models to make other eyes by. The enamel eye, after being loses alike its color and its luster, asd beconaes opaquelook. ing; a thick, dingy coating of wolidified humors spreads over its polished surface, and it has a glassy look, like the eye of its polished surface, and it has a gassy look, like the eye of a dead person. "Touch them, you will do no harm," says
the oculist to visitors, just as though it was a collection of the oculist to visitors, just as though it
coins or minerals they were inspecting.

ENAMELING WOOD WORK
 [Frou The Building News.]

We have very considerable doubts as to whether polished paint may be considered in good taste when used for the interiors of drawing rooms, or, in fact, of any room. There is a want of repose, and a garishness about gloss colors, which are scarcely conlipatible with that quietness and repose so necessary to the perfect satisfaction of the educated eye. Polished glass is beautiful, and never out of place ; the same may be said of marble, of gems, and of all steel work or in-
struments. With all these, polish is the one thing needful struments. With all these, polish is the one thing needful to develope their beauty and finish, and, in fact, is a necessity moment doubt its propriety or imagine it would be better otherwise. Fitness, beauty, and utility are a consequence of the polish in all these cases, and therefor proper and right from every point of view; but the same reasoning will not apply to polished paint, that is to say, plain tints of colors. Of course, imitations of woods and marbles may be polished with propriety and without oftense to good taste, simply because we expect to see them so, and they would not be finished if left unvarnished and unpolished. But it is otherwise with plain colors, which, when glossy, have too much the look of the japanner's shop or the tea tray business. These remarks apply principally to that so-called enamel work which is produced by merely painting the work and finishing it with varnish, when, as a matter of course, it
nejery soon becomes discolored; and even when first done it is Hery soon becomes discolored; and even when first done it is
a mistake in name and execution, and a gross offense against a mistake in name and execution, and a gross offense against
good taste. The best enamel work -of which there is but little done in consequence of its great cost-is free. in some measure, from the objections urged against the common work. Its manipulation requires so much patience und care that it is a very difficult matter to find men who have the qualifications requisite for preparing such fine work, und therefore it is very rare to see a really good job. In getting up enamel work, much care is requisite in the selection and ise of the material required. The filling-up color, which forms the body of the enamel, is of the greatest importance to the ultimate success of the work. Of this material there are several kinds manufactured-black, brown, and yellow, for coach painters, jupanncrs, and others; but for use in interior decoration we prefer to use the white lead filling, as we c:an, by adding the necessary staining colors (which do not a,ffect the properties of the enamel), form a solid body of color of the same tint, or nearly so, as that with which the work is required to be finished, and thus do away with the abjections which may be urged against the black or darkcolored filling. For it will be evident to the plainest comeolored filling. For it will be evident to the plainest com-
l, lrehension that if work which has to be finished white, or
with very light tints of color, be filled up with dark-colored fill with very light tints of color, be filled up with dark-colored fill
ing, that the number of coats of paint which will be required to obscure or kill the dark color will be so many that there will be danger of the work becoming rough and uneven in jurts-at all events there can be no question that work which is left with a smooth, even surface, produced by rubpossibly be left by the brush. The white lead should be ground stiff in turpentine, and about one fourth part of the ,rdinary white lead, ground in oil, added to it, in order to irevent the enumel cracking, which it has a tendency to do, scept there be some little oil mixed with it. A sutficient duantity of polishing copal or best carriage varnish should "ow be added to bind it so that it will rub down easily, which fact cannot be properly ascertained except by actual trial, nasmuch as the drying properties of varnishes vary, and wher causes influence the matter. If there be too much varnish in the stuff the work will be exceedingly difficult to cut down, und if too little, it is apt to break up in rubbing, so that it is always the safest plan to try the enamel color be ore commencing anything important. The color, being properly mixed, should be laid on the work in the ordinary manner, using it rather freely. It may be as well to state here that no filling should be put upon new work without the same having had two or three coats of ordinary oil paint ior on old work without its having one coat. This gives a key for the filling to bind to. Successive coats of the filling should now be laid on the work until there is a sufficient thickness to cut down to a level surface, filling up the whiole of the indentations and undulations of the panel. One day of theuld intervene between each coat, in order to allow it to hurden in some degree. When a sufficient number of coats is put on (which number will, of course, depend upun the state of the work to be tilled up), it should stand for a fort night or three weeks, until it is thoroughly hard; it will then be ready for cutting down, which is to be done with felt, ground pumice-stone, and water. The folt used should be such as the marble masons use for polishing marble, which varies in thickness from one eighth to half an inch, and aid of patent knotting or other resinous gum, to square pieces of wood of the same size, but one inch thick, so as to give a good hold for the hand in using. These pieccs of wood, covered with felt, may be made of any size or shape,
