We illustral Improved Torpedo Boat.
ate, in the accompanying engraving, a torped boat, which was made the subject of a paper, read at the last Theeting of the British Association, by Mr. Philip Braham The torpedo, A, consists of a chamber filled with dynamit the porrugated iron can of sufficient woight to make the and a corrugated iron cap, of sufficient weight to mal
torpedo or submarine rocket float nearly horizontally.
orpedo or submarine rocket float nearly horizontally.
The tor pedo is propelled through a bored cast iron tube, from the boat, below its water line, by the expansion of compressed air.
The compression chamber, C , is a strong double riveted boiler, into which air can be compressed to 500 lbs . to the square inch, by machinery driven from the boat engines. The boat is plated to render it practically invulnerable; the boilers are high pressure; the twin screws, driven by a differential mo. tion of novel construction, are below the bottom.
When the boat airives within striking distance of the ship aitriking distance of the officer in charge, who tacked, the officer in charge, who
tiows the enemy by a mirrcr to prews the enemy by a mirrcr to che liandle of a four-way cock, which admits air from the compres sion chamber under the piston in the cylinder, E, and opens the valve 1 eading from the compression cham. ber to the tube, arranged so as to give a powerful, elastic, and prolonged impetus to the submarine rocket, which, strikes the enemt below the water line, exploding the percussion fuze, and smashing in square yards of the side By the reaction of the force driving the rocket forward, which would average upwards of 80 tuns on 1 foot 9 inches, shown, the boat would have its speed considerably diminished, if not entirely neutralized. There is also a sluice valve and breech, whereby a fresh rocket can be introduced when the first has exploded.-Enyincer.

Adjustable Elastic Measuring Scale

Baptist Edme Chassaing, of Buenos Ayres, Argentine Republic, has invented a new adjustable scale and equi-divider, the object of which is to provide an improved instrument for quickly and accurately constructing a drafting scale, and for dividing lines within certain limits of length into equal parts, it being designed and adapted chiefly for use by the draft:man, civil engineer, and architect. A round on brass or other suitable metal, has a fixed head ormating arm at one extremity, and a similar arm movable throughout its
length, provided with a set screw. Throughout the length length, provided with a set screw. Throughout the length
of the rod there is a small groove, into which pins upon the of the rod there is a small groove, into which pins upon the
heads fit, preventing them from turning. Between the two heads fit, preventing them from turning. Between the the
arms is stretched an elastic rubber band, fastened to the arms. This rubber band is divided upon its four face edges into a certain number of equal parts, which are subdivided
into equal minor parts, and is the scale proper. The band is a tube of soft rubber, about two and three fourth inches ex ternal diameter, one fourth inch wide, and about one twenty fourth inch thick, being perfectly accurate in its dimensions and homogeneous throughout. A small pin, having a T shaped head and perforated with a small hole, works loose $1 i 1$ the fixed head and is held in place by a washer and rivet First, to compensate for any tendency to unequal stretching Second, to provide a means of attachment, without forcibly confuning any portion of its surface between fixed jaws, or in any way reducing the strength of the band at the points of attachment by piercing or otherwise.
To use the instrument, let it be desired to provide a scale of one eighth, one fourth, one half, five eighths, three fourths, one, one and one fourth, one and one half, two inches, etc.
Then imagine that one side of the adjustable band is divided into one hundred equal parts, and that its capacity is twelve inches. The ten inches equals eighty eighths; hence, if we apply the scale to a standard rule, making eighty divisions, equal to ten inches, upon the rule, we have at once an tighth scale. Secondly, ten inches equal forty fourths; hence, if we apply the scale to a rule making forty divisions, equal to ten inches, we have at once a one fourth scale, and so on for the remaining scales enumerated; but no one side of the scale will admit of all of these adjustments, hence the suge it be required to measure a plan or map having a drawn scale depicted. It is only necessary to adjust the scale to the scale of plan or map, and use it accordingly. If it be desired to divide a line of length not greater than twelve inches-
though lines of greater lengti, when required to be divided into equal parts not prime, may be also divided by previous subdivision-it is only necessary to extend or contract the band, using the edge giving the required number of divisions within the scope of the instrument, so that the required number of equal parts will correspond with the length of line to be divided; then point off with pen or pencil the divisions so indicated. This last feature of the instrument renders it essentially useful to the draftsman, as it avoids the old long and tedious way of stepping off with dividers, which often requires that a line should be frequently gone over and, unless great care is taken, it is seriously marred. The band is made of white rubber, as soft and pliable as possible It will, of course, be required to be made for this special purpose, and must be made with perfect accuracy of dimen-
sions throughout. The divisions will of course be made by sions throughout. The divisions will of course be made by
machinery, and all sides of the scale will be graduated when
stretched to its utmost capacity. The figures will, however, be stamped upon the band when it is extended to half its scope, as they will then be most legille at all points of the extension.
The scale will be divided as follows, though other divisions may be found more suitable than those enumerated: First side, one hundred equal parts, subdivided into halves and fourths. Second side, fifty equal parts, subdivided into sixths. Thi :d side, eighteen equal parts, subdivided into twelfths. Fourth side, eleven equal parts, subdivided into twenty fourths.

