agricultural patents of the year.

There is no object of more interest in Washington than the United States Patent Office, the repository of all the silent but eloquent memorials of the genius and efforts of our inventors, and there is no department of this vast institution more pleasing to the general visitor than that devoted to agriculture. The models are generally so simple in structure as to suggest their purpose without refiection or conjecture, as many of the more complicated machines do not. The hall containing the agricultural models is about two hundred and seventy feet long, and is provided with sixty cases (exclusive of those in the galleries), each case being about twenty-five feet long by five feet wide, and provided with four shelves, upon which the models are arranged as closely as they can be made to stand. \bullet Of these sixty cases, thirty-one are devoted to agricultural models, systematically arranged in classes, each class being subdivided into years, and every model bearing a card having the subject of in vention, the name and
During the year 1869, nineteen hundred patents were issued, in this department, which may be classified as follov's:
Bee hives, houses, traps, etc.. 62
Butter workers, tubs, etc
ttle ties, slaughterers, catchers, etc., chicken coops, nests, etc..
Churns and churning
Corn shellers, huskers, etc.
Cultivators.
Diggers' and spaders.
Drills..
Egg carriers, detectors, etc Fertilizers..
Forks-hay, manure, pitch, etc.
Fruit boxes, crates, pickers, etc
Garden implements.
Garain implement.
Grain cleaners
Harrows, drags, pulverizers, et
Harvesters and attachments.
Hay spreaders
Hedge trimmers, setters, etc
Markers
Markers..
Mowing and reaping machines
Planters
Pruning.
Racks.
Rakes.
Rollers..
Scythes.
Sythes
eeparg. and sowing machines
tors and smut machines
Stalk cutters... fodider cutters.
Thrashing machines.
Yokes.
It will be observed that the plow takes front rank in num bers, as it does in point of importance. It is, of course, understood that a patent is not granted on every application as all inventions are not novel, and it is safe to say that applications for patents for improvements on the plow aver age one for each day. Notwithstanding this rapid increase here is, apparently, as much room for improvement as ever One of the examiners states that when he first entered the Patent Office, he considered the field of invention nearly closed; so much had been done that he could see little room for further improvements; but :fter an experience of nearly seven years, he conclucles that there is no limit to inventive genius. Though a thousand improvements have been pat ented, the field is still open; and there are as many applications for improvements now as when there had been but five hundred patents issued.-Commissioner Capron's Report.

PERPETUAL MOTION.

NUMBER x.
Fig. 26 is an attempt to secure a perpetual motion by the application of clectricity. It is the invention of a citizen of Fig. 20.

liausas.
"You will observe friction (the old enemy) is an ally in this. If a magnet of a certain power will not move the electric plate, the power could be increased without percep tible loss of tension, by decreasing the resistance which the magnet and conductor offer."

In the engraving, A represents a frictional electrical ma chine ; B, a crank; C, an electro magnet; D, wire conductors; F, a trunnion; G, an armature; E, a circuit closer; H, pitman; I, an insulating substance, and J, a spiral spring. The device is expected to operate as follows:
The frictional electrical machine is started, which mag netizes the temporary magnet and draws the armature towards it. This breaks the circuit at the point, I, E, which demagnetizes the temporary magnet and allows the spring, J , to again close the circuit. By this means a continued mo ion is expected to be kept up.
To those not familiar with the science of molecular physics, this device may appear very plausible; a little read ing, however, upon the subject of the correlation of forces will serve to show its utter fallacy.
Fig. 27 is the invention of Jean Clunet, of Lyons, France patented in England, 1869, under the name of "A New and Improved Motive power." It is thus described

Fig. 27.

The invention relates to a new and improved motive power operating without noise and without expense. It con sists in giving a rotary motion to a wheel, which is destined to transfer, by the ordinary means, the power obtained by the employment of any even, smooth blocks of stone, petrified mortar, iron, cast or wrought, or other heavy materials, in the form of cubes preferred, and of which the number and volume are governed by the amount of power desired, and causing them to descend in the ordinary atmospheric air, but to ascend in a liquid whose density is equal to their density, by which means their weight is annulled. For this purpose by which means their weight is annulled. For this purpose these blocks, when descending, are hung to hooks fixed to
an endless' chain turning upon the wheel receiving the moan endless' chain turning upon the wheel receiving the mo-
tive power, which is of a shape of a hexagon, and placed on the top of a suitable framework, and upon another wheel of the shape of a square, which is placed at the bottom of said framework, and partially in a receptacle or tank of water, or any other liquid. When these blocks have arrived at the lower portion of their course, they detach themselves from the hooks on which hitherto they hung attached to the chain, which latter continues its ascending and rotary motion, and the said blocks descend and re-ascend within the tank, confined to their place and guided by an endless band and conducting wires stretched from supports for that pur pose fixed on the top and bottom of the framework. They now, being thus guided, and following one upon another, find their way into another species of tank, placed vertically likewise filled with a liquid similar to that in the first men tioned tank, and when arrived at the top of this second tank they tilt and slide along upon a horizontal shelf of rollers until they reach the hexagon-shaped wheel and the endless chain, when they recommence their descent. In order to prevent the liquid from running or descending from the sec. ond tank into the first, the blocks enter from one tank to the other between rollers and grooved pulleys pressed against the blocks by springs so as to shatoff all way to the water. The detaching of the blocks from the endless chain takes place of itself, so to speak, from the position they find themselves in, in consequence of the rotary movement and of the turning over the said chain upon the lower wheel in the shape of a square. The endless band receives a continuous descending and rising motion from the weight of the blocks, which give every motion that the apparatus possesses, and which motion would be perpetual, if, upon the axle of the hexagonshaped wheel transmitting the force obtained to the machinery by means of a driving pulley keyed to one of its ends, there were not keyed to the other end a break wheel with a hand crank, by means of which the movement may be stopped or modified. Instead of two receptacles it would perhaps often be better to have but one, the rollers and grooved pulleys already alluded to being placed at the entrance of the single tank instead of the second, the blocks acting in the same manner.
The engraving is a side section, in elevation, of the whole apparatus.
A represents the blocks; B is the hexagon-shaped wheel C is the endless chain, which remains attached to the said wheel by means of its pointed hooks, which successively enter similar recesses made in the circumference of the
wheel, the other end of said hooks being square, serving to keep the blocks in their place while descerding in conjunction
with the conducting wires, D, placed two in front and two behind each block, and one at each side; E is the receptacl e F is the square wheel from which the chain, C, at the bottom of its course is detached to re-ascend round the wheel, B; G, rollers, of which there are four, made of india rubber or other elastic material, placed at the entrance of the receptacle, E ; and H is the india rubber or other suitable angle pieces, also placed at the entrance, between which rollers, G and angle pieces, H, pass with slight friction the said blocks, after being disengaged from the chain, C. These blocks, A, angle pieces, H, and rollers, G, being in close contact, form a permanent stoppage, so that the water cannot issue, and said blocks, when in the receptacle, are placed in the middle of the same, where they are kept in equilibrium by the water, and are pushed and moved forward by the blocks which de scend after them. I is the endless band, resting on supports, J, fixed to the inside of the receptacle, supporting the blocks and moving with them. The blocks, when in the vertical part of the receptacle, are conducted by four wires, one on each of their four sides. K is a roller upon which tilt the blocks, guided by the endless band when on the top of the eceptacle to leave the same; L , friction rollers, on which fall and roll the blocks after having tilted, in order to reach the hexagon wheel, B; M, M, are the two pulleys on each side of the hexagon-shaped wheel, for applying the break and for transmitting the power obtained to other machinery. The equality in the density of the liquid and the blocks is ob tained by hollowing the blocks so that they may easily rise to the top of the receptacle when therein. The desired result is obtained by the use of any other liquid, the volume of the blocks being proportionate to their density; also tho weight of the blocks may be more or less than that of the liquid, but equality in weight is preferable.

