and allows the water to rise to its properlevel. In order that the valve areas above and below, which receive the pressure, shall be equal, the valvesare given conical faces, which meet the sharp edges of the port, as shown in the lower valve, at A. Several hundred of these gages are in use and giving great satisfaction. Patented June 11, 1867. For further information address the manufacturer, Augustus P. Brown, 57 Lewis street, New York.

Cook's Evaporating Apparatus. Mr. Justus Cook, of Wellsville, N. Y., has nvented a new evaporating apparatus for the convenient and economical heating and evaporating of liquids in the process of extracting the juices of plants, roots, barks, etc., as well as in the manufacture of sirups and sugar. It consists in an evaporating vessel with a flat bottom and circular or square ends, and with a false flat bottom so place as to leave a steam space between the true and false bottoms, and in one or more rotating agitators or stirrers. introduced, and made to pass back and forth beneath the introduced, and made to pass back and forth beneath the
liquid in the vessel. Timbers beneath the vessel, on each liquid in the vessel. Timbers beneath the vessel, on each
side, are made adjustable by means of a joint connection and side, are made adjustable by means of a joint connection and
a screw for each pair of timbers, by means of which the vessel may be brought to a true level, and the liquid properly distributed or discharged. The agitators or stirrers are attached to vertical shafts, and suspended from transverse trusses. The latter are supported by the sides of the vessel.

When the evaporating vessel is full or nearly full, the stirrers will revolve beneath the surface of the liquid and keep the liquid in a constantstate of agitation. Sweep plates, attached to the vertical shafts, stand edgewise above the heads of the agitators. These plates are designed to fan the surface of the liquid and blow off the steam to increase the evaporation.
As the heating agent employed for this evaporation is steam, the vessel may be made of wood, and also the lower or true bottom. The false bottom is made of metal, on account of its being a better conductor of heat.

Pierson's Frames for Diking Sheets.
This invention furnishes an improved frame for diking sheets, which enables them to be handled, transported, and placed or driven without danger of breakage, thus removing one great source of expense in using diking sheets.
The diking sheet may be made of metal, cement, or other suitable material or combination of materials. These sheets are designed to be driven into the ground where the dike is the low water line to about six inches above the high water line, to prevent rats, crawfish, etc., from working through the dike.

As heretofore made, many of the sheets, even when made As heretofore made, many of the sheets, even when made
of metal, are broken in the operation of driving, and very many, especially when made of composition, are broken by handling and transportation, thus entailing great loss. To prevent this loss, a frame is put upon the sheets, the bottom bar of which is preferably made wedge shaped upon its lower edge, so that it may more readily be forced into the ground. The top bar of the frame rests upon the top edge of the sheet, and should be sufficiently strong and heavy to allow the sheet to be driven without being broken. The side bars of the
frame cover the sides of the edges of the sheets, and the ends of these side bars are attached to the opposite sides of the
secure a moist and uniform atmosphere. The cheapness of English manufactured goods seems to have greatly depressed the cotton fabrics of India, but the fine muslins of the latter country yet maintain undisputed celebrity, and are valued as highly as ever. The Dacca muslinsare the very finest of all. One of the best pieces which found its way to England was ten yards long by one yard wide, weighed only three ounces two pennyweights, and could be passed through a very small ring.
mprovement in Architecture.
The earliest periods were characterized by the utmost simplicity of invention and construction. Later, the efforts for defence from enemies and for architectural display, which have always employed so much time and power, began to be made. The megalithic period has left traces over much of the earth. The great masses of stone piled on each other in the simplest form in Southern India, and the circles of stones planted on end in England at Stonehenge and Abury, and in Peru at Sillustani, are relics of that period. More complex are the great Himyaritic walls of Arabia, the works of the ancestors of the Phœnicians in Asia Minor, and the Titanic workmanship of the Pelasgi in Greece and Italy. In the iron age, we find granitic hills shaped or excavated into temples; as, for example, everywhere in Southern India. Near Madura the circumfer ence of an acropolis like hill is cut into a series of statues in high relief, of sixty feet in elevation.
Easter Island, composed of two volcanic cones one thousand miles from the west coast of South America, in the bosom of the Pacific possesses several colossi cut from the intru sive basalt, some in high relief on the face of the rock, others in detached blocks removed by human art from their original positions and brought nearer the sea shore.
Finally, at a more advanced stage, the more ornate and complex structures of Central America, of Cambodia, Nineveh, and Egypt, represent the period of greatest display of architectural expenditure. The same amount of human force has perhaps never been expended in this direction since, though higher conceptions of beauty have been develope in architecture with increasing intellectuality.
Man has passed through the block and brick building period of his boyhood, and should rise to higher conceptions of what is the true disposition of power for "him who builds for aye," and learn that "spectacle" is often the unwilling friend of progress.
No traces of metallic implements have ever been found in the salt mines of Armenia, the turquoise quarries in Arabia, the cities of Central America, or the excavations for mica in North Carolina, while the direct evidence points to the conclusion that in those places flint was exclusively used.
The simplest occupations, as requiring the least exercise of mind, are the pursuit of the chase and the tending of flocks and: herds. Accordingly, we find our first parents engaged in these occupations. Cain, we are told, was in addition, a tiller of the ground. Agriculture in its simplest forms requires but little more intelligence than the pursuits just mentioned, though no employment is capable of higher development. If we look at the savage nations at present occupying nearly half the land surface of the earth, we shall find many examples of the former industrial condition of our race preserved to the present day. Many of them had no knowledge of the use of metals until they obtained it from civilized men who visited them, while their pursuits were and are those of the chase, tending domestic animals, and rudimental agriculture.-Professor E. D. Cope, in Half Hours with Modern Scientists.

