
a Weekly jourval of practical information, art, science, mechanics, chenistry, and mantfactures.

The Burdict Bolt Heading Machine.
Our engraving represents a view of the Burdict bolt forging or heading machine, of which Messrs. Plumb \& Burdict, of Buffalo, N. Y., are proprietors. Thirty of these machines have been put in operation during the past fifteen months, and used by bolt makers, car and locomotive builders, railroad companies, etc. They are particularly adapted to the manufacture of square heads, but capable of making any desired style of head. One has lately been put up with twentyfour and one with thirty-six changes of dies. It is claime by the manu dim by the manufactur ers of these ma chines that they will do more and better work than any other.
We shall not en ter into a descrip tion of its details of construction, as this would entail the use of auxiliary engrav ings, and require far too much space We will content our Wewill content our
selves with a brief selves with a brief
summary of the well summary of the well demonstrate capa lilities of the m chine, which is pu up in the kest man ner, and requires but little power. It is quickly adjusted from one size or length of iron to another, and can head bolts of any length. Unlikeoth ers, where theblanks are held horizontal the blank in this machine remains machine remain stationary until the Other machines clamp the blank tightly with the holding dies, and at the same time turn one quarter or one half around, there by reducing the size of the rod direct ly under the head ly under the head where the dies strik t. An the mank the end of the blan rests against a stop and the holding dies simply close on the iron, and remain so until the head is completed. The stock for the head is upset by a plunger which recedes, and the forging dies acting simultaneously on the four sides form the head to the required size and shape thus producing heads uniform in size and retaining the full strength of the rod. It is so arranged that it makes four six, or eight revolutions-each head receiving twenty, thirty, or forty blows, according to the finish desired-and stops to discharge the bolt and receive another blank. The working parts of the machine are in operation only while the bolt is being headed, thus reducing the wear in proportion to the work done.
The capacity of this machine is such, that in a contract with Messrs. James Wood \& Co, Pittsburgh, it was required that 4,000 one half inch bolts should be headed in ten hours, and 3,500 five eighths inch bolts in the same time. The first num ber was finished in eight hours, and the second in less than nine hours. In their own works, the manufacturers state that 4,500 three fourths inch T-headed bolts have been made in ten hours.
The dies can be reversed, which greatly prolongs their use fulness, and when worn are readily sharpened by grindingFour sizes of the machine are furnished, adapted to head from ne fourth inch to two and one half inch iron.
The machine is covered by two patents, dated respectively Sept. 3, 1867, and Nov. 30, 1869. For further information address Plumb \& Burdict, corner Clinton and Adams streets, Buffalo, N. Y.

THE DANGERS OF SEWAGE IRRIGATION.

From a pamphlet by James Alexander Manning, referred to in a recent editorial on the 'r Sewage Question," we extract further particulars, showing the dangers arising from sewage irrigation. He says
" The late Marquis of Salisbury, only three or four years go, joine his neighbors, near Tottenham, in a petition to
to keep them in good order. Ask the medical faculty the cause of the disease, squalid misery, and deaths of thousands of the poorer, and hundreds of the wealthier classes of London in every year. They must reply that the contamination of the air in the confined spaces they occupy, and the mephitic emanations from the sewers and water closets, the pipes of which, owing to an imperfect system of regulation, are ever charged to the utmost with the foulest gases, which rush into the closet the moment the plug is raised, and continue filling the chamber with poison until the valve is again closed and jointed, as it is called, with water, as well as from the kitchen or scullery sinks, where, in ten cases out of twenty, in the wellings of the poorer classes, the traps are either defective or deficient. Many fol: volumes miglit be written on this suluject in proof of all I have advanced without once repeating either my argument or the few facts I have adduce , but I cannot close this part of my subject without referring to the dreadful mortal ity in Brussels during the cholera outbreak of 1866, which, it is now universally admit ted, was, if not positively produced, greatly aggravated by the contamina tion of the atmo sphere, both exter nally and internally, by reasonternally, age miasmas, caused by the condition of the river Senne, which intersects the town, a considera ble portion of which was open, having been used as a common sewer to re ceive all the house hold drainage of ev ery description.
Statistics speak for hemselves; thus, by the report of the
URDIC' BOLT HEADING OR FORGING MACHINE which had proved not only fatal to many, but universally dis- Registrar-General, it appears that the deaths from cholera in gusting to all the inhabitants of the vicinity, and must ever be so on stiff clay land, where, as soon as the surface is covcreating sewage must run off into the ditches, and, while able, must contaminate the land springs, and render the water totally unfit for culinary or ordinary domestic purposes. The whole system of sewerage is vicious, as proved by the high death rate in all our large manufacturing towns, and the frightfully increased poor rates; and it is now admitted by the scientific world that upwards of 100,000 lives are annually lost in this country, which might le saved by atten tion to sanitary requirements. As far as the sewers of towns are concerned, I am satisfied that the purposes to which they are now devoted will ere long undergo a very importan modification, and as science advances it will be found indispensable to the health of the inhabitants that they shall be maintaine only for surface drainage-that is, rainfalls and household slops, leaving the solid and fluid human excreta to pass into proper receptacles, where, by chemical treat ment, they will be rendered innocuous to man and invaluable to agriculture. At the present moment, all I can suggest as a substatnial benefit to the inhabitants of this great metropo is, though I am fully aware that it will meet with powerfu opposition, is the effectual trapping of the gully holes and the street gratings, as well as the waterclosets and sinks in every
house, and their being liable to periodical police supervision