Carrespondeuce.

The EAStors are respondents.

Ingrowlng Toe Nalls

Mesers. Editors:-The trouble and pain from this cause can be immediately and permanently relieved, without pain in the following simple manner: Take a file, some four inches in length, bastard cut, flat on one side and round on the other new and sharp. File down thin all the exposed part of the nail, till it is soft and pliable. This will immediately relieve the part pressing into the flesh, which need not be cut or extracted. The filing is not in the least painful, as the file will not take hold of the skin or flesh.. In the course of several months, the nail will grow out thick again, when the filing should be repeated. The edges of the nail will never grow into the tlesh so long as the top of the nail is soft and pliable; and there is nothing so simple, convenient, safe, and painless for keeping it so as a file.
Philadelphia, Pa.

American Gas Welis.

Messrs. Editors:-I have seen no account in any paper of one of the oldest and most remarkable oil wells there is in the United States, and will therefore write a short notice of it for the Scientific American. It was gunk in the win ter of 1828-9, by Col. Rufus St n ne, opposite McConnellsville, Morgan county, Ohio. The boring was for salt water, and when he found it he obtained all he needed to make salt, ex cept "elbow, and a pinch of coal;" for, in drilling through a stratum of rock or clay, he not only found salt water, but hydrogen gas under pressure sufficient to lift the salt water to the surface. The well is, we believe, some three hundred feet deep, and has never ceased to furnish gas enough to lift water and evaporate it during the forty-two years of its exstence.
The brine is lifted at irregu:ar intervals into a large tank whence it is drawn as needed. At times, it will rush throagh the pipes for a minute or more, but usually only fiows for a few seconds at a time.
In the accompanying sketch, $\mathrm{A} A$ are the pipes, terminating at the top of the gas chamber, B. The brine falls to the bot tom of the charober, filling the tank, C , while the gas is car ried away by the pipe, D, to the furnace, where a small coal fire is kept burning, to relight the gas in case the supply should cease during a long flow of water from the well.
It is seventeen years since I examined it, and the method of using the gas may have been improved since. The gas burns with a pale blue fiame, and imparts no disagreeable taste to the salt.

Petroleum is found in the neighborhood in quantity, Hoat ing upon springs and the water of salt wells. It used to be called "rock oil," and was used for sprains, chapped hands etc. But no petroleum, or disagreeable smell of it, annoys the owner of the "works" described.
J. B. Gage

36 W .16 th st., New York city.
[In connection with the above statement, we will add tha

Mr. C. C. Peck, of Chicago, sends us au account of a remark able gas well in West Bloomfield, Ontario county, N.Y. The well was sunk about three years si nce, for oil, a smell of petroleum and appearance of gas having manifested them selves on the banks of a small stream. The boring was atopped at a depth of 500 or 600 feet, for want of funds; but there has issued ever since a large volume of gas, having the odor of petroleum. Our correspondent states that the flow of gas is, by actual measurement, more than enough to supply the city of Rochester, and a company is now organized to aupply the town of Lima, preparatory to supplying the city of Rochester, from this sonrce. The illuminating quality of the gas is said to be superior to gas made from coal.
Another corruspondent. Mr. George L. Benton, writing from Shambury, Venango county. Pa., states that about ten miles from where Oil Creek empties into the Alleghany river, at a place called East Sandy, there is a remarkable gas well. The gas from this well is conveyed 1800 feet, through a two-inch pipe, and then employed to drive three engines, of from ten to twelve horse powre, the gas being used in, the cyinder.e, lihe stermu, instead of being burned to generate steam. The surplus gas burned would, it is etated, more than make steam
for ior the enginss. When the engines are running the gage shows a pressure of 80 lbs . Cnder this pressure the amount of gas deliverel must be very great.-Eds.