Goodrich's Improvement in the Manufacture of Iron
This improvement in the process of puddling and boiling and smelting iron orep, and melting iron, is especially adapted to the manufacture of wrought iron from the ore in the processes of puddling and boiling. It consists in the use of agglomerate balls or masses, composed of ingredients hereinafter described, and used in combination with the iron or iron ore; the temperature of the furnace and the circulation of the blast being, in a great measure, controlled by the size and quantity of the agglomerate balls; and the effect produced quan the ores and iron treated being, in a great measure, deupon the ores and iron treated being, in a great measure, de-
pendent upon the proportions of the ingredients of which the pendent upon the proportion
balls or masses are formed.

balls or masses are formed. The chemical character of

The chemical character of the different iron ores varies so much that the true proportions of the ingredients of which the agglomerate balls are formed can be ascertained only by experiment. This the metallurgist can readily ascertain in working the ore or smelting and melting iron. Diffe rent ores melt a; different degrees of heat and require different quantities and kinds of flux. The flux being one of the ingredients of the agglomerate balls, the quantity and kind of flux must be varied to properly flux each particalar kind of ore.
The invention combines, into hard balls or masses of any desired form and size, iron ore reduced to a granulated state or to a sufficient degree of fineness, pulverized coal or carbon, and lime or other flux. Gum or gluten of any kind may be added to produce sufficient cohesion in the mass. The entire quantity of ore used in the furnace may (in combination with
carbon and the proper flux) be formed into these ball or masses; or thie balls thus formed may be used in combination with ores in puddling, melting, or smelting.
He claims that by thus combining, with the ore, carbon and the proper kind and quantity of flux in the deoxidizing and
carbonizing of ores, he overcomes obstacles which have carbonizing of ores, he overcomes
hitherto been considered insuperable. hitherto been considered insuperable.
The balls are composed of serenty five parts of iron ore: twenty parts carbon ; three parts slaked lime ; one part nitrate soda; and one part molasses. The ore, carbon, and lime are mixed intimately together, and the molasses and nitrate of soda dissolved in water enough to form the whole into a mass, which is then formed into balls and dried in the sun. This is with different ores. The object is to avcid the melting point with different ores. The object is to avcid the melting point in carbonizing, but to go as near it as possible. He thus
charges the ore as highly with carbon as possible, before it charges the ore as highly with carbon as possible, before
reaches the melting point. For puddling, he uses say eighty parts burnt iron ore made very fine; sixteen parts carbon two parts slaked lime; one fourth part nitrate soda; and one and three fourths parts of molasses: mixes the ore, carbon, and lime minutely, dissolves the molasses and nitrate soda in water enough to mix, and then forms the mass into balls and dries them. For melting iron ore, he uses seventy part,s ground carbon; three fourths part lime; one fourth part nitrate of soda; twenty-eight parts finely ground ore; and
one part molasses. For smelting iron ore, sisty-cight parts ground and burnt iron ore; twenty-five parts carbon; five parts lime ; one part nitrate sola; and one part molasses.

Correstomdence.

The Enitors ar
rescordents.