Great Britain and Ireland in that year, out of a population of twenty-eight millions, amountedonly to little over6, 000, while upwards of 6,300 were carried off by that frightful scourgein the small city of Brussels alone, containing at that period a population only of 250,000 ; and that out of a population of be tween four and five millions, of which the whole kinglom of Belgium is composed, upwards of 30,000 victims succumbe to the malady in that year. I have frequently discussed the subject with eminent Belpian physicians, and not one has eve dis- puted the theory I laid down, as to the cause of such fright ful ravages. I have also called their attention specially to the great annual mortality prevailing in almost all the agri cultural districts of that kingdom, arising from the use of liquid sewage supplied to their fields by means of the barrel cart and scoop
" During the manuring season of each year, as soon as this practice commences, the rural population, and particularly children, are afflicted with swollen glands, and a fever called by the faculty 'la fievre milliare,' which soon places a whole village in mourning, and no stronger proof as to the cause can possibly be adduced than is to be gathered from the fac that in the Walloon districts of Belgium, Mons, Charleroi, Jemappes, Ath, etc., etc., where no such practice prevails, the inhabitants are entirely free from these fatal attacks. I recommended to the Burgomaster of Brussels the trapping of all the gully holes of that city, as well as the passing of a
aw, or some police ordinance, rendering it obligatory on the cumbent earth, because there are numerous situations where inhabitants to trap their sinks and water closets. I thought the opportunity for effecting this object had then arrived, a Mr. Doulton, the drain pipe manufacturer, was then in high favor with the municipal authorities of Brussels, and I further advised the town council that the contemplated improvements by the covering in of the river Senne, of which speculation Mr. Doulton was one of the chief promoters, would effect no real sanitary improvement unless the gully holes of the city were trapped, and that I was quite satisfied that Doulton's earthenware traps would, while being the cheapest that could be employed, answer all the desired objects. I had some years previously made a similar sug. hough he fully approved of such officer of London; but he felt that, on the ground of cost, it would meet with substantial opposition, and this was probably the view taken by the Burgomaster of Brussels. I will now refer to more recent discoveries which have created a serious feeling of alarm and apprehension in the minds of many of the learned and eminently scientific members of the faculty, in the event of the adoption in this country of any general system of sewage irrigation, or even its application on a large scale. One of the most eminent members of the faculty of medicine, Dr. Spencer Cobbold, after devoting many years of his life to the study of Entozoology, has discovered that a species of parasite, so small as to escape detection by the naked eye, has bcen introduced in to thesewage of London, and, of course, of other towns, by our colonists from certain parts of Africa, the Maurtius, etc., etc. Irrespectively of his great work on Entozoa,' in the pure cause of humanity Dr. Cobbold has also published, through Messrs. Groombridge \& Sons, of $\mathrm{Pa}-$ ternoster Row, a sixpenny samphlet, in order to warn the Britisl public against the horrible dangers they must inevitaAly encounter should any of the contemplated systems of sewage irrigation be carried into operation; in it he raphic-
ally describes the miserably insignificant insect to whom thousands, and hundreds of thousands, may yet be indebted for long years of acute suffering and death-all the reasoning and conclusions of inductive science leading to the conviction that sewage irrigation will introduce into this country a more horrible lisease than any to which the British flesh is heir. These-apart from their enmity to man-most contemptible larve, or the fully developed insect, in every portion of the London sewage which has hitherto been analyzed by him and his coll agues in the examination of this important question he describes their passage from the body of the patient into the water closet, from thence to the sewers, and finally to the
river and the sea; there, he observes, let them remain, they river and the sea; there, he observes, let them remain, they
can do no harm to any one; but once let them reach our fields, then the misery and sufferings of humanity will be terribly avgmented. According to his statement, this insect is of precisely the same species as that which is found from the overflowing of the Nile, where his friend, Dr. Crunnenstein, in the post-mortem examination of 800 pearants, found that the deaths of upwards of 100 , or more than one third had been occasioned solely by the ravages of this little insect. They are swallowed in the food either animal or vegetable, when not sufficiently exposed to the action of fire to destroy them in their several states, for which reason he earnestly vegetables.

