Another potentate of ebony hue ordered a. number of polished ship bells in elegant brass frames, and mounted on mahogany stands, engraved with the assumed name of the sable prince, "Yellow Duke, Esq." The number of workpeople directly engaged in this branch of Birnningham industry, is estimated at about two hundred and fifty, and the increasing use of bells, both for outdoor and indoor purposes, promises to augment the number at no distant date.-Mechanics' Magazine.

A NEW STONE.

Architects have for some years past been indebted to Mr. Frederick Rannome for providing them with a constructive material of very great value, a stone which can be molded into any form, which can be produced in blocks of any size, and which, when made, is as durable as the best kind of natural stone known. The production of this material-the "patent concrete stone" as it is termed by Mr. Ransomewas the result of many years of persevering labor and struggles against difficulties; but we now find that Mr. Ransome, not content with what he had already accomplished, has succeeded in producing another new stone, which is in many respects as superior to its predecessor as the latter was to all other artificial stones produced before or since.
Before describing the process by which this new stone is made, it may be desirable that we should recall to the minds of our readers the method of manufacturing the artificial stone generally known by Mr. Ransome's name, as this will
enable us to speak of the steps which led to the production of the new material. The ordmary "Ransome stone," then, is composed of particles of sand, mixed. in some cáses, with a little ground carbonate of lime, the whole being incorporated into a solid mass by the formation in the interstices of a silicate of lime. After many fruitless searches after a method of procuring silicate of soda on a commercial scale, and at a moderate cost, Mr. Hansome hit upon the plan of ure, and it is the silicate of soda thus obtained that Mr. Ran ure, and it is the silicate of soda thus obtained that Mr. Ran-
some employs to bring the materials we have mentioned into some employs to bring the materials we have mentioned into
u plastic state, in which they can be molded to any desired u plastic state, in which they can be molded to any desired
form. This being done, the blotk produced is treated with a solution of chloride of calcium, when a double decomposi tion takes place, the silicic acid and the oxygen of the silicate of soda combining with the calcium of the chloride of cal cium, and thas forming silicate of lime, while the sodium unites wilth the chlorine of the chloride of calcium, thus torming chloride of sodiuns. The silicate of lime produced in this way unites the particles of sand, etc., into a hard and perfectly durable mass, while the chloride of calcium remains diffued throughout the block, and las to be removed by washing.
Now, regarded from a manufacturing point of view, this washing process is rather a nuisance, particularly where
large blocks are being made. If performed thoroughly, it large blocks are being made. If performed thoroughly, it
occupies very considerable time, and, consequently, delays the turning out of the work; while, if not performed pro perly, there eventually takes place a greater or less etflores cence of the chloride of sedium, which, although not affect ing the strength or durability of the stone, spoils its appear ance. Under these circumstances, Mr. Ransome was led to endeavor to so modify his process as to render this final washing unnecessury, or, at all events, to reduce its amount and, step by step, he arrived at the new method of manufac ture, which we shall now describe. In carrying out they new plans, Mr. Ransome makes a mixture of certain propor tions of ordinary sand, Portland cement, ground earbonate of lime, and some silica, readily soluble in caustic soda at ordinary temperatures, such, for instance, as the stone found in the neighborhood of Farnham and other places, and these materials he makes into a plastic mass by the addition of the silicate of soda already mentioned. The mass thus formed emains plastic a sufficient length of time to allow of its being rammed readily into molds of any desired form; but it
gradually hardens, and ultimately becomes thoroughly ingradually harcens, and uithout any further treatment, intoa hard stone, capable of resisting heat and cold, perfectly im permeable to moisture, and which, as far as can be judged from the experience hitherto obtained, goes on increasing in hardness, and bids fair to be thoroughly durable.
The chemical actions by which this wonderful result is produced are very curious, and Mr. Ransome's explanation of them is as follows: The Portland cement consise well known, of silicate of alumina and lime; and when the mate-
rials are mixed up with the silicate of soda, the latter is de rials are mixed up with the silicate of soda, the latter is de
composed, the silicic acid combining with the lime of the composed, the silicic acid combining with the lime of the
Portland cement, and forming silicate of lime and alumina, while caustic soda is set free. This caustic soda, however, immediately seizes upon the soluble silica, which constitutes one of the ingredients, and thas forms a fresh supply of silicate of soda, which is in its turn decomposed by a further cuantity of the lime in the Portland cenent, and so on. If atach decomposition of silicate of soda resulted in the setting free of the whole of the caustic soda, the processes we have mentioned would go on as long as there was any soluble silca present with which the caustic soda could combine, or until there ceased to be any uncombined lime to decompose the silicate of soda produced, the termination of the action
twing marked by the presence in the pores of the stone of hring marked by the presence in the ports of the stoneen soda in the other. In reality, however, the whole of the caustic soda does not appear to be set free each time the silibe formed a compound silicate of lime and soda, a small jor tion of the latter being fixed at each decomposition. The result thus is that the caustic soda is gradually all fixeri, and