\section*{Psychic Force}
 To the Editor of the Scientific American

Under this head I will introduce to your notice an experiment, which is akin to or identical with the power possessed by Mr. Home, and which experiment can be tried by any person for himself in less than five minutes.
A slip of thin writing paper, one and a half inches in length and a quarter of an inch broad, is creased in its middle, lengthwise and crosswise. This makes a dipping of the two ends, by which it may be poised on a needle point. The needle is set perpendicularly in a piece of cork, this forming a stand or support.
Now bold the hand, curved to the form of the quarter arc of a circle, near to the outer circle to be described by the paper arrow, and this will movecircularly, not always immediately, for sometimes you may have to wait several minutes. For some persons, it will revolve over a hundred times per minute. In most instances it revolves towards the tips of the
fingers, but not always. By putting the other hand near, in such manner as to point the fingers in the same circular direc tion the motion is generally increased. Voila! Try it and study its mystery!
"Heat!" is the first exclamation of many ; but if it were caused by an upward current of air, the direction of revolution would be determined by the pitch of the ends of the arrow. Experiment has proved that pitching the ends propellerwise has no effect: and reversing the pitch does not change the direction of motion
Gentlemen of the other side, I charge that if I were to announce that very few persons could do the above, you would cry "deception,"" delusion." " weak minded," etc. But, the experiment being within the reach of all, there will be no In this experiment, the requirements pointed out by the EdiIn this experiment, the requirements pointed out by the Edi
tors of the Sciestific Americ.in are also met, and it may tors of the Scievtific Americin are also met, and it may
prove to be an anticipation of the delicate apparatus to be prove to be an anticipation of the delicate apparatus to be
devised by Professor Crookes, showing that all persons are more or less possessed of this power.

Philadelphia, Pa

J. A. Soliliday.

[We tried this experiment, which our correspondent af firms will always succeed, but we had not enough psychic force to make the paper turn, except when we blew it. Per haps some of our readers are better endowed.-Eds.

Railroad Gages.
 To the Editor of the Scientific American:

I have felt for some time that the thanks of the engineering profession are due to the: Scientific American, for the timely and efficient effort it has made to anticipate and pre vent the error into which capitalists are likely to be led on the subject of railway gages reduced below the ordinary 4
feet $3 \frac{1}{2}$ track. I am glad to see that an engineer of Colonel feet $8 \frac{1}{2}$ track. I am glad to see that an engineer of Colonel
Seymour's experience has spoken emphatically on this sub. ject.

The necessity of uniformity in such a country as ours ought to supersede any ordinary questions of detail; and it would be a very great advantage to the railway interest of the United States if our engineers would agree, with one consent, to hold to the gage which has come to us from the old country, and which practically meets the problem of railway operation as well as can be desired. In fact, it would be well if this gage question, like that of standard weights and measures, could
be made a matter of Congressional law, so as to relieve us from the continued confusions and embarrassments resulting from the want of a common standard. The arguments ac!vanced in favor of a narrower gage are fallacious, as the arguments in favor of an increase have proved to be by
much experience and very great outlay; and while there are much experience and very great outlay; and while there are
times when engineers and scientific authorities need to adtimes when engineers and scientific authorities need to ad-
vance far beyond the current of popular sympathy, there are
other occasions when a conservative and guarded course is equally essential; and a popular paper deserves commend
tion and endorsement as mach in one case as in the other. tion and endorsement as mach in one case as in the other.
Samuel McElrox

Brooklyn, N. Y:

Shmel Mcelror

ON SPECIFIC HEAT.

The adoption of a unit of heat (explained on page 3:50, of the last number of the Scientific Aymiicis), has given oc casion to the correct investigation of different classes of phe nomena, formerly not well understood; one of these is the peculiar property, of different substances, of requiring dif perature. These heatin order to be heated to the same tem. perature. These amounts differ whether we take the equal They are of course measured by the accepted standard; the They are of course measured by the accepted standard; the
unit and the numbers representing these amounts (accepting that of water as 1) are called the specific heat of the substance, even as the weight of equal volumes of different bodies (accepting water as 1) is calied the specific weight. Thus it was found that the amount of heat sufficient to raise the temperature of one pound of water a certain number of degrees was equal to the amount required to raise to the same temperature not less than thirty pounds of mercury, a mass of mercury more than twice the volume of a pound of water found that mercury is only 13.5 times heavier. It was of iron, and 5 of sulphur, contained respectively as much heat as 1 lb , of water: or, in other words, recuired the same amount of heat to raise their temperatures to the same degree. We must, then, necessarily conclude that, at tho same gree. We must, then, necessarily conclude that, at tho same
temperature, water contains 30 times as much heat as mercury, 31 times as much as gold, 17 times as much as silver, 10 . times as much as copper, 8.75 times as much as iron, and times as much as sulphur
Consequently it is easy to deduce from this, when dividing 1,000 by the above numbers, that when water contains 1,000 units, mercury will contain $1,000 \div 30=33$, gold $1,000 \div 31=$ 32 , silver $1,000 \div 17=57$, copper $1,000 \div 10 \pi=95$, iron 1,000 $\div 8.75=1 \cdot 14$, and sulphur $1,000 \div-\div=200$; or, by taking wa gold 0.032 , silver $0.0-5$ cocomer 0.095 , iron 0.11 and sulphit $0 \cdot 2$. These numbers, then, are called the specific heat of the substances.