What a Woman thinks of Modern Microseopiato
Mfissrs. Eibtors :-Among the whole tribe of your scientific men, theye are none who trouble me so much as your microseopists. I am a faithful reader of your papel, taken by my son, Dr. S P. Duffield, and rejoice in the modern improvements of machinery of all kinds; but this microscopic in formation about what I eat and drink is most appalling to my sensibilities.

I have not a morern stomach, theat having performed its duty for screnty onejears; consequëntly, cannot imagine (in these days when imagination does such wonders), that 1 have in it some patent filter that might catch the horrid creatures whirh these gentlemen say we take in by the wholesale.
How sweet was the recollection in fornier clays that "a cup of cold water" presented to a good individual entitled us to "a reward" by a kind Providence! Now, alas! that pleasant idea is abandoned; ar; according to these wise men, we may give him a horrid worm which may be his death-consequently, we deserve no reward-to say nothing of those crea tures which accompany said worn. After reading one of
Jour late numbers I was reduced to despair; as my last refuge of pure things in the earing. line is swrpt away by these unmerciful microscopists.
Oysters-the pure delicions oyster, so niec when eaten fresh from the shell-we are informed, very coolly, have in them multitudes of small oysters swimming nimbly ahout in the juice "corered with shells;" and not content with making us put up with swallowing oysters, shells and all, they unmercifully add that the liquor contains a "variety" (listen to their audacity in telling us of a varicty) of animalculx; and, in their benevolent (?) love of modern seience, they go on to say, " there are three species of worm also.
Were it mot for my belief in Job's words, (poor Job would be informed in these diys that he had a thousand worms in each of his boils) "After my skin, worms shall destroy this body," I should, I fear, die of inanition, as I never would be oble to take the "fool convenient for me," that the happy ignorant Agric prayed for.
Then, tho, these amiable saromes tell us, by way of reward for gulping down this nauseous dose, that if we take our oysterinto a dark room we will ser a " luminous star:" verily, oysterinto a dark room we will ser a "luminous star:" verily,
I should rather do without the luminar f than have it shine I should rather do without the lum
from such a verminose panorama.
I have tried to finct relicf from the old adage, "Where ignorance is bliss, 'tis folly to be wise," but having a learned professor for a son, of course I have arquired a little science myself, and find it morc difficult to do so.
I look to these wise men for some relief. Cannot they make their "luminous star" less of a "blue" one? Anti.vermicul.f..

The Manuractire of Irish Poplin.
 Messrs. Enitors:- Every rivilized nation has some

 specialty of manufacture, Ireland being famous for popling and linen. When in Ibublin I visited the well-known estab. lisbment of Pim Brothcrs, the most extensive poplin manufacturers of the kingdom. The spinuing is the only part of the work that is done by machinery. Every other part is performed in the most primitive manner by hand labor. Almost the first thing that meets your eye on entering is a number of old women sitting beside old-fashioned flax apinning wheels propelled by the foot, and winding the thread on spools.In this catablishment there are employed two hundred and thirt y looms, of the rudest possible conatruction, in appear. anre reambling thosc of our great-grandmothers, manufac turind during our colonial struggles. Every thread is put through with the old-fashioned ohuttle by hand; and the tranlins are worked by the operator's feet. The looms are all operatol by men, ten yards being an average day's work, and firicen yards the largest ever known to have been woven in
 an inderinite length of time
an indetinite length of time.
ins wio who will take the trouble of examining a piece of Hish poplin, will notice the irregularity in the size of the thrrads, and the imperfections in weaving. I asked one of the managers if he did not think that power looms could be
used for waving: bis reply was that it was possible. hut not
practical, as labor was so cheap with them that it would probably cost more than to do the work by hand. Nearly all other parts of the work except weaving is done by female labor.
That

That the far-famed lrish poplins should be manufactured in so sim
surprise.
J. E. F.

Induatrial competition.

Mersra. Entors:-I have read your notice, in No. j, of my paper upon " International Industrial Competition," concerning which I beg to say that I by no means wish, as you express it., to "deal a death blow to commerce and trade."
It is very true that. I prefer domestic commerce and trade to the comparatively insignificant foreign commerce, which arrogates to itself the exclusive right to be called commerce The former is a sure indication of prosperity; the latter is far from being so, and may be the direct cause of national impoverishment
What I insist upon is, that each nation which intends to be truly independent, must develop its own resources, so as to contain within itself the means of supplying its own wants. Here, I feel sure you agree with me.
If you would do me the honor to read the latter half of my pamphlet, you might probably reconsider your view that I am an extremist. That I love my own country more than Eugland, (dermany, or France, is most true, and I de sire to see it resist. successfully thetrade assaults of those countries; to equal and to excel them in all the useful arts. That desire is shared in by yourselves and your readers; it may, in fact, be said to be the taison d'étre of your valuable iournal, as it was of my pamphlet. Joseph Whan'ron. Camden, N. J.

Messus Luminosity oi Cloth When Tori.
Masses. Edrtuns:-About a month ago I read in your paper an extract from Nature mentioning the singular phenomenon, recently observed, of the cvolution of light caused by the tearing of twilled cotton cloth into strips in a dark room. About seven or eight years ago, while in the dry goods trade at Victoria, Vanconver's Island, I repeatedly noticed this same phenomenon. Not only soft twilled cotton cloth,
but stiff, smooth calico, containing a large quantity of lime dressing, will emit light when torn in a dark or cren dimly lighted room. In cold, dry weather the phenomenon is mor noticeable than in warm or damp weather. In Montana, dur ing an extraordinary rold apell in the winter of 1887-68, the thermometer ranging from ten to thirty-twn degrees below zero, I noticed that common printing paper, when torn in a rold dark room, will rmit light. I have always attributed the evolution of light in these casps to elpetricity. At the time I noticosl the so-called phenomenon in Montana, the amount of electricity " knocking around loose" was really
astonishing. One day, presenting my knuckle to the tip of a cat's tail, a spark flew out of it (the cat's tail) as large a that whick comes out of a twelor or fifteen-inch electrical machinc. Often, at night, wher undreasing for becl, as I was pulling off my woolen overahirt, I would hear a rackling noisc, like that made by the broaking of thin glass stems, and while estracting my head and arms from it. I would spe hundreds of little flashes at the points where the over-shirt and under-shirt were parting. In violently shaking my over light, and hear a it oft', I wonld ser imnumerable fashes of light, and hear a rontinuons cracking snund. When the
cold spell was over, the pyrotechnics on my shirt ceased, the cat no longer gave forth sparks, and no mattor how lumi nous the articles were in the newspapers which I torr, ligh refused to issuc from them.
San Francisco, Cal.