PLASTER of paris manufacture.

The quarrying of gypsum and the manufacture of plaster are important industries in Paris, and we (Engineering) have recently taken the opportunity of visiting one of the estab lishments of this kind, the best arranged-that of M. Morel at Montreuil. The plaster of Paris, or gypsum, consists, as being removed by roasting, the stone is ground into powder. being removed by roasting, the stone is ground into powder.
When this is afterwards mixed with water it combines itself again, and forms a solid mass, which is employed in an infi nite variety of ways. The abundance of gypsum at Mont martre, Pantin, Menilmontant, Belleville, Charonne, Mont reuil, \&c., all close to Paris, even within the city limits, the good quality of, and the large demand for, the plaster, and the ease with which it is employed, have caused the develop ment of this great industry in the capital. The plaster of Paris has a European, and even a still more extended reputation. It is employed everywhere, and is put to the most varied uses. It is molded into hollow bricks, and tubular and for smoke conduits to chimneys. One sees, even in the neighborhood of the quarries, houses of three and four sto ries, which are built in molded stones of plaster or made in plaster in such a manner that they form a monolith.
The bed of gypsum worked at Pantin is horizontal: it has a th ckness of 37 feet 2 inches. 'There is also a small bed adja cent, and of little thickness, but this is not quarried as a rule The gypsum of this bed is almost entirely crystalized, and
there are found there, in abundance, those beautiful specithere are found there, in abundance, those beautiful speci
mens called fers de lance, on account of their form. Thes mens called fers de lance, on account of their form. These fragments split with ease into thin transparent leaves, and
when the apparent limit of diversibility has been found with the blade of a knife, if one takes one of the leaves, which has less than $1-80$ th inch of thickness, and heats $i t$, it exfoliates into more than twenty films as the water it contains is heated and disengages itself in steam.
The bed of gypsum that is excavated is covered by some 40 feet of earth, consisting of calcareous deposits, and marl ard clay. It is excavated, for the most part, by subterranean frum the surface in spite of the srat thickness of superin
the excavated material employed to fill elsewhere can be made a source of revenue, while the limestone can be sold make lime, and the clay to make earthenware, or bricks It is thus that the quarry of Eprisette, worked at flrst in galleries by M. Morel, is changed at the present time into pen excavation.
The gypsum is extracted by blasting. Holes are pierced in the rock, which, for the most part, is sufficiently soft for a workman to drive in less than an hour a hole from 4 ft . 6 in . to 6 ft . deep and 2 ft . in diameter. After a blast, the rock is struck with crowbars, which divides it into blocks from 30 to 40 meters cube, advantage being taken of the numerous faults in the material, which the workmen learn to recognize at a glance, and which they call "maillences." A heavy blow, or the introduction of a pick, at the right spot asily the largest blocks into convenient fragments.
These fragments are loaded upon trolleys, which follow the ace of the gallery or cutting or tramways, and which lead up to the eight furnaces composing the factory. These