to fit molded surfaces or other inequalities. The pumiceto fit molded surfaces or other inequalities. The pumice
and should be carefully selected, so as to be sure that it is
free from any foreign substance. It is sold ready ground but in situations where it cannot be convexiently got, it may be prepared from the lump, by grinding or crushing with a stone and muller, and then passed through fine sieves or mus lin; by using these of different degrees of texture the in; by using these of diferent degrees of texture the
ground pumice may be produced of different degrees of fineness. Except great care be exercised in this matter, it will be found that particles of grit will be mixed with it, which in using, get on to the work, and make deep scratches, thus causing endless trouble and annoyance, besides' spoiling the work. The greatest care is also required in keeping the felt clean and free from grit. Many workmen are careless in this matter, and when working set down the felt on the step ladder or floor, and thus particles of sand or grit get upon it, and so mischief is done.
In cutting down, it is best to use a piece of soft lump pumice stone to take off the rough parts. The felt and ground pumice should now be used with water, the work should be wet with a sponge, and the felt soaked in water, and then into the powdered pumice, and the work rubbed with it, keeping it moderately wet, and rubbing with a circu lar motion, and not straight up and down and across, with a light touch, using only just as much pressure as will cause the pumice to bite, which will be very clearly felt while the hand is in motion. Much care and patience is required to do this properly, for if the pressure be too great it forces the pumice into the bedy of the filling color, and scratches it instead of cutting or grindisy it fairly down. No hurry will avail in doing this work, it must have its time; hurry only defeats the end in view, and often causes much unnecessary labor A scratch, cuused by want of care and too much haste, will often throw the work back for days, and involve the cost and labor of refilling. We find in practice that the purpose is best answered by using the pumice stone, the coarser kind first, then the medium, and finishing with the finest last. It will be found advantageous to let a day elapse between the rubbing, for when the surface is cut down the filling will in all cases be softer underneath, and if it be allowed to stand for a day, the newly exposed surface gets harder, and of course rubs down better in consequence. The pumice stone should be well washed off the work occasionally, in order that we may see what progress is being made, and if it require more rubbing or not. If, while in progress, it be found not to be sufficiently filled up, it may have one or more coats of filling after it has been roughly cut down, and befor much labor has been spent upon it.
When sufficiently rubbed down with the pumicestonehat is to say, when it has been cut down to a fine, level, and uniform surface, the work should stand for a day or two to harden. It will now depend entirely upon the work, as to whether it must be polished upon the filling, or whether
it will have to be varnished and polished. If the filling be of the right color, and has rubbed down of one uniform tint, we prefer it to be finished in this state, because in the first place, it will have a surface and texture which cannot be got by any other means. Finished in this state there is an absence of that glare-polish-if we may use the the uniformity inseparable from vamish polish. It has al that appearance of varnish which is so objectionable, and therefore we prefer it to any varnish polish. After it has stood a day or two, the work, if it be intended to be left in the state we have been speaking about, must be polished in this wise: Take a clean felt and rotten stone, either in oil or water, and with this rub the work as before, until the polish begins to appear; then take a boss (i. c. a ball of cotton wool inclosed in fine silk), put the rotten stone upon this and keep rubbing with the circular motion until the polish is uniform and equal all over. The rottenstone must now be carefully cleaned off; if it be in oil, clean off with fine Hour; if in water, with sponge and wash leather and water taking care not to scratch. A clean damp chamois or wash leather will now be required, which must be held in the left hand, leaving the right perfectly clear. Now use the ball of the right hand, press gently upon the panel, and draw it for wards or towards you. If this be done propurly, it will bring up a clear polish upon the work. The hand should be kep slightly damp by drawing it across the leather almost ever time the hand is drawn forward. If this be done effectually a rustling sound will be produced while the hand is in motion; if this be so, the polish will be sure to follow. The polish thus produced on the filling alone will be of the kind we have spoken of above, und will not be at all objectionable to even the most fastidious taste; but if the work has to be finished with a brilliant luster and to a high degree of polish,
it will, after being cut down with the pumice and felt, have to be coated with two or nore coats of the best polishing copal varnish, having a quantity of the best flake white from the tube; this should be mixed with the varnish in sufficient quantity to form a creamy mixture, with which the work mest be coated-one, two, or three coats, as may be desirable. -his shoulil stand for three or four weeks, until it becomes hard, for the harder it is, the better it will polish. It must then be cut down with felt and the finest ground pumice stone in water, and polished with the rotten stone, as before
described. By this means a bright and brilliant polish may be obtained, of a very enduring nature. The same proces will of course answer for all varnished imitations of wood and marbles, and all work which will admit of the applica tion of oil varnishes.