IHustrious Inventors.

Mefrrs. Editors:-It is with pleasure that I acknowledg he receipt of the beautiful engraving. "Men of Progress." You will please accept my grateful thanks, and rest assured that I shall use what influence I may have in presenting the claims of the Seientific American to my friends and to the public, not simply for the reward that I have received, but from my appreciation of a paper so full of useful infor
J. F. Lerlie.

mation.
 Haverhill, Mase

[Concerning this group of illustrious inventors, whose portraits are faithfully presented in this picture, the fol lowing are among the dead: Thomas Blanchard, Samuel
Colt, Charles Goodyear, Joseph Saxton, Isaiah Jennings, Colt, Charles Goodyear, Joseph Saston, Isaiah Jennings,
Henry Burden, and Wm. 'l'. G. Morton.
We shall continue to give a copy of this superb work of art to any one who will send us ten new subscribers, at our club rates-twenty.five dollars.
J. F. Kingsley, Owego, N. Y., writes that he has received the engraving, and feels well paid for the trouble he has been to, in getting up the club.

Jeweller's Cement.-The following is a recipe for a strong cement, used by some oriental nations, for the purpose of attaching precious stones to metallic surfaces: Take six pieces of gum nastic, the size of peas, and diasolve in the smallest possible quantity of alcohol. Soften some isinglass two ounces of glue; then rub in two small pieces of sal ammoniac. Mix the two preparations at a heat. Keep well stoppered. Set the bottle in hot water before uaing. It is said by the Turks that this preparation will unite two metallic surfaces, even polished steel.
There has never been a. successful advertising agency outh of Baltimora. Several have been started in New Or leans, but prover failures.

The old contidence in Superntition.
That prosaic and coldly rational temper with which nodern men are wont to regard natural phenomena was in early times unknown. We have come to regard all events as taking place regularly, in strict confornity to law; whatever our offrcial theories may be, we instinctively take this view of things. But our primitive ancestora knew nothing about la ws of nature, nothing about physical forces, nothing about the relations of cause and effect, nothing about the necessary regularity of things. There was a time in the history of mankind when these things had never been inquired into, and when no yeneralizations about them had been framed, tested, or established. There was no conception of an order of natnre, and therefore no distinct conception of a supernatural order of thisge. There was no belief in miracles as infractions of natural laws, but there was a belief in the occurrence of wonderful events, too mighty to have been brought a bout by ordinary means. There was an unlimited capacity for believing and fancying, because fancy and belief had not yet been checked and headed off in various directions by established rules of experience.
Physical acience is a very late acquisition of the luman mind, but we are already sufficiently imbued with it to be almost completely disabled from comprehending the thoughta of our ancestors. "How Finn cosmogonists could have believed the earth and heaven to be made out of a severed egg, the upper concave shell representing heaven, the yolk being earth, and the crystal surrounding fluid the circumambient ocean, is to us incomprehensible; and yet it remaine a fac that they did so regard them. How the Scandinavians could have supposed the mountains to be the moldering bones of a mighty Jötun, and the earth to be his featering fleeh, we can not conceive; yet such a theory was solemnly taught and ac cepted. How the ancient Indians could regard the rain clouds as cows, with full udders milked by the winds of heaven, is beyond our comprehension; and yet their Veda contains in disputable testimony to the fact that they were so regarded.' We have only to read Mr. Baring. Gould's book of "Curious Myths," from which we have just quoted, or dip into Mr Thorpe's great treatise on " Northern Mythology." to realize how vast is the difference between our standpoint and that from which, in the later Middle Ages, our immediate fore fathers regarded things. The frightful superstition of were wolves is a good instance. In those days it was firmly be lieveri that men could be, and were in the habit of being, transformed into wolves. It was believed that women might bring forth anakes or pnodle dogs. It was believed that if a man had his side pierced in battle, you could care him by nnrsing the sword which inflicted the wound. "As late a 1600. a German writer wonld illustrate a thunder atorm de stroying a crop of corn by a picture of a dragon devouring the produce of the field with his flaming tongue and iron teet h."-Tohn. Fiske, in. Atlantic Monthly for Fehruary.

The Hartiord Steam Boller Insp

The Hartford Stesm Boiler Inspection and Insurance Company makes the following report of ita inspections for D . ember, $18{ }^{\circ} 0$:
During the month 457 visits of inspection have heen made. and 866 boilprs examined- 84,5 externally and 274 internally, while $8 \tilde{r}$ have been tested by hydraulic presoure. Namber of defects in all discovered, 486 . of which 88 were regarded as dangerous. These defects were as follows: Furnaces out of shape, 22 ; fractures, $30-14$ dangerous; burned plates, 22 -3 dangerous; blistered plates, 63-12 dangerous; case., 9 of sediment and deposit. 78-14 dangerous; cases of incrustation and scale, 8:3-9 dangerous; cases of external corrosion 23-2 dangerous; cases of internal corrosion, 20-5 danger ous; cases of internal grooving, 15-4 dangerous; wate rages out of order, 22-2 dangerous; blow-out apparatus out of order, 22-12 dangerous; safety valres overloaded, 25--
2 dangerous; pressure gages out of order, 50- 2 dangerous: cases of deficiency of water, 3-2 dangernus; broken braces and stays, 9-4 dangerous; boilers condemned, 3-all dan解
During the month there have been seven explosions in the United States, namely : Locomotive, tug boat, pile driver grist mill, brass foundery, iron foundery, and steamboat, one each. By these explosions 12 persons were killed, 14 severe y wounded, and many thousands of dollara worth of proper ty destroyed. It is safe to say that the greater part of these explosions, and the consequent loss of life and property would have been avoided by a proper inspection of the boilers.