Fire Sates-Trest of Material.

We have received, from an eminent chemist, the following We have received, from an eminent chemist, the following
suggestion :-"Can you induce some of the rich fire safe
out continuously loking at their work. The apparatus was November 14, 1871. Those desirous of availing themselve of its benefits may address the manufacturer, V. E. Mauger, at 110 Reade street, New York city.

The Royal Condo

The condor has been singularly unfortunate in the hands of the curious and scientific. Fifty years have elapsed since he first specimen reached Europe ; yet to day the exaggerated stories of its size and sirength are repeated in many of our text books, and the very latest ornithological work leaves us in doubt as to its relation to the other vultures. No one credits the assertion of the old geographer, Marco Paulo, that the condor can lift an elephant from the ground high enough to kill it by the fall nor the story of a traveler, so late as 1830 , who declared that a condor of moderate size, just killed, was lying before him, a single quill feather of which was twenty grood paces long! Yet the statement paces long! Yet the statemen continues to be published, that the ordinary expanse of a full-grown specimen is from twelve to twenty feet; whereas it is very doubtful i it ever exceeds, or even equals,
twelve feet. A full grown male from the most celebrated locality on the Andes, now in Vassar Col lege, has a stretch of nine feet. Humboldt never found one to measure over nine feet; and the largest specimen seen by Darwin

BRAHAMS TORPEDO BOAT.
manufacturers to have an investigation made into the heat view to their use as an exterior covering of safes?"
No doubt many of our readers are interested in this ques tion as safe makers and sellers, and many many more as safe buyers and users. Will any practical man let us know the result of a few experiments on this subject, which is now engrossing the attention of the public?

BRIESEN'S WRITING APPARATUS FOR THE BLIND. ETC.

The subject of the accompanying engraving differs materially from the general run of modern improvements, as it is not intended to perfect anything already in use, nor to sub serve the comfort of the general public. The object is primarily to relieve that most unfortunate class of our fellow beings, the blind, from their chief enemy, inactivity; and also to prevent injury to or loss of the eyesight, in person who find their sight failing by too close and constant attention to literary pursuits. In fact, this little machine is no more nor less than an apparatus by the aid of which one can write without using the eyes.

It is composed of a tablet on winin :he paper th ise written the paper is held firmly on the tablet, and of an adjustable hand guide which can slide up and down on a red that is connected with the clamp. The hand guide is similar in form to an ordinary wooden ruler, and extends transversely across the paper.
The writer guides the little finger of his right hand along the top edge of the ruler, and is thereby enabled to carry the pen or pencil in a straight line. When a line has been written, a small knob at the left end of the hand guide is ouched, and raised out of a notch in the rod a, which causes he hand guide to slide on the rod, until the knob spring nother line. ne end to the other, so that the hand guide will be arrested at each adjustment, to properly space the lines written.
The inventor considers the machine to be valuable for per ons who have lost their eyesight after having previously learnt to write. For these it will be, as it has already bee proved, a Ferfect boon, enabling them to occupy themselves and giving them a degree of independence never before enjoyed by persons similarly afllicted. But aiso, literary men, clerks, copyists, and all writers whose eyes are materi-
ally strained by constant writing, are expected to profit by the use of this machine, as they may, by its aid, write with
was eight and a half seet from tip to tip. An old male the Zoölogical Gardens of London measures eleven feet. The ordinary lubitat of the Royal Condor is between the altitudes of 10,000 and 10,000 feet. The largest seem to make their home around the volcano of Cayarnli, which stands exactly on the equator. In the rainy season they fre quently descend to the coast, where they may be seen roost ing on trees; on the mountains they very rarely perch (for which their feet are poorly fitted), but stand on rocks. They are most commonly seen around verticul cliffis, where thei nests are, and where cattle are most likely to fall. Grea numbers frequent Antisana, where there is a great cattle es tate. Flocks are never seen except around a large carcass, It is often seen singly, soaring at a great hight in vast cir cles. Its flight is slow and majestic. Its head is constantly in motion as if in search of food below ; its mouth is kep open and its tail spread.
To rise from the ground, it must needs run for some dis tance, then it flaps its wings three or four times and ascends at a low angle till it reaches a considerable elevation, when it seems to make a few leisurely strokes, as if to ease its wings, after which it literally sails upon the air. In walking, the wings trail on the ground, and the head takes a crouching position. It has a very awkward, almost painful gait. From its inability to rise without running, a narrow pen is suffi cient to imprison it. Though a carrion bird, it breathes the purest air, s^{\prime} 'ending much of its time soaring three miles above the sea. Humboldt saw one fly over Chimborazo We have seen them sailing at least a thousand feet above the crater of Pichincha.
Its gormandizing power has hardly been overstated. We have known a single condor, not of the largest size, to make way in one week with a calf, a sheep and a dog. It prefers carrion, but will sometimes attack live sheep, deer, dogs, etc The eye and the tongue are favorite parts, and first devour ed ; next the intestines. We never heard of one authentica ted case of its carrying off children, nor of its attacking adults except in defence of its eggs. Von Tschudi says it cannot carry, when flying, a weight of over ten pounds. In captivity it will eat everything except pork and cooked meat wihen full fed, it is exceedingly stupid, and may be caught by the hand; but at other times it is a match for the stoutest man. It passes the greater part of the day sleeping, more often searching for prey at morning and evening than at noon -very likely because oljects are then more distinctly seen. - Professor James Drton.