kilns, or furnaces, are of the simplest form. They consist of an end wall 15 ft . long, and of two side walls of the same length. The three walls are also 15 ft . high, and the squar hearth that they surround, carries perpendicularly to the end wall, five gratings, through which passes the air necessary for combustion. On the ground, the largest blocks of gypsum are arranged in such a manner as to construct, above these gratings, arches sufficiently high to receive the fuel for burning the material. The spaces intervening are filled up with so that the hight of the mass is raised. When the greatest hight conveniently attainable by hand is reached, the charg. ing of the kiln is continued from trolleys brought upon in clined planes which are also supplied with rails. This is carried on until the hight of the charge is equal to that of the walls of the kiln. All the interstices are then carofully packed with small fragments of the stone, and the front of the furnace, which is raised by a low wall, receives a mova ble cover of plate iron intended to prevent the loss of heat by radiation; and to retain such morsels of stone as become de
tached during the operation of baking; the joints in the front of the kiln are luted.
Everything being then prepared, fagots are placed within the arches and lighted, and when the embers are in full glow and the arches half empty, they are charged with briquettes of artificial fuel, and the fire is so managed by regulating the access of air, that the baking of the mass is effected equally throughout without any extremes of excessive or
Thing. The operation is complete in 24 hours
The employment of briquettes is one of the improvement introduced by M. Morel into his establishment. The baking was generally done with wood, and the substitution of coa has effected a saving of two thirds of the total quantity pro-
duced. There is a comparatively small loss of uced. There is a comparatively small loss of heat in this apparatus, so simple and apparently so primitive. In calculating the calorific power of the quantity of fuel consumed and the amount of heat necessary to evaporate all the water contained in the gypsum, it is found that he utilizes one hal of the available heat, which is certainly a satisfactory result considering all the various losses inseparable from an iden tical enterprise
After the calculation is complete, the furnace is allowed to carria the burnt gypsum is again loaded into wagons and of the manufacture consists of two parts. There are millstones in cast iron or stone, banded with rings of iron and turning in a circular trough with a grated bottom. The cal. cined stone is fed into the mill, and those parts which are ground down extremely fine pass through its gratings. The rest is removed by a suitable mechanical appliance fo grinding.
One of the mills carries a most ingenious arrangement for creening the fine powder. Below the grate there is a strain er in the form of a truncated cone. Of the powder winich ralls upon this strainer through the base of the annular grate part passes through the meshes and escapes through the lower part of the apparatus; the rest slides on the conical trainer falling on a table at the bottom, and is constantly lifted by a chain and replaced on the table of the mill. After e phouse whe it in bas. The machines trivenouse where it is place in bags. The machines ar The whole of this establingent
The whole ond man ged, from the quarries to the plaster depôt: and the working out of all the practical details does honor to the able proprie tor who
them.

Mr. Crookes on the "CPsychic" Force.

With a boldness and honesty which deserve the greatest espect, Mr. Crookes has cume forward as an investigator of hose mysterious phenomena which have now been so long before the public that it is unnecessary to name them, more specially as their generally recelved name is very objection able. Two things have contributed to retard our knowledge of these strange events. In the first place, until lately, few men of name have been associated with their occurrence, so that outsiders have not had the facts put before them in a proper manner. In the next place we are inclined to indorse the remark of Mr. Crookes, that men of science have shown too reat a disinclination to investigate the existence and nature f these alleged facts, even when their occurrence had been erted by competent and credible witnesses.
Before adverting to the results obtained by Mr. Crookes, few words may be said about our made of procedure in ac