What an easy thing it is to drive a locomotive, says the National Cer Builder. Pull a levcr, away she goes; push it, she slacks up and stops. 'That's all. The quick eye, firm hand, prompt courage, the knowledge of evety furlong of the road, the putting on steam on an ascent, or the shutting off on a down grade, the difference of expanaion in the rails between hot and cold, wet and dry, and the perpet ual risk of life and limb and property are matters unknow to the people who pay their fares, take their tickets, and get to their journey's cnd. All the while their lives have been in the hands of a grimy looking man, at the end of the train, whom, if they meet him on the platform, they avoid, lest they should soil their silks or kerseymeres by the contact These men should be, and often are, acientifically edacated; but they have no social position, and their wages arc absolutely inadequate to their responsibilities. The gentlemanly conductor is a personage of consideration, the petted of pas engers, and the respected of directors. The engineer is mere mechanic. The world is full of irregularities and in mere m
justilep.

We gave, it shenc. ish process for making cement from gas lime, anven Eng Mr. Prideaux. Of this new cement, a correspondent of the London Builder says: It bids fair to become an important manufacture. In Sheffield upwards of 700 tons of gas lime have been worked up. The larger part has lieen applied to walls and floors, hearths and mantelpicces. Of the latter, about 200 have been moulded and sent out. In four of the busiest parts of the town, causcways have been paved by laying the cement with a certain proportion of broken slags from the neighboring furnaces. These have stood the late rainst very well, and are likely to come into close competition with the asphalte wsunbly employed. Perhaps the most happy application of this new material is for floors and roofs. Old boarded floors of warehonses have been covered with athout an imeh layev, and even in workshops, where polishing machinery kecps everything in vibration, the Prideaux remachinary kecps everything in vibration, the Prideaux re-
ment stands intact. I have daily inspected the roof of a ment stands intact. I have daily inspected the roof of a
shod which had been covered with the cement. Upon a lisht. frame of wood the material was laid on and troweled to a amonth fare, and in the sparee of twelve hours it was hard anough to bear standing upon. The rain water now washes over it without the slightest trace of white particles, nor is there any alkaline reaction to be discovered on the hardened surface. The smoothness of walls and plinths molded with the Prideaux coment is very striking, and must recommend it strongly to builders.
Now, it may be asked, what is the composition of a cement which possesses these useful properties? It is not a Portland or a Roman cement, although some hydraulic characters are very distinct. It does not set so quickly, but allows more time for finishing up the faces of molded work. It is far from common mortar; for without any sand it can be formed into blocks which set hard throughout. A piece of a mantelpiece, which had been made some six monthe, gave the fol lowing results upon analysis:

Calcic hulphide.
Insoluble matter
Amina and oxide of iron.......
It is obvious, from the above, that the setting must at first be due to the combination of water with the dehydrated calcic sulphate, or, in other words, the phaster of Puris formed by the calcination of the cement. The quantity of caustic lime which is present in the cement, keeps the plaster of Paris always fresh, that is, delydrated, until, mised with excess of water employed at the moment of using it. 'I'his will account for the fact that the cement does not lose it: quality by keeping, as the hydraulic cements do. Aiter the plaster of Paris is set, the causstic lime goess on absorbing carbonic acid, and thus induratiug the mass in the ordinaly manner of lime mortars
This will be better understood by the following partial analysis of a sample of the cement ready for use:

Sulphate of lime (dehydrated)
$.1 \% 46$
.7400
Caustic lime
Ansoluble residue of iron
Hygroscopic water
Now, when it is considered that such a material is made from a waste product of a most offensive kind, this invention deserves every fair trial of its merits. Gas lime is a neces. sity, if the best and purest gas be wanted. Only the expense and annoyance of its removal drove London gas companies nuwillingly to replace it partly by the ferric hydrates. It is pretty certain that with a market for the waste: product they would gladly return to lime purifiers, and it may be prodicted that the Prideaux cement manufacture will surely bring on this revolution.

Fortunes in scraps

'The "old junk" business is much more extensive than most people suppose. It includes refuse of all kinds, cotton waste, woolen rags, old newspapers, iron, tin, lead, etc.. patiently gathered fromall quartera, insignificant in detail, but valuable in the aggregate. It is believed that over $\$ 10,000,000$ worth of old material is annnally workedover in New England, and that at least $\$: 000,000$ worth of this peculiar stock rould at any time be thrown upon the market by the Bostondealers. The amount consmmed by the mills is astonishing, especially of shoddy. Wonlen mills could tee named that purchase each year from $\$ 3,000$ to $\$ 1,000$ worth of the above stock, and this, too, in addition to flocks. Very many paper mills havestanding orders with the largest paper dealers for thirty and fifty tons of stock per week. The Kingsley iron and raachine company receive and consume from sixty to seventy five tons
of scrap iron each week, and the Old Colony and Ames'shovcl companies stand ready to take all the old wrought iron offered in the market. The war in Europe seems to have closed up the avenues for using a large percentage of the Meditprranean rags, and as a natural consequence, they have all drifted here. The immediate effect on our market is to put foreign stocks at the lowest quotable tigure, while domestics are, and are likely to be for some little time a drug. There
are firms in Boston each holding $\$ 100,000$ worth of foreign are firms in Boston each holding $\$ 100,000$ worth of foreign
and domestic, patiently awaiting a rising and a favorable market. The importation of old junk grows i_{n} importance each year. Old newspapers are brought from England and find a ready sale at remunerative rates; the rags from Lendon and the Mediterranean average more in quantity and better in quality each succeeding year. It has been suppose ed that imported rags have been a source of epidemic dis. eases in many instances, but one of the largest dealers in
Bnat on, who lass bren in the trade fifteran years, statips that. hn
has yet to learn of a single case of sickness occasioned by the opening or bundlingof a bale of forcign rags. New England rags are worth more and will readily bring from one to three cents per pound more than these from any other section, the reason being that an ulmost universal custom prevails there, among the housewives, of washing the rags hefore putting them in their rag bags-so that time, labor and shrinkage are directly saved to the mills. One firm in Boston recepives over $\$ 300,000$ worth of paper stock per month from the South New Orleans lieing the chief point of collection.