Is Philadelphia there is a small blacksmith's shop, the bel ows of which is operated by dogs. The bellows is connected with a. wooden wheol box, which iskept revolving by the mo
ti:n of the dog, sonethiry after the mayer of a treadmill.

Birmingham Bell-Making

In medieval times it was acconnted a less difficult matter to cast a church bell than to convey'it any long distance from the foundery to the steeple; and it was common practice to cast these cambrous artieles in the immediate neighborhood of the church or cathedral in which they were intended to be hung. So late, indeed, as the year 1762, the great clock bell at Canterbury was re-cast in the cathedral yard. The early bell-founders were consequently an itinerant fraternity, roving through the length and breadth of the country, but seldom failing to pitch their tent in or near some cathedral town. That they were well skilled in their craft the Sunday chimes in many an antique temple bear ample witness, and a leading bell-founder of the present day does them the jus ice to remark: "One law of nature, indeed, they were ac quainted with, which modern bell-founders in too many cases gnore-that a given weight of bell metal can only sound a very narrow range of notes with good effect, and that if bells
are cast thinner to produce deeper notes, the quality of tone must suffer.
The commencement of bell founding as a staple of Birmingham industry uppears to have dated from the middle of the last century. It is at least recorded in the local annals that "a foundery opposite the Swan at Good Knaves' End" upplied a peal of bells to Harborne and two other neighbor ng churches, about the yeur 1700 . "Chimes" were cast at nother foundery twenty years later, but from that time down o a very recent period the production of church bells became an obsolete industry in the "hardware village." Within the last half dozen years, however, Messrs. Blews and Sons have successfully revived the trade, and Birmingham bells romise to become as famous in the future as they have been in the past-thanks to the liberal and progressive enterprise of this well known firm.
Let us now describe the process of casting a peal of bells, s recently witnessed at the establishment referred to. The pal comprised six large bells for a church in New South Wales, which were cast in the same pit with three other bells or Mexico, the weight of the entire casting being about three and a half tuns. Bell metal is compounded of three parts of copper to one of tin, this proportion giving the greatest den sity of metal. Mr. Blews is, however, of opinion that the rue chemical combination would be six atoms of copper to one in tin, or in weight three and one fourth to one. A less quantity of metal than is due to the caliber of the bell, hough giving the same note, produces a meager, harsh sound; consequently, the superior dignity of tone in some old bells is ascibbed to a greater weight of metal being al lowed for the note than would accord with mpdern deas of ecaromsc production. Four tuns of bell metal is fitthing at a white heat in the furnace when the process of casting commences. At a given signal, an aperture at the end of the furnace, which had been stopped with fire clay, is pened by a workman armed with a long tamping bar, and
he white fluid flows along channels of sand to the pit con taining the molds.
There are two ways, Mr. Blew tells us, of making bell molds. The core in both cases is made of a brick work or ast-iron cone, covered with molding clay, "swept" into the shape of the interior of the bell by a wooden "crook" fixed o a spindle set up in the middle of the core. The advantage of an iron core is that it can be lifted into a furnace to dry nstead of being dried by the application of internal heat, as is necessary in the case of the brick work core.
The old method is to make a clay bell on the core by means of another crook, and when this is dry, to make the outside mold on the top of it. This mold has hair and hay bands, or (in large castings) bands of iron intersected to make it hold together, and lift off when dry. The clay bell is then knocked to pieces, the mold dropped down again over the core, and weighted with earth in the pit in which the bell is ast. The metal is then poured in at one hole at the top, an ther aperture being left for the escape of air. In the newer process no clay bell is made. The mold is an iron caso lined with clay, and swept out internally to the outside shape of the bell. The "wires," or ornamental rings round the bell, are made in both cases by the second sweep, the letters and devices being stamped in the soft clay. These iron copes can be bolted down to a plate under the core, and need not, herefore, be sunk so deep in the ground, if sufficient care be aken to get an adequate "head" of metal above the bell which is a very essential consideration. The process of cast ing in the case under review occupied about ten minutes, but a couple of days at the least would be required for cooling The tenor bell of the peal for New South Wales had a hap pily chosen legend: "We sing the Lord's song in a strange land.'
Church, school, plantation, factory, and ship bells, still closely adhere to the medieval type, and they vary in weight from fifty-six pounds upward. Other descriptions of bells are made very largely in Birmingham, by a goodly number of bell founders. Railway and dinner bells, from four to sev en inches wide at the mouth, with wooden handles attached musical hand bells for village ringing clubs, cattle, horse and sheep bells, with the ordinary house bells, are among the principal varieties, and the number produced is simply pro digious
Some curiosities in belld are reported by the manufactur cra, of which a few may be briefly noticed. 'liny house bells, $\frac{8}{4}$ in. to $1 \frac{1}{2}$ in., are largely made for the African market, where they are used for purposes of barter. Sleigh, dray, and caparison bells-which are small circular articles, with an iron hall cast inside-are extensively produced for Canada and the East India market. An order was not long since ex ecuted for 10,000 green, bronzed, and lacquered house bells,
which now adory the ircan palacs of a West African princ.