By his new process Mr. Kansonee is enabled to produce ad. mirable artificial marbles, while, by introducing amongst the materials fragments of quartz and a small proportion of oxide of iron, he obtains a stono of rich color, and hardly distinguishable from Peterhead granite. Like the natura granites and marbles, the artificial substitutes are capable of taking an excellent polish, while they possess the great ad-
vantage over the natural products of being capable of being molded in the course of manufacture into any form at a trifing cost. It would be idle for us to attempt here to enu merate the uses to which the new stone can be applied, for they are practically numberless. For decorative purposes it
will be invaluable, and Mr . Ransome deserves the best thanks of architects, and we may add, of engineers, also, for having furnished them with a new constructive material once so cheap and good.-Engineering.

Boiler Explosions.

The explosion of a steam boiler is prim \vec{b} facie evidence of carelessness in its construction, or in its maintenance, or in its use. It is so regarded by the engineers, and ought so to be regarded by the law. It will be easy to convince any one Who will examine the records of boiler explosions and in-
quire into the means of preventing them, that no injustice would be done to the owners of boilers by indicting them or criminal carelessness in all cases of explosion.
The history of boiler explosions is authentic and definite. The boiler-lass usually been erected ander the full light of modern science. All the attending circumstances of the ex. plosion have been immediately communicated to the public; curiosity has aided science in making every man an investi gator of these circumstances and a searcher after causes public and private commissions have been appointed to ex amine the subject generally; numerous legal tribunals have amine the subject generally; numerous legal tribunals have
gone to the bottom of special cases, and innumerable private professional observers have witnessed results, searched rec ords, weighed evidence, and arrived at general conclusions All the plausible theories of exployions have been not only looked into, but worked out, in many cases, experimentally or theoretically, to their ultimate limits.
Now the remarkable and unprecedented result of all this investigation is, not the division of any large body of experts into schools; not the building up of rival theories, but the universal conviction of all concerned that boiler explowions are certainly in most, and probably in all cases, the result of
malconstruction or naltreatment, and of notling else, and malconstruction or naltreatment, and of nothing else, and
that the uzual innmediate cause is the unchecked deteriora. that the usual innediate cause is the unchecked deteriora.
tion of the boiler in service. In the great majority of cases the evidences of carelessuess are as plain as the time of day on the face of a clack-a sheet furrowed nearly through a
stay bolt rusted off; a crown-sletet insumficiently sapported; expansion and contraction unprovided for ; water connectious stopped up; bad material-sume one of the many obvious: and certain conditions of rupture. In u few cases the imme. diate causes are not apparent, and then the electricity theo rists, and the gas people, and the mystery men fight over the remains in the newspapers; and the only reason why simple neglect is not discovered to be the cause, is that the parts of the boiler which would otherwise reveal it, are blown away or are too much mutilated or obstructed to be legible. Sim ple bad treatment by the maker or user will account for the
original rupture which ends in any explosion, however ter original rupture which ends in any explosion, however ter-
rific may be its effects. There is force enough restrained rific may be its effects. There is force enough restrained
within every steam boiler running today to perform the most terrible work of ruin that any similar boiler ever performed in exploding. When this force is once released, the amount of destruction depends on the point of rupture, the amount of destructiondepends on the point of rupture, the
resistance, the surroundings, and on an infinite number of circumstances, mostly outside of our control. The ouly thing we can do, and it is enough, is to keep the resistance superior to the normal pressure.
Now that the causes of boiler explosions are so well understood as to be a matter of commercial calculation-where companies make money by insuring such boilers as are constructed and maintained according to established professional rules-it is to be regretted that the Government should stand helplessly by, and see scores of people scalded to death every few weeks, for the want of an adequate law and a system of inspection. Boiler insurance and inspection com-panies-and they are no new or experimental thing-simply prove that boilers constructed and maintained according to
certain well known rules, are practically safe; that the certain well known rules, are practically safe; that the
chances of explosion, even with ordinary water-tending, are very remote, and they stake their money on this knowledge; and yet the United States Government has been unable to even check the increase of these disasters. If Congress cannot at once provide for the security of the public against boiler explosions, it had better let out the job of protecting its citizens to some insurance company, and then it will be done on scientific principles, and by competent men. $-N$. γ done on
Yimex.