Steam Boller Leetialation.

The Manchester (England) Steam Usirss Association held a onference Janmary li3th, to consider the subject of ateam lmiler legislation. Sir William Fairbaim presided, and the following resolutions were adopted:

1. "That the use of steam, as at present conducted, entails grat suffering from the destruction of life and property ocrasioned by the constant. recurrence of boiler rxplosions. That boilers are now to be found under the pavements over which the publie walk, behind ivalls close to which they pase, in the hasenent of huildings crowded with busy workpeople, and that, in short, they are in be found everywhere. That many of suela boilers have given rise th the most disastrous explosion:\%, so that the lives of all those living near se dangerous an instrument as a boiler, or even casually passing by, are seriously jeopardized unless suitable precautions are adopted to ascertain whether the boiler be safe and trust worthy, and if not, to render it so. That most of those who have suffered from these explosions have had no voice in the management of the boilers, and thus were helplessly victimized, some being women in their own houses and others children at play. Further, that in the generality of cases those injured by the explosions of boilers at the works at which they earn their livelihood are in a similarly helpless position, and, as a rule, too peor and too ignorant to defend themselves. That the subject, therefore, becomes one of general and public interest, demanding immediate investigation, more especially as the use of steam is datily on the increase, and, notwithstanding uny precautionary measures a present adopted, explosions still recur with the most persistent regularity and frequency.
2. "That boiler explosions are not a uecessary consequence of the use of steam, but that they are, as a rule, preventible. 'That though complicated in result they are simple in cause, arising, in the main, from betd boilers-bad rither in con struction or bad in condition. 'Ihat six explosions are due to bud boiler:;, through ateglect of the boiler maker or boiler master, for wery one due to the neglect of the boiler minder That competeut, inspection is adecpuate to detect the budness of the boiler, and thus to prevent by far the greater sumber of the explosions now occurring
3. "' What notwithstanding the proved efliciency of compe-
ent boiler inspection and the publicity constantly given to the subject, yet that ateam users rafuse to protect the live of their workpeople, or those residing nuar to their works, by having their boilers inspected. 'That it appears approximately that out of about 100,060 boilers in the country only 20,000 arc enrolled either with the insperting associations or insurance compunies, so that out of every tive boilers one only is enrolled. That a great number of boiler owners are totally ignorant of the risk to which they expose their own lives and those around them, and in many cases are undo ceived only by the shock of explosion. That, judging from experience, there can be no doubt that there are now a num. ber of dangerous loilers on the very verge of explosion being worked on at the risk of all those living near them. That under these circumstances the public safety demands that competent periodical inspection whonld be enforced by law."
4. "That, although it is necessary in the interest of the public that inspection should be enforced by law, it is not advisable either in the interest of the steam user or the pub lie at large that inspection should be undertaken by the
Board of Trade, or any other department of the Imperial Government, as such a course would, it, is feared, harass the sterm user and hamper progress.'
"That while the administration of a system of enforced inspection should not loe committed to the Imperial Govern ment, neither should it be committerl to loral authorities nor to private insperting associations, nor to insurance com panies.'.
f. "To secnre the purity of the inspection let the adminis ration beabove sill local, party, or private interests, and la it be undertaken, not for profit, but to promote the public safety. To prevent the administration becoming arbitrary stereotyped, and old-fashioned, and to render it capable of ments of the boiler owne boards, constituted partly of gentlemen elected by the steam users themselves, and partly of ex-oficio members to be chosen on behalf of the public, the boards having the powe of making such laws, rules, and regulations from time to time as might be found necessary for the conduct of th service."
Insulating Covering for Stean Boilers.-The radia tion of heat from steam boilers and engine cylinders may be effectually reduced to a minimum by the employment of 2 the jacket with r ypsum , I'his ple of boiler tenders, whose health and comfort suffer so severe ly from overheated engine rooms. The gypsum (plaster of Paris) will harden in time, and can easily be removed. This material will be found superin to cork or felt, and can be universally applipel.

The Uso or Glue.
A
ows:
" To do rood gluing the work must be well fitted use a scratch plane and file, in fitting work for gluing. The shop must be warm, the parts to be glued well warmed, and a kettle of good glue in readiness, well cooked, and brought to the proper consisteney. Badly tempered glue is one great point of failure. If the ghue be too thick or too thin the work is ill done. It is most frequently used too thick. In gluing panels for carriage work, etc., the work should be well run over a few times with the glue brush, until the: pores of each part are well filled, and if the work be well warmed, the glue hot and of the right thickness, the first. coatings will frequently strike in, or be absorbed by thi pores of the wood. This striking into the pores is what gives a glue joint its great strength and durability. Now having clamps, hand serews, etc., ready, put together imme diately, bringing the parts firmly togrether, leaving no body of glue botwren, but do not get in a hurry. If you wigh to hurry, d it in getting everything ready and at hand before you put on your glue. Use nothing hut the best glue. If we do a bad job of gluing, screws will not cure it ; it is a bad job at best, and will rive out sooner or later. When glue joints open they hegin at comers or ends, and work in by degrees. Screws at those points may stop the openings for a while, which is the most they can do. They are of but little use in panels to carriage bodies.

A Callfornia Raliroad Pier.