Clay and Sandy Soils.-If you have a light sandy fiel and wish to fertilize it chec.ply, perhaps you cannot do bette than to gather, say ten loads of clay, and mix it with ten oads of barn yard manure or compost; this will be found a effective, perhaps more so, than twenty bushels of manure without the clay. And the reverse we believe, will also hold ood ; that is, to a stiff clay soil, add the same quantity of sand oil and manure; the texture of the surface soil is changed hereby.-Virginia Real Estate Journal.

A piect of building land, at the corner of the new queen Victoria street, in London, has just been let at a rental of ${ }^{5}, 500$ per annum, being at the rate of about five dollars pe quare foot. Business must be better in London than in New York, at the present time, to enable the tenant to afford pay ment of such rental.
Profrssor Geikie, an eminent geologist and writer, is Sir Roderick I. Murchison's literary executor. Sir Roderick ha left behind him voluminous papers and documents, and from these and from personal knowledge, Professor Geikie will write and publish a life of the renowned President of the Geological and Geographical Societies.

Trust him little who praises all; him less wleo censures all; and him least who is indifferent about all.

Saw Manufacture at Shefield.
First, the saw is cut out of the sheet. If a heavy or large saw, it is never toothed while soft. The third stage is that of hardening. Placed in a structure like a baker's oven, and floored like a baker's oven with brick, the saws are left there to harden, and when they come out they are, when cool, brittle as glass. To abate this brittleness, they are put into a composition, where they lie, for a time, in a sort of oily bath. This makes the fourth stage. After this they are tempered over a coke fire, watched by men who, guided by their experience of color, take them out when they have acquired the tint which will leave them with a blueish hue, that indicates, to the practised eye, the amount of elasticity in them. At this point you may bend them like whalebone from heel At this point you may bend them like whalebone from heel
to point, so elastic have they become. This makes the fifth to point, so elastic have they become. The tempering warps them, and now require to stage. The tempering warps them, and they now require to
be flatt ned. The flattening is the work of the "smithers," be flatt ned. The flattening is the work of the "smithers,"
who hammer and beat them into an attitude of precision. who hammer and beat them into an attitude of precision.
This makes the sixth stage. Now the blades have to be ground and glazed. This makes the seventh stage. The saws, being now flat and bright, have their teeth " set," by the laying over the edge alternately, and with the setting the shar eening is associated. This makes the eighth stage. At this point it is necessary to restore to the saw blade the measure of elasticity which has been taken from it by the processes of rubbing and glazing, so it is put into the oven for the mere rubbing or glazing of the saws does, somehow or other, extract from them a large amount of the elasticity
imparted to them by the tempering process, and for this imparted to them by the tempering process, and for this This makes the ninth stage. When they come out of the
This. This makes the ninth stage. When they come out of the
oven, they have on them a sort of straw tinted bronzing, oven, they have on them a sort of straw tinted bronzing,
which has to be removed. To remove it, they are placed in a bath, which immediately takesit off. This makes the tenth stage The stw has now to be etched. This is the eleventh process. If a hand saw, it needs the hold for the hand or handle to be put on, and this is done with remarkable dexter ity and when done the twelfth stage is completed. Nothing remains now but to have the saws examined. Messrs. Spears and Jackson, of Sheffield, make circular saws of from one inch to ten inches in diameter. These miniature circulars are exquisite specimens of the sawmaker's art, are chiefly destined for Paris, there to be employed by silversmiths and others in the production of those beautiful and ornamental articles for which Paris stands unrivalled. They also make saws on models which it is proved are from two to three thousand years old. These are for the Hindoos, and have the teeth set towards the bandle, so as to cut by the up stroke instead of the down. Saws are of an almost infinite varietysome narrow as lengths of steel tape, some round and broad as a cart wheel or the top of a large loo table. Some have beautifully small teeth, others have teeth larger than a horse's. Some are destined for the most delicate operations of fancy cabinet work, and some are to be employed in sawing Bessemer steel rails by steam, at the rate of 800 revolutions per minute, while othersare framed to spin along with a rasping sound all day long, cutting their way through the largest logs of timber in the naval dockyards.
The saw trade is a very ancient one, for the saw itself is figured on the ancient monuments of Egypt and Babylon. The cutiangoat of the edge in the form of teeth is done by machines, and where the teeth are small it is done at the rate of 400 per minute. The usual way to set the teeth is alternately to the right and to the left before completing the saw; but in the East, where ancient usages are preserved, the teeth of the large saws are bent aside in groups of perhaps a dozen each. The sharpening and setting of a saw requires considerable skill of hand and accuracy of eye; for if any one of the teeth projects either edgewise or sidewise beyond the true line, it renders the sawing harsh and difficult. When the teeth of a hand saw become blunted by use they are sharpened again by means of a three-square file; but previously to this, comes a necessity for turning the saw to the fire where it is heated.-Ironmonger.