Different methods may be employed to determine this specific heat. One is the melting of ice by a certain amount of the substance (after having heated the latter to a certain de finite degree of heat), and to compare the amount of ice thus melted with that melted by an equal weight of water, heated to the same temperature as the substance in question. Of course peculiar precautions are necessary in order to prevent
the ice from being melted by exterior causes the ice from being melted by exterior causes other than the heat of the heated body under investigation. Another method is that of mixture. It consists in raising the substance to a certain definite temperature, and then throwing it into a vessel containing an equal weight of water at another definite low temperature. The amount of heat communicated to the wa
ter will be proportional to the specific heat of the substance. Suppose, for instance, we mix one pound of water at a temperature of 156°, with another pound of water at a temperature of 32°, we shall find that the temperature of the mixture will be the mean, or 94°. But when we mix one lb of mercury of 150° of temperature with one 1 lb . of wate
a 32°, the temperature of the mixture will only be 30° The water, therefore, will the mixture will only be 30 The water, therefore, will have gained only 4 units of
heat, in compensation for the 120° lost ly the mercury. It is evident from this that the amount of heat required to raise the temperature of one lb. of mercury four degrees, is equal to one thirtieth of that required to effict the same result on water; or, in other words, one thirtieth of the adopted unit of heat. This experiment becomes still more striking if we take equal quantities in bulk of both these substances. Sup pose we take a pint of water of 32^{\wedge}, and a pint of mercury of 156°, and mix them; the temperature of the mixture, in place of being the mean or 94°, as is the case when mixing equal volumes of water, will only be 69°. The water has gained only 37°, in compensation for 87° lost by the mercury It is clear from this, that the amount of heat required to raise the temperature of one pint of mercury 37°, is equal to about two and one third of that required to produce the same effect on a pint of water, notwithstamding that the pint of mercury is more than thirteen and one half times heavie than the pint of water; in fact, three pints of water contain
as much heat as seven pints of mercury, notwithstanding the as much heat as seven pints of mercury, notwithstanding
latter surpasses the first some thirty times in weight.
The heavier metals have almost all very nearly the same
specific heat as mercury. Thus, 'ead $=0.031$; iridium, 0.0$) 32$ specific heat as mercury. Thus, 'ead $=0.031$; iridium, $0 \cdot 032$;
osmium, 0.031 ; platinum and gold, 0.032 ; thallium, 0.034 ; ismuth, 0.031 ; tungsten, 0.033 . However, in another clas the specific heats are nearly double the above numbers ; thes palladium $=0.059$; rhodium, 0.053 ; silver, 0.054 ; tin, 0.056 ; cadmium, 0.0 .57 . While, again, in another class, they are zinc, 0.096 ; cobalt, 0.1 . nickel, 0.11 . iron, 0.114 . The light metals have the largest specific heat, but always far inferior to that of water, and most of them nearly equal to that of sulphur. Thus aluminum $=0.21$; magnesium, 02 ; ; sodium, 020 ; potassium, $0 \cdot 16$. The two latter are so light that they hoat on water, while the lightest of all metals, lithium, has the greatest specific heat, namely 0.94 , almost that of water. Iu fact water has a greater specificheat than any other
substance, perhaps a few solutions excepted. For instaw substance, perhaps a few solutions excepted. For instance,
a solution of cane sugar has a specific heat of nearly 11 .