Another potentate of ebony hue ordered a. number of polished ship bells in elegant brass frames, and mounted on mahogany stands, engraved with the assumed nume of the sable prince, "Yellow Duke, Esq." The number of workpeople directly engaged in this branch of Binningham indus. try, is estimated at about two hundred and fifty, and the in creasing use of bells, both for outdoor and indoor purposes, promises to augme
chanics' Magazine.

A NEW STONE.

Architects have for some years past been indebted to Mr. Frederick Ransome for providing them with a constructive material of very great value, a stone which can be molded into any form, which can be produced in blocks of any size and which,when made, is as durable as the best kind of natural stone known. The production of this material-the "patent concrete stone" as it is termed by Mr. Ransomewas the result of many years of persevering labor and struggles against difficulties; but we now find that Mr. Ransome, not content with what he had already accomplished, has succeeded in producing another new stone, which is in many respects as superior to its predecessor as the latter was to all other artificial stones produced before or since.
Before describing the process by which this new stone is made, it may be desirable that we should recall to the minds of our readers the method of manufacturing the artificial stone generally known by Mr. Ransome's name, as this will enable us to speak of the steps which led to the production of the new material. The ordmary " Ransome stone," then, is composed of particles of sand, mixed. iu some cases, with a little ground carbonate of lime, the whole being incorpor ated into a solid mass by the formation in the interstices of a silicate of lime. After many fruitless searcles after a method of procuring silicate of soda on a commercial scale, and at a moderate cost, Mr. Kansome hit upon the plan of boiling tints in a eolution of caustic soda under steann press ure, and it is the silicate of soda thus obtained that MF. Ran some employs to bring the materials we have mentioned into u plastic state, in which they car be molded to any desired form. This being done, the blotk produced is treated with a solution of chloride of calcium, when a double decomposi tion takes place, the silicicacid and the oxygen of the silicate of soda combining with the calcium of the thloride of cal cium, and thus forming silicate of lime, while the sodium unites with the chlorine of the chloride of calcium, thu torming chloride of sodiuut. The silicate of lime produced in this way unites the particles of sand, etc., into a hard and perfectly durable mass, while the chloride of calcium re mains diffused throughout the block, and has to be removed by washing.
Now, regarded from a manufacturing point of view, this washing process is rather a nuisance, particularly where
large blocks are being made. If performed thoroughly, it large blocks are being made. If performed thoroughly, it
occupies very cunsiderable time, and, consequently, delays the turuing out of the work; while, if not performed pro perly, there eventually takes place a greater or less etflores cence of the chloride of sodium, which, although not affect ing the strength or durability of the stone, spoils its appear ance. Under these circumstances, Mr. Runsome was led to endeavor to so modify his process as to render this final washing unnecessury, or, at all events, to reduce its amount,
and, step by step, he arrived at the new method of manufac and, step by step, he arrived at the new method of manufac-