Let us suppose that a man comes before us as a witness of some strange and unprecedented occurrence. Here it is evi dent that we are not entitled to reject his testimony on the ground that we cannot explain what he has seen in accord ance with our preconceived views of the universe, even al. though these views are the result of a long experience; for by this means we should never arrive at anything new. Our first question is manifestly one regarding the man's mora character. Is he an honest and trustworthy man, or is he rying to deceive us?
Let us assume that we have convinced ourselves of his honesty; we are then bound to believe that he thought he saw what he described to us; not necessarily, however, that the occurrence which he described actually took place. Convinced, already, that he is not deceiving us, the next question is whether he may not be deceived himself. Let us, however, assume that, upon investigation, the circumstances are such that collusion of any kind is out of the question, and that the man is neither trving to deceive us, nor that it is pos sible that he himself can have been deceived by others. Even yet we have an alternative in our judgment of the event The phenomenon may be subjective rather than objective, the result of an action upon the man's brain rather than an out standing reality. For nothing is more certain than the occa sional occurrence of such strange impressions; and that the cat or the dog, or the skeleton by which the patient is haunt ed, is frequently recognized even by himself as having no external existence. Of late years we have been able to pro duce instances of this depraved consciousness almost at will. The author of these remarks considers it certain that the electro-biologist has frequently caused them. The unim peachable character of the patient, combined with the fact that he has sometimes pronounced water to be wine, or a that he has sometimes pronounced water to be wine, or a
snow storm to be taking place in a room, can only be accounted for on the supposition that he has been put into a peculiar state, during which his evidence of events is utterly worth less. But beyond the bare fact, we know next to nothing of the laws that regulate this action, nor can we tell under what conditions one man is capable of influencing another, or whether a man or body of men may not be capable of in fluencing themselves.
To come now to the class of events which Mr. Crookes has itnessed. It is greatly to his credit that he has come for ward so frankly and honestly; and since he has begun to in vestigate the peculiar class of facts, we are sure that he will consider it his duty to continue the investigation in such a way as to convince those men of science who may not them selves be able to take up the question-outsiders in fact. Mr Crookes will, we are sure, not object to a few critical remark honestly made with the sole view of finding out the truth, nd we would therefore express a wish that, in order to facil ite operations the experiments should, in future, be con ducted by only such men as Mr. Crookes himself, and that hould al ways be absolutely superfluous to investigate wheth or machinery, apparatus, or contrivance of any sort, be se reted about the persons present. We sloould thus start from higher platform, and the investigation would gain in sim plicity, although perhaps something might be lost in the marked nature of the results obtained.
Allowing, however (as we are disposed to allow), that things of an extraordinary nature are frequently witnessed on such occasions, yet we are by no means sure that these constitute external realities. The very fact that the results are uncertain, and that, as far as we know, they have never yet been obtained in broad daylight before a large and unbiassed au. dience, would lead us to suspect that they may be subjective rather than objective, occurring in the imaginations of those present rather than in the outward physical world. Nor can this doubt be removed by any precision of apparatus; for what avails the most perfect instrument as long as we suspect the operator to be under a mental influence of the naure, it may be, of that which is witnesse in electro-biologi al experiments? The problem is, in fact, one of extreme difficulty, and we do not see how it admits of proof, provided the influence cannot be exerted in broad daylight and before a large audience. There is, however, a cognate phenomenon which admits of easy proof. We allude to clairvoyance, and have in our mind at the present moment a man of science who, if not himself a clairvoyant, has yet the power to command the services of one who is Now, were he at once to communicate to a journal such as Nature, in cipher if necesary, the knowledge derived through the iufluence, giving the proof afterwards when obtained in an ordinary manner, he public would soon be in a position to judge whether there is any truth in the influence or not.
It is, in fact, somewhat hard upon the writer of these remarks and some others who are disposed to allow the possibility of something of this nature, but have not the opportunity of investigating it, that those who have will not satisfy the public with a convincing proof.-B. Stewart, in Nature.

Lace Manufacture in Brooklyn, \mathbf{N}. \mathbf{y}

There is now in course of construction on Park avenue, near Hall street, a large brick structure, to be 60 by 140 feet in dimensions, and five stories high, surmounted with a Manard roof, which is to be provided with the most approved modern machinery for the manufacture of Nottingham lace and also of fine silks. A large amount of capital is invested in the undertaking, and, if successful, additional buildings are to be erected on the adjoining lots. It is said that when the works are in full operation, a thousand females, and The fin many males, will be employed in The first story of the main building is now up, and the work progresses as rapidlyas the weather will permit. One reason
for selecting Brooklyn is that the Ridewoml water is chemi for selecting Brooklyn is that the Ridrowom water is chemi-
cally well adaptod for dyeing mupnerm.