This shows what an immense store of heat may be con tained in the waters of our planet, especially the ocean, which covers about three fourths of its surface. If, then, we take into account that, for equal weights, the specific heat of air and gases is about one fourth that of water, and that our at mosphere has only the weight of a layer of water, at most, of 34 fect, it is clear that its heat is only equivalent to that of a layer of water of $34 \div 4$, or $8 \frac{1}{2}$ feet high. This depth of water, therefore, is capable of storing up as much heat as the whole atmosphere; and, in giving off its heat, is able to communicate half its excess of temperature to the air, retaining the other half. Suppose, for instance, a certain portion of the Atlantic ogean to have a temperature of 80°, while the atmosphere over it is 20°; eight and one half feet depth of water will then be capable of heating the air 30°, bringing it to $: 50^{\circ}$ while the water itself descends 30°, also reaching 50°. No wonder, thereforc, that the Gulf Stream, which continually is pouring the warm water from the tropics against the northwestern coast of Europe and its islands, modifies the climate of this part of the world to such a degree as to make it much of this part of the world to such a degree as to make much warmer than the regions in the same latitude on the conti-
nent of eastern Europe, Asia, or America. When we fully consider that water is about 800 times heavier than air at the ordinary pressure, it is clear that one cubic foot of water contains as much heat as 800×4, or 3,200 culic feet of air or one cubic inch of water nearly as mach as two cubic feet of air.
In applying these facts to the heating of buildings. we must not, however, forget that the cold walls and objects in build ings require much more heat than the air (they have a great er specific heat), and therelore we cannot succeed in heating a room before we have brought all the objects in contact with the air to the same temperature. Applying this on a large scalc again to the Gulf Stream, it is clear that west winds blowing over the same are heated to a moderate temperature and will very soon lose this heat when passing, in winter, over the cold or perhaps frozen ground of the British Islards France, Belgium, Holland, and the western parts of Germany In giving them a portion of their heat they will have los most of it before reaching Russia; wherefore the influence of the Gulf Stream docs not extend beyond the lands of west ern Europe, which enjoy the sole benefit of the same.
New York.

SYRACUSE---ITS MECHANICAL INDUS'RRIES.

A correspondent, in the New York Daily Times, gives a lengthyy account of the mercantile and manufacturing indus tries of Syracuse, N. Y., from which we make the following extra

In this Syracuse brewery, looking, as it does, lik" some reat orphan asylum or other State institution, the manufac ture of beer is carried on, on so large a scale and with such me hanical precision os in itself to create more than a gastro nomical interest. The first point is the wing of the building used for malting purposes. No less than twelve floors, each ninety-one by sixty-five feet, are used for the laying out of the malt for sprouting, after it has remained for forty-eight hours in the thirty-one steeping tubs, which hold 220 bushels pince. The malt is in every stage of progress-some just taken from the water, some again almost ready for the dry ing kilns, where it is taken seven days after it leaves the tubs. There are two kilns to each floor. The kilns are heat ed by enormous furnaces, with tiventy-four flues, in the base ment. The flooring of the kiln is of iron, and the tempera ture, even on the top floor, is kept up to 90° Fahrenheit.
Malt is only made during eight months of the year, but in that time Mr. Greenway generally makes from 225,000 to $2 j 0,000$ bushels. When the malt is properly dried it is trans ferred on a "carrier" to the storing bins below which hold bout 45,000 bushels. These "carriers" are very ingenious contrivances. They run the whole length of the malt house and granaries, 335 fect, and communicate with the elevators and hoppers
A "carrier" is a narrow endless sheet of cloth, about two feet in width and bagging slightly on the middle, which runs backward and forward on rollers moving on a staging four feet from the ground, and either discharges the malt into the hoppers, or carries the raw barley from the elevators to the malting rooms. It will carry 1,000 bushels an hour. The granaries consist of three floors, 102 feet long and foj feet wide; two of them being 14 feet, and the third 11 feet high. They have a storare capacity of 175,000 bushels of barley. The hop room is $(6 \pi$ by 40 feet. Its contents vary in yuantity according to requirements and market values; but 350,000 pounds is aloout the average annual consumption.

The two huge vats, in which the malt, hops and water are converted into beer, hold 300 barrels each. The fluid in them is boiled ly a steam worm which covers the bottom and is fed from the boilers in the basement. All the beer is hoiled by steam. One engine of forty-five horse power suffices for boiling the beer and heating the building in winter time. It consumes $\boldsymbol{\gamma 0 0}$ tuns of bituminous coal in the course of the year. The coal bunkers of the establishment hold 300 tuns.

An admirable contrivance, the patent of a Frenchman named Baudelot, is used for cooling the beer before it is run into the fermenting vats. The looiling beer is forced up to the floor above into a horizontal pipe seven feet from the ground. From this pipe it issues with great force from in numerable little jets, and dashes down on a succession of highly polished wooden bars about an inch in thickness and four inches across, placed like the laths of sun shutters when they are turned so as to admit the light. These bars are