Metropolitan Railway of Paris.
We translate the following from Le Monitcur des Intêrêts Matériels:
An important project was submitted to the Municipal Council in Paris during its last session. Its object was an underground railway to be completed by private enterprise, without subsidy, either from the State or the city. The scheme is not a new one, complete plans and designs of such
a system having been presented to the Government in 1864, a system having been presented to the Government in 1864,
by M. Mouton. It is this project which has recently been by M. Mouton. It is
again put into shape.
According to these plans, the railway will commence at Longchamps, will follow the course of the Avenue de la Grande Armée and the Champs Elysées as far as the Place de a Concorde, and, going along the Rue de Rivoli (the railway being the axis of the section of the main subways), will reach the chief market (Halles Centrales), and subsequently the depots of the railways of Vincennes and Lyons, and that of Orleans by passing over the Seine on a viaduct.
A branch will leave the main line at the Halles Centrales, going towards the depots of the Northern and the Eastern Railways, and rejoining the Belt Railway (Chemin de Fer de Ceinture)
Two other branches, leaving the Palais Royal station, will extend, one towards the depot at Saint Lazare (west, right bank of the Seine) and the other towards the depots at Mont Parnasse (west, left bank) and d'Orsay, by crossing the Seine in a tunnel and following the line of the Rue de Rennes.
All the depots will thus be united to the Halles Centrales.
13.5 meters, while the Metropolitan Railway of London in many places descends to a depth of 17 meters.
The tunnel will have a width of section of 60 meters; the surveys will be made similarly to those for the underground railways of London, which have been operated for many years past with complete success. When, seven years ago, this project was submitted for the first time to the Prefect of the Seine, it was returned for examination by the two engi-neersin-chief of the city. M. Belgrand reported that the scheme gave every satisfaction to the needs of his important branch of the service, that of the subways. M. Alphand made the same declaration, subject to his examination of the de sign for the station to be established at Longchamps.
This great work deserves the attention of the Municipal Council. There are no technical difficulties to hiuder the construction of a network of subterraneous ways in Paris and wc believe that statistics of the probable traffic will convince the public that the capital employed will obtain a large profit.