ture, which we shall now describe. In carrying out these new plans, Mr. Ransome makes a mixture of certain propor. tions of ordinary sand, Portland cement, ground earbonate of lime, and some silica, readily soluble in caustic soda at ordinary temperatures, such, for instance, as the stone found in the neighborhood of Farnham and other places, and these materials he makes into a plastic mass by the addition of the silicate of soda already mentioned. The mass thus formed emains plastic a sufficient length of tiwe to allow of ite being rammed readily into molds of any desired form; but it
gradually hardens, and ultimately becomes thoroughly ingradually hardens, and ultimately becomes thoroughly in
durated, and converted without any further treatment, intoa hard stone, capable of resisting heat and cold, perfectly im permeable to moisture, and which, as far as can be judged from the experience hitherto obtained, goes on increasing in hardness, and bids fair to be thoroughly durable.
The chemical actions by which this wonderful result is produced are very curious, and Mr. Ransome's explanation of them is as follows: The Portland cement consists, as is well known, of silicate of alumina and lime; and when the mate-
rials are mixed up with the silicate of soda, the latter is derials are mixed up with the silicate of soda, the latter is dePortland cement, and forming silicate of lime and alumina, while caustic soda is set free. This ceustic soda, however, immediately seizes upon the soluble silica, which constitutes one of the ingredients, and thus forms a fresh supply of silicate of soda, which is in its turn decomposed by a further quantity of the lime in the Portiand cement, and so on. If wach decomposition of silicate of sodu resulted in thie setting free of the whole of the caustic soda, the processes ne have
mentioned would go on as long as there was any soluble silmentioned would go on as long as there was any soluble sil-
ica present with which the caustic soda could combine, or ica present with which the caustic soda could combine, or
until there ceased to be any uncombined lime to decompose the silicate of soda produced, the termination of the action Weing marked by the presence in the pores of the stone of
the cycess of canstic sofla in the one case, or of silicate of soda in the other. In reality, however, the whole of the caustic soda does not appear to be set free each time the sili cate of soda is decomposed by the lime, there apparing to he formed a compound silicate of lime and soda, a small jor rion of the latter being fixed at each decomposition. The
result thus is that the caustic soda is gradually all fixell, and result thus in that the caustic soda is gradually all fixem,
jope romains to te reauovil by washing or other prcusse.

By his new process Mr. Kansone is enabled to produce ad mirable artificial marbles, while, by introducing amongst the materials fragments of quartz and a small proportion of oxide of iron, he obtains a stono of rich color, and hardly distinguishable from Peterhead granite. Like the natural granites and marbles, the artificial substitutes are capable of taking an excellent polish, while they possess the great ad vantage over the natural products of being capable of being
molded in the course of manufacture into any form at a molded in the course of manufacture into any form at
triting cost. It would be idle for us to attempt here to enu merate the uses to which the new stone can be applied, for
they are practically numberiess. For decorative purposes it they are practically numberiess. For decorative purposes it will be invaluable, and Mr. Ransome deserves the bes having furnished them with a new constructive material a once so cheap and good.-Engineering.

Holler Explosions.