The Central Pacifie Railrond has erocted at Oakland, on the enst side of San Franciseo Bay, a wharf 11.000 feet long running out to a depth of 24 feet at low tide, and of 31 feer at high tide, having twelve railroadtracks upon it.s last 1,000 eet, a wide carriage way, a passenger depot and railroad offices, warehouses, and outside storage for 40,000 tuns of gruin or other merchandise, and three large docks, one of which affiords ample apace tor five of the largest steamers of clippers afloat. The extreme end of the main wharf is only three miles from the foot of Second street, where freight is landed in San Francisco, and is less than owo and a half miles from the foot of Pacific street, where passengers are set down. The piles used, where the water deepens, are 6 a eet long, and are 42 to 54 inches in circumference. The main wharf is 800 feet wide at the extreme or western end and on it are pens for 200 cattle, two immense warehouses one 50 by 500 , another :00 by 600), and the passenger depot等 by 3 3: ${ }^{2}$ in size.

Obltuary--The Late Henry Steinway

Henry Steinway, the head of the well known firm of piano manufacturers, Steinway \& Sons, died in this city on Tues day, the 7 th instant.
Ile was born in Brunswick, Germany, in 1797, and learned he business of piano-making thoroughly. He was a suc cessful manufacturer long before he came to this country which was in 18:50. In this city he began business in Varick street, and then moyed to Walker street, near Broadway where, in a little old fashioned house, formerly a dwelling, he won for his pianofortes the reputation which has mades the Steinwor pianos relebraterd all over the United States At the Crystal Palace in this city, in 19sm, no of his instru At the Crystal Pulace in this city, in 1sm, ne of his instru-
ments took the first prize. In 1860, the large uptown manments took the frst prize. In 1860, the large up.town man
ufactory was built, and soon after, the splendid wareyooms ufactory was huilt, and soon after, the splencid waresoom.
on Fourteenth street. Of late ypars, Mr. Steinway, Sr., has lived in retirement.

Tef Hudan River Rallroad Accident.-The daily pupers have carried to every corner of the land, the news of the dianster which occurred at New Hamburgh on the night of the 6th inst. We need not, therefore, dwell upon its horrible details. An inquest is now in progress, and no doubt the blame, if any attach to the employes on the rains which collided, will be fixed upon the right persons Ve shall defer further comment till the evidence is all takeu.
Scientrfic Perbonal.-Baron Liebig writes toa friend in his city that his health is so far restored as to admit of his conducting the usual course of lectures at the University of Munich. Since he loroke his leg, he has not been able to take as much exercise as usual, ond the severe labors of the laboratory more readily tell upon him. W. must also recol lect that he is fast approaching the three score years and ten, which, the Psalmist tells us, is all that is allowed to man, unless by reason of unusual strength.
Manufacture of Mcstard.-W. G. Dean, of New York, has obtained a pateut for improvement in the manufacture of mustard Hour, by which, it is stated, the unpleasant taste and smell of turneric, as well as the natural bitterness of mustard, is entirely removed. The process completely de stroys the disagreeable properties of the turmeric, and at the ame time gives a sweetness to the flour, besides changing almost instantly the natural gray color of the mustard to a rich and beatutiful yellow.

We are in receipt of the annual report of Commissioner Capron, for 1809, upon the subject of Agriculture, which embodies much valuable information to our larmers. We intend to make several extracts from this report., such as ex hibit the progress of inventions designed for agricultural purposes. These extracts will guide the minds of inventors nto safe channels, upon which they may venture to push their ingenuity in search of other improvements.

Improved Ore washer.

The device illustrated herewith is an apparatus for washing ores. I_{n} its use, ore previously pulverized is thrown into a receiver, A, and falls thence into an inclined pipe, B. Here the ore is caught by jets of water forced upward into the pipe, B, through nozzles placed just below the juncture of A and B (not shown in the engraving) by means of a powerfu steam pump.
The water jets carry the ore upward into a chamber, C, which is supported by the frame, E , and which has an inclined bottom, D. In the chamber, C, there is placed a perforated barrier (not shown in the eugraving), extending downward from the arched roof of the chamber, and against which the mixed ore and water is forcibly dashed.
The perforated barrier does not extend entirely down to the bottom floor, D , of the chamber, C , but has beneath it a space left, through which the ore, after falling down the side of the perforated barrier, passes. A portion of the water, also, with some of the dirt, rushes through the perforations of the barrier, and the whole mass flows onward to the inclined trough, F, the upper end of which opens into the lower corner of the chamber, C,
The water now escapes through perforations in the bottom of the trough F, while the ore falls to its lower end and is removed, if cleaned, through a gate placed at K, formed in the bottom of the lower end of the troagh, F , and not shown in the engraving. If not sufficiently cleaned, whimh is ascertained by examining a small sample, the vertical gate, J , is raised, and the ore then falls through into the receiver, A, for a repetition of the process, or it may be repetition of the process, or it may be
passed through a suitable channel into another machine, for a second washing.
During its passage down the trough F, the ore is met by small jets of water from apertures, I, in the pipe, G, the water being forcedinat H by a steam pump. Under each apertare, I, on the snside of the trough, F , there are formed lips which direct the jets upward against the descending stream of ore. The ore is by this means kept constantly agi tated, and every part is acted upon by forcible jets of water.

A sliding gate, L, is used to remove the clogged ore or to relieve the pipe from a surplus of water.
Patented through the Scientific American Patent Agency, Oct. 4, 1870, by Edwin Platt, whom address for further information Charleston, S. C.

Patent Weatherboard Bracket. The operation of weather-boarding is tedious, and attended with many practical difficulties. The spaces for the lap of boards are generally taken with com passes, or some kind of marking gage, a mark made, and nails driven in to support the board, which must be held in place with one hand, while the workman clambers from end to end of the staging, scribing and handling tools with the other. The board must always be taken down to be sawed, and replaced to be nailed on, and the supporting nails must then be worked out with the fingers, or drawn with the claw hammer, the fingers, or drawn with the
more or less defacing the work.
Very often, when a board extends past a corner board to be scribed, a wind whisks it off the nails, tumbling tools and nails to the ground.