The Domestic sille Trade,

The interruption to the Lyons silk manufactories, natarally esulting from the Franco-Prussiun war, has proved, accord ng to the C'hicagu Bitureau, of very material benefit to the producers of silk fabrics in this country. The sales of the
prineipul makes: of Annerican silkw have, we are informed, increased fully 100 per cent since the outbreak of the foreign war. Our manufacturers were competing successfully with foreigners in the production of colored silks, while the trade, though taking all the black goods manuiactured here, manifested a decided preference for those of foreign make. The war has had the effect of increasing the demand for both

ances-a restit equally gratifying and unexpected-is the decline in the price of American goods. It seemed natural oo believe, at the beginning of the war, that the inevitable esult would be an advance in prices, consequent upon the increased demand and in sympatly with a rise in foreign goods. This, however, has not been the fact. Our manufac. turers, like their Lyons competitors, alway $\$$ depended chiefly upon Italy and France for their raw silk, the California pro duction not having become sufficiently well developed to furnish a supply anything like adequate to their demands. Now that the Lyons manu facturers are forced, by reason of the war, to suspend operations to a great extent, the Italian and French growers, especlally the former, are looking to Ameri ca for buyers of their staple, and finding our dealers ready to buy for cash, their desire to realize quickly induces them to make liberal concessions from current prices, which are, in fact, no higher than before the war. 'To this we owe-what must have been remarked loy every silk buyer-the fact that American silks are now selling at lower prices than when brought into more active competition with the products of brought into more active competition with the producta silk manufacturing districts of the world.

Extract trom the Diary or isambard kingdona 53 Parliament street, Dec. 20

What a blank in my joumal (the last entry is dated Janu ry, 1834), and during the most eventful part of my life ! When last I wrote in this book I was just enterging from obscurity. I had been toiling mostunprofitably at numerou things: unprofitably, at least, at the moment. The railway was certainly being thought of, but still being uncertain. What a change! The railway is now in progress. I am the engineer to the finest work in England. A handsome salary on excellent terms with my directors, and all going smooth y. But what a fight we have had, and how near defeat, and what a ruinous defeat it would have been! It is like looking back upon a fearful pass; but we have succeeded.
And it is not this alone, but everything I have been on gaged in has been successful. Clifton Bridge, my first child, my darling, is atitually going ov; recominenced work last
Monduy--glorious!! [Here follows a list of the undertak Monduy-glorious!! [Here follows a list of the undertak pretty list of real sound professional work, unsought for on my purt, that is, given to me fairly by the respective partiesall, except the Wear Docks, resulting from the Clifton Bridge, which I fought hard for, and gained only by perse. vering strugbles. ... And this at the age of twenty-nine. I
really can hardly believe it when I things of it. I am just eally can hardly believe it when 1 thing of it. I am just
leaving tit Parljument street, where I may say I lave just made my fortuise, or rather the foundation of it, and I have taken is Duke street.
Remarkuble Cave in Thomas county, Georgia. We find the following intereiting account in the Thomas ville Enterprise
Near the line of Brooks and Thomas counties, there has long been known anopening or cave in the earth, called "Devil's Hopper." Many persons residing in the neighbor hood had visited $i t$, but not one of these attempted a real exploration. We have before us, hovever, a letter written two months ago by a young centlemun in this city, to his father, describing an exploration of this care by himself and a physician friend of his, residing in Boston. The writer says it was the most keautiful place he ever saw in his life, and he would not have missed seeing it on any account. He says thut, after creeping through a narrow entrance at the surface they descended to the depth of two hundred feet, winding about in the narrow path walled with solid fint rock, until they came to a well, which they descended by means of a rope, and found it to be forty-five feet deep, without water At the botton of this well they found the narrow passage leading oft from the first, in a tortuons: course, still walled with tiint rock; they continued to follow i1, and at some dis tance from the wall entered a large soom or hall, walled with the same impenetrable Hint rock, but jugged and point ed in a thousand fantastic shapes. The writer declares bis inability to describe the grandeur and beauty of this hall by torchlight, but says he found himself in a large room walled with Hint rock so jagged that a fall against it would cut one to pieces, and beautifully hung with stalactites that reflected the light in a thousand forms and sparkled with diamond brilliancy in the nooks and corners of the hall.

Manufactnre of clocerin in clucinnati.

In Cincinnati, two million hogs are annually slaughtered for pork, bacon, and lard. Thenverage weight of the heavier animals is 400 pounds. In former years, the chief attention was bestowed upon the manufacture of stearin candles and soap grease, in addition to salting und smoking meats, but latterly, since the demand for glycerin has called it into notice, more attention has been given to its preservation. For this p purpose the hard is treated with water at 662° to \%ro Fal., by which the glycerin is separyted from the fatty acids, and freed from the disugreable odor that character izes glycerin made in the process of soap manufacture Two or three large cstablishments manufacture annually 500,000 pounds, valued at $\$ 200,000$ for the crude article. As there is an average of one hog to each individual in the United States (nothing personal intended), the forty million porkers can supply us with all the glycerin we are likely to want for an unlimited amount of artificial champagne, doc. tored cider: and rectified beer, not to speak of sirups and candy.

The Public Printing Ofice, in Thashiugion, is to be connected with the C'apitol, hy telegraph, and a preumatic tubo