The explosion of a steam boiler is prim \hat{b} feceie evidence of carelessness in its construction, or in its maintenance, or in its use. It is so regarded by the engineers, and ought so to be regarded by the law. It will be easy to convince any one Who will examine the records of boiler explosions and in-
quire into the means of preventing them, that no injustice would be done to the owners of boilers by indicting them for criminal carelessness in all cases of explosion.
The history of boiler explosions is authentic and definite. The boiler-has usually been erected under the full light of modern science. All the attending circumstances of the ex plosion have been immediately communicated to the public curiosity has aided science in making every man an investi gator of these circumstances and a searcher after causes public and private commissions have been appointed to ex amine the subject generally; numerous legal tribunals have gone to the bottom of special cases, and innumerable private professional observers have witnessed results, searched rec ords, weighed evidence, and arrived at general conclusions, All the plausible theories of explosions have been not only
looked into, but worked out, in many cases, experimentally looked into, but worked out, in many cas
or theoretically, to their ultimate limits.
Now the remarkable and unprecedented result of all this investigation is, not the division of any large body of experta into schools; not the building up of rival theories, but the miversal conviction of all concerned, that boiler explowions are certainly in most, and probably in all cases, the result of ualconstruction or naltreatment, and of nothing else, and hat the usual immediate cause is the unchecked deteriora tion of the boiler in service. In the great majority of cases
the evidences of earelensuess are as plain as the time of day the evidences of carelessuess are as plain as the time of day
on the face of a clock-a sheet turowed nearly through; a stay bolt rusted off; a crown-slteet insutficiently supported expansion and contraction unprovided for; water connectious stopped up; bad material-sume one of the many obviou: and certain conditions of rupture. In u few cases the imme. diate causes are not apparent, and then the electricity theo rists, and the gas people, and the mystery men fight over the remains in the newspapers; and the only reason why simple neglect is not discovered to be the cause, is that the parts of the boiler which would otherwise reveal it, are blown away, or are too much mutilated or obstructed to be legible. Sim. ple bad treatment by the maker or user will account for the original rapture which ends in any explosion, however terrific may be its effects. There is force enough restrained within every steam boiler running today to perform the most terrible work of ruin that any similar boiler ever performed in exploding. When this force is once released, the amount of destruction depends on the point of rupture, the esistance, the surroundings, and on an infinite number of ircumstances, mostly outside of our control. The ouly hing we can do, and it is enough, is to keep the resistance superior to the normal pressure.
Now that the causes of boiler explosions are so well understood as to be a matter of commercial culculation-where ompanies make money by insuring such boilers as are con-rules-it and maintained according to established professiona stand helplessly by, and see scores of people scalded to death every few weeks, for the want of an adequate law and a system of inspection. Boiler insurance and inspection com-panies-and they are no new or experimental thing-simply prove that boilers constructed and maintained according to
certain well known rules, are practically safe; that the chances of explosion, even with ordinary water-tending, are very remote, und they stake their money on this knowledge; and yet the United States Government has been unable to even check the increase of these disasters. If Congress cannot at once provide for the security of the public against boiler explosions, it had better let out the job of protecting its citizens to some insurance company, and then it will be done on scientific principles, and loy competent men. $-N$. Y Timex.

The Domestic silc Trade,

The interruption to the Lyons silk manufactories, naturally esulting from the Franco-Prussiun war, has proved, according to the Chiccrgu Butreau, of very material benefit to the producers of silk fabrics in this country. The sales of the principul makes of Amprican silks have, we are informed,
increased fully 100 per cent since the outbreak of the foreign increased fully 100 per cent since the outbreak of the foreign
war. Our manufacturers were competing successfully with foreigners in the production of colored silks, while the trade, though taking all the black goods manufactured here, manifested a decided preference for those of foreign make. The war has had the effect of increasing the demand for both black and colored domestic silks, though this is more motice. oblu ta the forme. Liciloe roult of the focige disurn
ances-a resolt equally gratifying and unexpected-is the
decline in the price of American goods. It seemed natural decline in the price of American goods. It seemed natural
to believe, at the beginning of the war, that the inevitable to believe, at the beginning of the war, that the inevitable
result would be an advance in prices, consequent upon the result would be an advance in prices, consequent upon the
increased demand and in sympathy with a rise in foreign goods. 'This, however, has not been the fact. Our manufac. turers, like their Lyons competitors, always, ilepended chiefly upon Italy and France for their raw silk, the California pro duction not having become sufficiently well developed to furnish at supply anything like adequate to their demands. Now that the Lyons manu facturers are forced, by reason of the war, to suspend operations to a great extent, the Italian and French growers, especlally the former, are looking to Ameri ca for buyers of their staple, and finding our dealers ready to buy for cash, their desire to realize quickly induces them to make liberal concessions from current prices, which are, in fact, no higher than before the war. To this we owe-what must have been remarked by every silk buyer--the fact that American silks are now selling at lower prices than when American silks are now selling at lower prices than when
brought into more active competition with the products of the principal silk-manufacturing districts of the world.