IMPROVED AXLE FOR RAILWAY CARS AND LOGOMOTIVES.
What proportion of all the destructive accidents on railways originate in the breaking of axles, we have not statis tics at hand to determine. It is certain, however, that much destruction of life and property has arisen from this cause. On the 6th of February, of the present year, the public was horrified by the account of such an accident, at New Ham burgh on the Hudson River Railway, the terrible details of which are still fresh in the minds of all our readers.

sistance of Materials," published during the present year by John Wiley \& Son, New York, and from which the above sy nopsis is compiled
The result of all these labors has led to the construction of formulx different from that of Galileo, based upon the results of extended experiments with various kinds of materials. The relative strength of solid, as compared with hollow, beams, has not received the share of attention that, in our opinion, its importance demands. And although it has been shown that a tube of rectangular section, whose hight is con siderably greater than its thickness, will sustain a greater amount of lateral pressure than a hollow cylinder of the same thickness, it is obvious that this can only be the case when the strain is applied in one direction.
The results of actual experiments are better guides for the estimate of relative strength of hollow and solid cylinders than any formule that can be adduced.
A round tube, whose external diameter is to its internal diameter as 10 is to 7 , has, according to Tredgold, twice the strength of a solid cylinder of the same length, material, and weight.
Experiments conducted in England, in 1842, an account of which is given in the Mechanics' Magazine (Vol. XXXVIII, page 254), gave the following results: "A weight of six hun dred pounds was allowed to fall from a hight of nine feet upon solid railway axles, and with that force they were frequently broken at the second blow, and sometimes at the first; while, by letting ten hundred pounds fall on hollow axles from a hight of fifteen feet, not one of them was broken." The invention under consideration consists in the construction of tubular axles, round, oval, or square, with one or more interior longitudinal strengthening webs or supports. The object of the invention is to manufacture all sorts of The object of the invention is to manufacture all sorts of
axles, which will be much stronger, lighter, cheaper, and betaxles, which will be much stronger, lighte
ter lubricated than any axles now in use.
Fig. 1 is partly a side view and partly a longitudinal sec tion of a cylindrical axle so constructed. Fig. 2 is a trans verse section of the same. Fig. 3 is an end section of a bar of which the axle is made. Fig. 4 is an end section of the same, after once passing through the rolls, and indicates the manner in which the completed blanks, Figs. 5 and 8, are pro duced. Figs. 6 and 7 are forms produced from the form shown in Fig. 5, and Figs. 9 and 10 are made from the form shown in Fig. 8, by uniting the edges of the parts, C, at B, and properly welding them there. Fig. 6 is an end section of a vehicle axle, with one internal longitudinal web, to strengthen it and prevent it from collapsing. Fig. 9 is an end section of a railroad axle, with a perpendicular web, crossing a horizontal one at right angles.
The hollow chambersin the axle have been found to afford great facilities for lubricating, and it is quite evident that the addition of the web to the hollow cylinder forms the light est and strongest axle that can be made on any principle yet discovered; and, from the amount of metal saved, we should
judge that it is also the cheapest. Such axles may be rolled judge that it is also the cheapest. Such axles may be rolled
or cast, and, by recesses of suitable shape in the rolls or molds, they can be made square for about ten inches inside the col lar washer, to receive ihe clips which hold vehicle axles from rotating.

The internal webs prevent the buckling of the external tube without great increase of weight, and the strength thus gained is self evident. We see no practical reason why such axles as these should not be generally adopted, and if this be the case the invention will give rise to an extensive and important branch of industry.
It was patented, Oct. 31, 1871, through the Scientific Amer ican Patent Agency, by Joseph W. Cremin, 213 East Fifty. first street, New York, who may be addressed for further in formation.

Leland's Galvanic Battery.

This invention has for its object to produce an electric bat tery which will operate continuously without requiring at tention, as long as it remains provided with the requisite ex citing substances. The invention consists in placing within the porous cup, containing the platinum element, sulphate of mercury alone or mixed with black oxide of manganese, and in surrounding the cup with water, which is in contact with the zinc. This combination, it is claimed, produces reliable action, and is very economical, as the spent sulphate of mercury falls to the bottom of the cup in a shape to be readily reconverted.

The inventor states that, by connecting the poles of the platinum and zinc plates, a steady action is maintained unti the sulphate of morcury is entirely decomposed and falls to the bottom of the cup as metallic mercury, ready to be recon verted into sulphate of mercury. This insures great econo. my.
This battery will, it is claimed, work weeks or months without attention, except perhaps the filling up of evaporated water, and the supply of sulphate of mercury. No acid be ing required, offensive fumes are avoided, and much steadie action is insured.

The improvement is the invention of Mr. Edwin J. Leland, of Worcester, Mass.

An English author, Miss Meteyard, remarks in her life of An English author, Miss Meteyard, remarks in her life of Wedgewood, that the earliest mention of the photographic
art is a discovery by Thomas Wedgewood in 1791. She gives a fac simile of the earliest sun picture on record, and states that she has traced the connection between the Wedgewoo family and the Frenchman Dominique Daguerre. This ver sion of the origin of the universal and beautifulart of pho tography shows it to be much older than people generally suppose, and adds an additional lustre to the name of Wedge-