The simple and efficient implement, herewith presented, effectually obviates all these difficulties, and greatly shortens the work.

It takes the space, and, at the same time, off ers a secure bracket, to receive the next board and hold it firmly, in exactly the right position, while it is scribed, sawn off' (without taking it down), and nailed on, leaving both hands free to handle nails and tools throughout the operation.
It consists of an elbowed spacing bar, A, carrying at its lower end an adjusting screw, B, which travels over a graduated scale, cut on the face of the bar, and terminating at its upper end in a bracket carrying a light holding spring, to keep the board upright against the studs or sheathing boards.
The bar carries ears near its middle point, in which is pivoted the middle point of an oscillating lever, C, the upper end of which carries a spike, D, by which the tool is fastened to the wall. One bracket is used to support each end of the board.
The adjusting screw being turned to the proper division on the scale to allow forany required lap of boards, the tool is slid upwards across the last board one to simplify a most troublesome part of their work: A nailed on, till the end of the adjusting screw hitches on its small piece of ball liquorice, dissolved in water, applicd with lower edge; then a tap with the hammer on the upper end of
the lever secures the tool to the wall in exactly the right
thair brush to the place intended to be left un-
gilt, wrevent the leaf adhering. The solution must be position. The bear.t is then dropped vertically behind the $\left\lvert\, \begin{aligned} & \text { weak. Made thick and gummy, it is very useful to protect }\end{aligned}\right.$

MICHOLLIN'S PATENT WEATHERBOARD BRACKET.

springs and scribed, then drawn past the casing or corner ornamental parts of work that is to be repainted. We have board aud sawn off; then slid back to place and nailed on. the authority of the Coachmakers' International Journal for One tap of the hammer on the lower end of the lever disen- the above facts.

Improvements of Plows. the wall as before
It will be seen that this tool is not one that must be put away and picked upagain every time it is used. It is only a
moment in the hand at each operation, and when not in the

In the matter of swing plows, it can scarcely be said that In the matter of swing plows, it can scarcely be said tiat
any decided and unusual stride has been made during the
year; nor has any strikingly unique form of mold board, landside, standard, brace, colter, or clevis been patented in that period. Applications have been chiefly for improvements in those devices.
Quite a competition has sprung up in an attachment of plows known as a "fen. der," which, although invented years ago, has received, until recently, but little attention. While the position of the fender is about the same in all plows to which it is applied, viz: pendent from the beam, and slightly in advance of and removed from the mold board: its purposes differ according to the style of the plow with which it is employed. Thus, on a breaking plow, one intended for raising and turning over the unbroken sod, it is used for bending the weeds and other trash away from the mold board when likely to interfere with the plowing, or being down in such a way of to fall beneath the ridge of soil turned over by the plow. The fender is also used on cultivators, for the purpose of protecting the growing corn and preventing the heavy clods from fall. tag on the young plants.
The majority of plows patented are those known as swing plows, by which is to be understood a plow unsupported by wheels, and the chief aim of theinventors has been, while otherwiseimproving their efficiency for generdl and specific purposes, to make them lighter and cheaper. In this respect, our American inventors have good reason to boast over their competitors in other lands, as may be readily appreciated by a comparison with foreign implements, of our light and jaunty.looking plows.
There is a strong tendency toward wheel plows, " gang" and " sulky," in the prairie country west. By "wheel plows," are meant those in which the plows are carried between a frame supported on two hand, is doing duty in its place on the wall. The utility of \mid There seems to be no diminution of intercst in this class of this bracket as a time and labor-saving implement is obvious. plows in any section where they have been introduced.
Patented through the Scientifc American Patent Agency October 18, 1870. The patent is for sale For the entire right, or right to manufacture on royalty address the inventor, J. M. Milhollin, Champlin, Hennepin Co., Minnesota.

The points to which attention has been directed by invent ors of wheeled plows, are various. They have mostly reference to the frame and its appurtenances, and rarely concern the construction of the mold board, or parts which have to the construction of the mold board, or parts which have to
deal directly with opening the furrow. Either lateral or vertical adjustability has generally been kept in view, while
To Prevent the Adhesion of Gold Leaf. much has been done with reference to a diminution of the draft, and to a construction that will keep the plow in the ground firmly and uniformly, while per mitting it to be readily raised above the surface.
It is worthy of note, that the patents granted on wheel plows, in 1869, to residents of California and Oregon, largely cxceed in number those granted for inventions of a like character from all the other States of the Union.

The Curled Halr Trade.

This article, which to almost any casual obscrver would be of small moment, is, says the Trade Journab really of very great importance to the nation, as, with all our ingenuity, we have never yet been able to find a substitute for it in the manufacture of bedding, fur niture, and many articles of use which contribute to our comforts. The amount of business done in this article is something really astonishing when reduced to figures. We imported into this country, from the various ports in South America, during the past year little over $3,000,000$ pounds, amounting to about $\$ 960,000$. When imported, it is not curled, but in the natural statc, just as it is taken from the horses, of which many thousands are killed evcry year on the vast pampas in Ceutral South America, and it is made up into robes herc, and afterwards picked by machine ry and by hand, when it is ready for use. The busi. aess in curled hair is incressing cvery year, and al though the manufacture of hair cloth has, in a great measure, died out, there is still a very great increase in the amount of hair imported each year for this one purpose of curling. Two or three large houses in this country do most of the business, and are situated in New York, Boston, and Baltimore. The raw material is worth from 32 to 34 cents gold, and, after manufacture, brings from 50 to 70 cents currency, but the cost of manufacture is a very large item, and employs a large amount of capital, and a great deal of skilled labor. The imports of hair into this country, this year, in the opinion of parties in the business, will be from one to two thirds larger than last year.
OF the 7,391 residents of New Orleans who died last year
twelve were over 100 years old. twelve were over 100 years old.