Extract from the Diary of Isambard Kiugdome

 53 Parliament street, Dec. 20.What a blunk in my joumal (the last entry is dated Janu ry, 1834), and during the most eventful part of my life! When last I wrote in this book I was just emerging from obscurity. I had been toiling most unprofitably at numerous things: unprofitably, at least, at the moment. The railway was certainly being thought of, but still being uncertain. What a change! 'I'le railway is now in progress. I am the engineer to the finest work in England. A handsome salary, on excellent terms with my directors, und all going smoothly. But what a fight we have had; and how near defeat, and what a ruinous defeat it would have been! It is like looking back upon a fearful pass; but we have succeeded.
And it is not this alone, but everything I have been en gaged in has been successful. Clifton Bridge, my first child, my darling, is actually going ons; recominenced work last Monduy-glorious!! [Here follows a list of the undertakings in which he, was then enrraged.] I think this forms a pretty list of real sound professional work, unsought for on my part, that is, given to me fairly by the respective partiosall, except the Wear Docks, resultius from the Clifton Bridge, whielt I fought hurd for, and gained only by perse vering struggle:s. . . . And this at the age of twenty-nine. I really cate hardly believe it when I think of it. I am just leavings st parliment stseet, where I may say I lave just made my fortuse, or rather the foundation of it, and I have takrn 18 Duke strect.

Hemurkuble Cave in Thomas county, Georgia.

We tind the following interesting account in the Thomas ville Enterprise:
Near the line of Brooks and Thomas counties, there has long been known an opening or cave in the earth, called "Devil's Hopper." Many persons residing in the neighbor hood had visited it, but not one of these attempted a real ex ploration. We have before us, however, a letter written two months ago by a young gentlemun in this city, to his father describing an exploration of this cave by himself and a physician friend of liis, residing in Boston. The writer says it was the most keautiful place he ever saw in his life, and he would not have missed seeing it on any account. He says that, after creeping through a narrow entrance at the surface, they descended to the depth of two hundred feet, winding about in the narrow path walled with solid fint rock, until they came to a well, which they descended by means of a rope, and foumd it to be forty-five feet deep, without water At the botton of this well they found the narrow passage leadingro oft from the first, in a tortuons course, still walled with tiint rock; they continued to follow i1, and at some dis tance from the wall entered a large room or hall, walled with the same impenetrable Hint rock, but jugged and point ed in a thousand fantastic shapes. The writer declares bi inability to describe the grandeur and beauty of this hall by torchlight, but says he found himself in a large room walled with Hint rock so jagged that a fall against it would cut one to pieces, and beautifully hung with stalactites that reflected the light in a thousand forms and sparkled with diamond brilliancy in the nooks and corners of the hall.

Manufacinre ot Glycerin in Cincinnati.

In Cincinnati, two million hogs are annually slaughtered for pork, bacon, and lard. The average weight of the heavier animals is 400 pounds. In former years, the chief attention was bestowed upon the manufacture of stearin candles and soap grease, in addition to salting and smoking meats, but latterly, since the demand for glycerin has called it into For this purpose the hurd is treated with water at 662° to Fow Gul, by which the glycerin is separated from the fatty acids, and freed from the disagreeable odor that characterizes glycerin made in the process of soap manufacture. Two or three large cstablishments manufacture annually 500,000 pounds, valued at $\$ 300,000$ for the crude article. As there is an average of one hog to each individual in the United States (nothing personal intended), the forty million porkers can supply us with all the glycerin we are likely to want for un unlimited amount of artificial champagne, doctored cider, and rectified beer, not to speak of sirups and candy.

The Public Printing Office, in Thashiagion, is to be connected with the Capitol, hy telegrald, and a meumatic tube

